Electronic Journal of Differential Equations, Vol. 2006(2006), No. 65, pp. 1-13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ENERGY DECAY FOR SOLUTIONS TO SEMILINEAR SYSTEMS OF ELASTIC WAVES IN EXTERIOR DOMAINS

MARCIO V. FERREIRA, GUSTAVO P. MENZALA

Abstract

We consider the dynamical system of elasticity in the exterior of a bounded open domain in 3-D with smooth boundary. We prove that under the effect of "weak" dissipation, the total energy decays at a uniform rate as $t \rightarrow+\infty$, provided the initial data is "small" at infinity. No assumptions on the geometry of the obstacle are required. The results are then applied to a semilinear problem proving global existence and decay for small initial data.

1. Introduction

We study the uniform stabilization of the solutions of a hyperbolic system of equations in an exterior domain, as $t \rightarrow+\infty$. A classical example of this class is the system of elastic waves. Let us describe the model: Let \mathcal{O} be an open bounded region of \mathbb{R}^{3} with smooth boundary and $\Omega=\mathbb{R}^{3} \backslash \overline{\mathcal{O}}$. We consider the system

$$
\begin{gather*}
u_{t t}-\sum_{i, j=1}^{3} \frac{\partial}{\partial x_{i}}\left(A_{i j} \frac{\partial u}{\partial x_{j}}\right)+u_{t}=f\left(u_{t}\right) \quad \text { in } \Omega \times \mathbb{R} \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \times \mathbb{R}
\end{gather*}
$$

Here $x=\left(x_{1}, x_{2}, x_{3}\right) \in \Omega, t$ is the time variable, $u(x, t)=\left(u_{1}(x, t), u_{2}(x, t), u_{3}(x, t)\right)$ denotes the displacement vector, $A_{i j}=\left[C_{k h}^{i j}\right]$ are 3×3 symmetric matrices and $f=\left(f_{1}, f_{2}, f_{3}\right)$ is a nonhomogeneous vector-valued function. Both $A_{i j}$ and f will satisfy suitable assumptions. Associated to the initial boundary valued problem (1.1) we have the total energy

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{\Omega}\left\{\left|u_{t}\right|^{2}+\sum_{i, j=1}^{3} A_{i j} \frac{\partial u}{\partial x_{j}} \cdot \frac{\partial u}{\partial x_{i}}\right\} d x \tag{1.2}
\end{equation*}
$$

where $\left|u_{t}\right|^{2}=u_{t} \cdot u_{t}=\sum_{j=1}^{3}\left|\frac{\partial}{\partial t} u_{j}\right|^{2}$ and the dot \cdot denotes the usual inner product in \mathbb{R}^{3}. Let u be the solution of problem (1.1) in a suitable function space and assume

[^0]for a moment that $f \equiv 0$. Then, a formal calculation give us that the derivative of $E(t)$:
\[

$$
\begin{equation*}
\frac{d}{d t} E(t)=-\int_{\Omega}\left|u_{t}\right|^{2} d x \leq 0 \tag{1.3}
\end{equation*}
$$

\]

Thus, we may ask: Does $E(t)$ decays at a uniform rate as $t \rightarrow+\infty$? Furthermore, in case the answer is affirmative then we can ask if the same result would still hold for a class of functions f and initial data $\left(u_{0}, u_{1}\right)$ satisfying suitable assumptions. Both questions above are by now not very difficult to answer in case Ω is a bounded domain (see for instance Racke [11] and the references therein). In our case, since Ω is an exterior domain, the uniform stabilization requires a more detailed discussion which is our main objective in this article. There is a large literature concerning the decay of solutions of hyperbolic problems in exterior domains. In a pioneering work, Morawetz [7, 8] studied the asymptotic behavior of the local energy for the scalar wave equation in exterior domains. Assuming geometric conditions on the obstacle and initial data with compact support she obtained uniform rates of decay. B. Kapitonov got similar results for the system of elastic waves and the Maxwell equations, Zuazua [13], Nakao [10] and Ikehata [4] obtained also stabilization results for scalar wave equations with localized damping (being effective only near "infinity"). As far as we know the results we present in this article for system 1.1 are the first of the kind for the system of elasticity. We do not assume geometric conditions on the obstacle nor special restrictions on the Lamé's coefficients in the isotropic case. Our strategy relies on recent work due to Ikehata [2] for the scalar wave equation adapted conveniently to system (1.1).

Let us make precise our assumptions on the matrices $A_{i j}$ and the nonlinearity f in 1.1):
(H1) (a) Given a set of real numbers $\left\{a_{i j k h}\right\}$ with $i, j, k, h \in\{1,2,3\}$ satisfying the symmetric properties $a_{i j k h}=a_{j i k h}=a_{k h i j}$, we consider

$$
C_{k h}^{i j}=\left(1-\delta_{i h} \delta_{j k}\right) a_{i k j h}+\delta_{i k} \delta_{j h} a_{i h j k}
$$

with $\delta_{\ell k}=\left\{\begin{array}{l}1 \text { if } \ell=k \\ 0 \text { if } \ell \neq k\end{array}\right.$ and "build" the 3×3 matrices $A_{i j}=\left[C_{k h}^{i j}\right]$.
(b) We assume that there exist a constant $C_{0}>0$ such that

$$
\begin{equation*}
\sum_{i, j=1}^{3} A_{i j} v_{j} \cdot v_{i} \geq C_{0} \sum_{i=1}^{3}\left|v_{i}\right|^{2} \tag{1.4}
\end{equation*}
$$

for any vector $v_{i}=\left(v_{i}^{1}, v_{i}^{2}, v_{i}^{3}\right) \in \mathbb{R}^{3}$ where $\left|v_{i}\right|^{2}=v_{i} \cdot v_{i}$.
(H2) Let $f=\left(f_{1}, f_{2}, f_{3}\right)$ with $f_{j}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ satisfying the following assumptions: Each $f_{j} \in C^{2}\left(\mathbb{R}^{3}\right)$ and
(a) $|f(y)| \leq C_{1}|y|^{p} \quad$ for every $y \in \mathbb{R}^{3}$
(b) $|\nabla f(y)| \leq C_{2}|y|^{p-1} \quad$ for every $y \in \mathbb{R}^{3}$
(c) $\sum_{i, j=1}^{3}\left|\nabla \frac{\partial f_{i}(y)}{\partial y_{j}}\right| \leq C_{3}|y|^{p-2} \quad$ for every $y \in \mathbb{R}^{3}$
where C_{j} are positive constants $(1 \leq j \leq 3), \frac{7}{3}<p \leq 3$ and $|\nabla f(y)|^{2}=$ $\sum_{i=1}^{3}\left|\nabla f_{i}(y)\right|^{2}$.

Remark 1.1. In the simplest case, that is, when the medium is isotropic, the constants $a_{i j k h}$ are

$$
a_{i j k h}=\lambda \delta_{i j} \delta_{k h}+\mu\left(\delta_{i k} \delta_{j h}+\delta_{i h} \delta_{j k}\right)
$$

where λ and μ are Lamé's constants $(\mu>0, \lambda+\mu>0)$. Furthermore, 1.4 holds with $C_{0}=\mu>0$ and $\sum_{i, j=1}^{3} \frac{\partial}{\partial x_{i}}\left(A_{i j} \frac{\partial u}{\partial x_{j}}\right)$ reduces to $\mu \Delta u+(\lambda+\mu) \nabla \operatorname{div} u$.

Remark 1.2. Due to the symmetry conditions on the numbers $a_{i j k h}$ it follows that $A_{i j}^{*}=A_{j i}$.

2. The linear case

In this section we consider the linear problem

$$
\begin{gather*}
u_{t t}-\sum_{i, j=1}^{3} \frac{\partial}{\partial x_{i}}\left(A_{i j} \frac{\partial u}{\partial x_{j}}\right)+u_{t}=0 \quad \text { in } \Omega \times \mathbb{R} \tag{2.1}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \times \mathbb{R}
\end{gather*}
$$

Using standard semigroup theory we can easily prove the following result.
Theorem 2.1. Let $\left(u_{0}, u_{1}\right) \in\left[H_{0}^{1}(\Omega)\right]^{3} \times\left[L^{2}(\Omega)\right]^{3}$ and $A_{i j}$ satisfy assumption (H1). Then, there exist a unique (weak) solution u of problem (2.1) such that $u \in C\left(\mathbb{R} ;\left[H_{0}^{1}(\Omega)\right]^{3}\right) \cap C^{1}\left(\mathbb{R} ;\left[L^{2}(\Omega)\right]^{3}\right)$. If $\left(u_{0}, u_{1}\right) \in\left[H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{3} \times\left[H_{0}^{1}(\Omega)\right]^{3}$, then, there exist a unique (strong) solution u of problem (2.1) such that

$$
u \in C\left(\mathbb{R} ;\left[H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{3}\right) \cap C^{1}\left(\mathbb{R} ;\left[H_{0}^{1}(\Omega)\right]^{3}\right) \cap C^{2}\left(\mathbb{R} ;\left[L^{2}(\Omega)\right]^{3}\right)
$$

Here $H^{m}(\Omega)$ denotes the usual Sobolev space of order m in Ω and $H_{0}^{1}(\Omega)=$ $\left\{u \in H^{1}(\Omega),\left.u\right|_{\partial \Omega}=0\right\}$. Now, we want to devote our attention to the asymptotic behavior of the total energy $E(t)$ given by 1.2 . Our result in this case is as follows.

Theorem 2.2. Let $\left(u_{0}, u_{1}\right) \in\left[H_{0}^{1}(\Omega)\right]^{3} \times\left[L^{2}(\Omega)\right]^{3}$ and assume that the initial data satisfy the condition

$$
\begin{equation*}
\int_{\Omega}|x|^{2}\left|u_{0}+u_{1}\right|^{2} d x<+\infty \tag{2.2}
\end{equation*}
$$

Then, there exist a positive constant C such that

$$
\begin{gathered}
E(t) \leq C I_{0}(1+|t|)^{2} \quad \text { for every } t \in \mathbb{R} \\
\int_{\Omega}|u(x, t)|^{2} d x \leq C I_{0}(1+|t|)^{-1} \quad \text { for every } t \in \mathbb{R}
\end{gathered}
$$

where $I_{0}=\left\|u_{0}\right\|_{\left[H^{1}(\Omega)\right]^{3}}^{2}+\left\|u_{1}\right\|^{2}+\left\||\cdot|\left(u_{0}+u_{1}\right)\right\|^{2}$ and $\|g\|^{2}=\sum_{j=1}^{3} \int_{\Omega}\left|g_{j}\right|^{2} d x$ whenever $g=\left(g_{1}, g_{2}, g_{3}\right) \in\left[L^{2}(\Omega)\right]^{3}$.

As far as we know, results of this type for exterior domains are known only for scalar wave equations and most of them require geometrical conditions on the obstacle (like star-shaped condition). We need some preliminary lemmas. Obviously, is sufficient to prove Theorem 2.2 for $t \geq 0$.

Lemma 2.3. Let $\left(u_{0}, u_{1}\right) \in\left[H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{3} \times\left[H_{0}^{1}(\Omega)\right]^{3}$. Then, the solution of (2.1) satisfies, for any $t \geq 0$,

$$
\begin{gather*}
E(t)+\int_{0}^{t} \int_{\Omega}\left|u_{s}(x, s)\right|^{2} d x d s=E(0) \tag{2.3}\\
\int_{0}^{t} \int_{\Omega}(1+s)\left|u_{s}(x, s)\right|^{2} d x d s+(1+t) E(t)=E(0)+\int_{0}^{t} E(s) d s \tag{2.4}\\
\int_{0}^{t} \int_{\Omega} \sum_{i, j=1}^{3} A_{i j} \frac{\partial u}{\partial x_{j}} \cdot \frac{\partial u}{\partial x_{i}} d x d s+\frac{1}{2} \int_{\Omega}|u(x, t)|^{2} d s \tag{2.5}\\
=\frac{1}{2}\left\|u_{0}\right\|^{2}+\int_{\Omega} u_{1} \cdot u_{0} d x-\int_{\Omega} u_{t} \cdot u d x+\int_{0}^{t} \int_{\Omega}\left|u_{s}\right|^{2} d x d s \\
\int_{0}^{t} \int_{\Omega}(1+s) \sum_{i, j=1}^{3} A_{i j} \frac{\partial u}{\partial x_{j}} \cdot \frac{\partial u}{\partial x_{i}} d x d s+(1+t) \int_{\Omega}|u|^{2} d x \tag{2.6}\\
\leq C+\frac{1}{2} \int_{0}^{t} \int_{\Omega}|u|^{2} d x d s
\end{gather*}
$$

where C is a positive constant which depends only on $E(0)$ and $\left\|u_{0}\right\|$.
Proof. Equality (2.3) follows directly from 1.3) by integration over $[0, t]$. Also, from (1.3) it follows that

$$
(1+t) \frac{d E}{d t}=-\int_{\Omega}(1+t)\left|u_{t}\right|^{2} d x
$$

that is,

$$
\begin{equation*}
\int_{\Omega}(1+t)\left|u_{t}\right|^{2} d x=-\frac{d}{d t}\{(1+t) E(t)\}+E(t) \tag{2.7}
\end{equation*}
$$

Integration of this equality over $[0, t]$ proves (2.4). Next, we take the inner product in $\left[L^{2}(\Omega)\right]^{3}$ of system 2.1 with u to obtain

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} u_{t} \cdot u d x-\int_{\Omega} \sum_{i, j=1}^{3} \frac{\partial}{\partial x_{i}}\left(A_{i j} \frac{\partial u}{\partial x_{j}}\right) \cdot u d x+\frac{1}{2} \frac{d}{d t} \int_{\Omega}|u|^{2} d x=\int_{\Omega}\left|u_{t}\right|^{2} d x \tag{2.8}
\end{equation*}
$$

Using the divergence theorem and the boundary conditions we know that

$$
\int_{\Omega} \sum_{i, j=1}^{3} \frac{\partial}{\partial x_{i}}\left(A_{i j} \frac{\partial u}{\partial x_{j}}\right) \cdot u d x=-\int_{\Omega} \sum_{i, j=1}^{3} A_{i j} \frac{\partial u}{\partial x_{i}} \cdot \frac{\partial u}{\partial x_{j}} d x
$$

Substitution of the above identity into (2.8) and integration over $[0, t]$ proves 2.5 . To prove (2.6), we proceed as above: Let us take the inner product in $\left[L^{2}(\Omega)\right]^{3}$ of system 2.1) with $(1+t) u$ and use the divergence theorem to obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega} t|u|^{2} d x+(1+t) \int_{\Omega} \sum_{i, j=1}^{3} A_{i j} \frac{\partial u}{\partial x_{j}} \cdot \frac{\partial u}{\partial x_{i}} d x \\
& =(1+t) \int_{\Omega}\left|u_{t}\right|^{2} d x+\frac{1}{2} \int_{\Omega}|u|^{2} d x-\frac{d}{d t} \int_{\Omega}(1+t) u_{t} \cdot u d x
\end{aligned}
$$

Integration of this equality over $[0, t]$ and using Holder's inequality implies

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega}(1+s) \sum_{i, j=1}^{3} A_{i j} \frac{\partial u}{\partial x_{j}} \cdot \frac{\partial u}{\partial x_{i}} d x d s+\frac{t}{2} \int_{\Omega}|u|^{2} d x \\
& \leq \int_{\Omega} u_{1} \cdot u_{0} d x+\int_{0}^{t} \int_{\Omega}(1+s)\left|u_{s}\right|^{2} d x d s+\frac{1}{2} \int_{0}^{t} \int_{\Omega}|u|^{2} d x d s \tag{2.9}\\
& \quad+\frac{1+t}{4} \int_{\Omega}|u|^{2} d x+(1+t) \int_{\Omega}\left|u_{t}\right|^{2} d x
\end{align*}
$$

From (2.4) and (2.5) in Lemma 2.3 we know that

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega}(1+s)\left|u_{s}\right|^{2} d x d s \leq E(0)+\int_{0}^{t} E(s) d s \tag{2.10}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega} \sum_{i, j=1}^{3} A_{i j} \frac{\partial u}{\partial x_{j}} \cdot \frac{\partial u}{\partial x_{i}} d x d s+\frac{1}{4} \int_{\Omega}|u(x, t)|^{2} d x \tag{2.11}\\
& \leq \frac{1}{2}\left\|u_{0}\right\|^{2}+\int_{\Omega} u_{1} \cdot u_{0} d x+\int_{\Omega}\left|u_{t}\right|^{2} d x+E(0)-E(t)
\end{align*}
$$

From the above inequality, and using again (2.3), we deduce that

$$
\begin{equation*}
2 \int_{0}^{t} E(s) d s+\frac{1}{4} \int_{\Omega}|u|^{2} d x \leq 2 E(0)+\frac{1}{2}\left\|u_{0}\right\|^{2}+\int_{\Omega} u_{1} \cdot u_{0} d x \tag{2.12}
\end{equation*}
$$

Using the estimates $2.10,2.11$ and 2.12 we obtain from 2.9 the inequality

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega}(1+s) \sum_{i, j=1}^{3} A_{i j} \frac{\partial u}{\partial x_{j}} \cdot \frac{\partial u}{\partial x_{i}} d x d s+\frac{(1+t)}{4} \int_{\Omega}|u|^{2} d x \tag{2.13}\\
& \leq 3 \int_{\Omega} u_{1} \cdot u_{0} d x+5 E(0)+\left\|u_{0}\right\|^{2}+\frac{1}{2} \int_{0}^{t} \int_{\Omega}|u|^{2} d x d s+2(1+t) E(t)
\end{align*}
$$

It remains to estimate $2(1+t) E(t)$. Observing that

$$
\frac{d}{d t}\{(1+t) E(t)\}=E(t)+(1+t) \frac{d E}{d t} \leq E(t)
$$

Consequently

$$
2(1+t) E(t) \leq 2 E(0)+2 \int_{0}^{t} E(s) d s \leq 4 E(0)+\frac{1}{2}\left\|u_{0}\right\|^{2}+\int_{\Omega} u_{1} \cdot u_{0} d x
$$

Substitution of this inequalit into 2.13 completes the proof
Lemma 2.4. Let $\left(u_{0}, u_{1}\right) \in\left[H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{3} \times\left[H_{0}^{1}(\Omega)\right]^{3}$ and $\left(u_{0}, u_{1}\right)$ satisfy (2.2).
Then the solution u of problem (2.1) satisfies

$$
\int_{\Omega}|u|^{2} d x+\int_{0}^{t} \int_{\Omega}|u|^{2} d x d s \leq\left\|u_{0}\right\|^{2}+\frac{4}{C_{0}} \int_{\Omega}|x|^{2}\left|u_{0}+u_{1}\right|^{2} d x
$$

where C_{0} is the positive constant which appears in 1.4.
Proof. First, let us observe that whenever $u_{j} \in H_{0}^{1}(\Omega)$ then Hardy's inequality states that

$$
\int_{\Omega} \frac{\left|u_{j}\right|^{2}}{|x|^{2}} d x \leq 4 \int_{\Omega}\left|\nabla u_{j}\right|^{2} d x
$$

Therefore, $u=\left(u_{1}, u_{2}, u_{3}\right)$ satisfies

$$
\begin{equation*}
\int_{\Omega} \frac{|u|^{2}}{|x|^{2}} d x \leq 4 \int_{\Omega} \sum_{i, j=1}^{3}\left|\frac{\partial u_{j}}{\partial x_{i}}\right|^{2} d x \leq \frac{4}{C_{0}} \int_{\Omega} \sum_{i, j=1}^{3} A_{i j} \frac{\partial u}{\partial x_{j}} \cdot \frac{\partial u}{\partial x_{i}} d x \tag{2.14}
\end{equation*}
$$

due to (1.4). Let $w(x, t)=\int_{0}^{t} u(x, s) d s$. It follows that $w(x, t)$ satisfies the equation

$$
\begin{gather*}
w_{t t}-\sum_{i, j=1}^{3} \frac{\partial}{\partial x_{i}}\left(A_{i j} \frac{\partial w}{\partial x_{j}}\right)+w_{t}=u_{0}+u_{1} \quad \text { in } \Omega \times \mathbb{R}^{+} \tag{2.15}\\
w(x, 0)=0, \quad w_{t}(x, 0)=u_{0}(x) \quad \text { in } \Omega \\
w=0 \quad \text { on } \partial \Omega \times \mathbb{R}^{+}
\end{gather*}
$$

Let us consider the inner product in $\left[L^{2}(\Omega)\right]^{3}$ of the above equation with w_{t} and use the divergence theorem to obtain

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left\{\left|w_{t}\right|^{2}+\sum_{i, j=1}^{3} A_{i j} \frac{\partial w}{\partial x_{j}} \cdot \frac{\partial w}{\partial x_{i}}\right\} d x+\int_{\Omega}\left|w_{t}\right|^{2} d x=\frac{d}{d t} \int_{\Omega}\left(u_{0}+u_{1}\right) \cdot w d x
$$

Integrating this equality over $[0, t]$, using Hölder's inequality and (2.14) implies that

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega}\left\{\left|w_{t}\right|^{2}+\sum_{i, j=1}^{3} A_{i j} \frac{\partial w}{\partial x_{j}} \cdot \frac{\partial w}{\partial x_{i}}\right\} d x+\int_{0}^{t} \int_{\Omega}\left|w_{s}\right|^{2} d x d s \\
& =\int_{\Omega}\left(u_{0}+u_{1}\right) \cdot w d x+\frac{1}{2}\left\|u_{0}\right\|^{2} \\
& \leq\left(\int_{\Omega}|x|^{2}\left|u_{0}+u_{1}\right|^{2} d x\right)^{1 / 2}\left(\int_{\Omega} \frac{|w|^{2}}{|x|^{2}} d x\right)^{1 / 2}+\frac{1}{2}\left\|u_{0}\right\|^{2} \\
& \leq\left(\frac{4}{C_{0}}\right)^{1 / 2}\left(\int_{\Omega} \sum_{i, j=1}^{3} A_{i j} \frac{\partial w}{\partial x_{j}} \cdot \frac{\partial w}{\partial x_{i}} d x\right)^{1 / 2}\left(\int_{\Omega}|x|^{2}\left|u_{0}+u_{1}\right|^{2} d x\right)^{1 / 2}+\frac{1}{2}\left\|u_{0}\right\|^{2} \\
& \leq \frac{1}{4} \int_{\Omega} \sum_{i, j=1}^{3} A_{i j} \frac{\partial w}{\partial x_{j}} \cdot \frac{\partial w}{\partial x_{i}} d x+\frac{4}{C_{0}} \int_{\Omega}|x|^{2}\left|u_{0}+u_{1}\right|^{2} d x+\frac{1}{2}\left\|u_{0}\right\|^{2}
\end{aligned}
$$

This inequality proves Lemma 2.4 because $w_{t}=u$.

Proof of Theorem 2.2. It follows from Lemmas 2.3 and 2.4 that

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega}(1+s) \sum^{3} A_{i j} \frac{\partial u}{\partial x_{j}} \cdot \frac{\partial u}{\partial x_{i}} d x d s+(1+t) \int_{\Omega}|u|^{2} d x \leq C I_{0} \tag{2.16}
\end{equation*}
$$

for any $t \geq 0$. Observing that

$$
\frac{d}{d t}\left\{(1+t)^{2} E(t)\right\}=2(t+1) E(t)+(1+t)^{2} \frac{d E}{d t} \leq 2(1+t) E(t)
$$

it follows that

$$
\begin{aligned}
(1+t)^{2} E(t) & \leq E(0)+2 \int_{0}^{t}(1+s) E(s) d s \\
& \leq E(0)+C I_{0}+\int_{0}^{T} \int_{\Omega}(1+s)\left|u_{s}\right|^{2} d x d s \\
& \leq 2 E(0)+C I_{0}+\int_{0}^{t} E(s) d s \leq \widetilde{C} I_{0}
\end{aligned}
$$

Here we used Lemma $\sqrt{2.3}$ and 2.12 , with \widetilde{C} a positive constant. This completes the proof of Theorem 2.2

Remark 2.5. It is quite interesting to mention here that a similar procedure to the one presented above was done by the first author (M.F) in [1] for the Maxwell equations in exterior domains and the requirement 2.2 was not needed in order to obtain uniform decay rates.

Remark 2.6. The above procedure could be extended to include the anisotropic case, that is, when the coefficients $a_{i j k h}$ do depend on each $x \in \Omega$. In that case $A_{i j}=A_{i j}(x)$ and assumptions (a) and (b) would be required to be valid for each $x \in \Omega$ with $C_{0}>0$ independent of $x \in \Omega$. As it is clear in the proof of Lemma 2.3 additional assumptions on the behavior of partial derivatives $\frac{\partial}{\partial x_{i}} A_{i j}(x)$ would be required to arrive to the conclusion of Theorem 2.2 .

3. The semilinear problem

This section, we apply the results obtained in Section 2 to study the asymptotic behavior of the solutions of the semilinear model. We will sketch the proof that for small enough initial data the solution of problem 1.1 exists globally and enjoys the same rate of decay as $t \rightarrow+\infty$ as the solution of the linear model (2.1). We will assume that f satisfies all conditions given in (H2). Local existence will be done via contraction arguments and the global existence as well as the asymptotic behavior using the decay rates for the linear part obtained in Section 2. Due to the character of the nonlinearity in problem (1.1) we will require more regular solutions. First, let us rewrite problem (1.1) as a first order evolution system:

$$
\begin{equation*}
\frac{d U}{d t}=A U+F(U), \quad U(0)=U_{0} \tag{3.1}
\end{equation*}
$$

where $U=\left(u, u_{t}\right), U_{0}=\left(u_{0}, u_{1}\right), F(U)=\left(0, f\left(u_{t}\right)+u\right)$ and A with domain $\mathcal{D}(A)=\left[H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{3} \times\left[H_{0}^{1}(\Omega)\right]^{3}$ given by

$$
A(u, v)=\left(v, \sum_{i, j=1}^{3} \frac{\partial}{\partial x_{i}}\left(A_{i j} \frac{\partial u}{\partial x_{j}}\right)-u-v\right)
$$

for every $(u, v) \in \mathcal{D}(A)$. The operator A is the infinitesimal generator of a C_{0} group of operators $\{T(t)\}_{t \in \mathbb{R}}$ in the Hilbert space $X=\left[H_{0}^{1}(\Omega)\right]^{3} \times\left[L^{2}(\Omega)\right]^{3}$. The main result of this section for the solution of problem will be present with initial data with compact support. However, it seems to us that using recent work due to Todorova and Yordanov [12] and Ikehata and Matsuyana [3] for the scalar wave equation then our result may be improved for initial data satisfying only (2.2). We want to prove the following result.

Theorem 3.1. Assume condition (H1) and (H2). Let $\left(u_{0}, u_{1}\right) \in \mathcal{D}\left(A^{2}\right)$ with compact support. Then, there exist $\delta>0$ such that if $\widetilde{I}<\delta$ then problem 1.1) has a unique global solution $\left(u, u_{t}\right)$ such that

$$
\left(u, u_{t}\right) \in C\left(\mathbb{R} ; \mathcal{D}\left(A^{2}\right)\right) \cap C^{1}(\mathbb{R} ; \mathcal{D}(A)) \cap C^{2}(\mathbb{R} ; X)
$$

and satisfies

$$
\begin{gathered}
\int_{\Omega}|u|^{2} d x \leq C \widetilde{I}(1+|t|)^{-1} \quad \forall t \in \mathbb{R} \\
E(t)+E_{1}(t)+E_{2}(t) \leq C \widetilde{I}(1+|t|)^{-2} \quad \forall t \in \mathbb{R}
\end{gathered}
$$

where $E(t)$ is given by (1.2) and E_{1} and E_{2} will be given by (3.7) and (3.9) and $C>0$ is a positive constant. Here \widetilde{I} depends only on the Sobolev norms (up to order three) of the initial data.

First, we sketch the proof of existence of a local solution. Let $T>0$ and consider the space

$$
Y(T)=C\left([0, T] ; \mathcal{D}\left(A^{2}\right)\right) \cap C^{1}([0, T] ; \mathcal{D}(A)) \cap C^{2}([0, T] ; X)
$$

with norm

$$
\begin{equation*}
\|U\|_{Y(T)}=\sup _{[0, T]}\|U(t)\|_{\mathcal{D}\left(A^{2}\right)}+\sup _{[0, T]}\left\|U_{t}(t)\right\|_{\mathcal{D}(A)}+\sup _{[0, T]}\left\|U_{t t}(t)\right\|_{X} \tag{3.2}
\end{equation*}
$$

Clearly $Y(T)$ is a Banach space. Let $U=(u, v) \in Y(T)$. Using our assumptions (H2) on f and the embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{q}(\Omega)$ for $2 \leq q \leq 6$ and $H^{2}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ we obtain the estimates

$$
\begin{gathered}
\|f(v)\| \leq C\|v\|_{\left[L^{2 p}(\Omega]^{3}\right.}^{p} \leq C\|v\|_{\left[H_{0}^{1}(\Omega)\right]^{3}}^{p} \\
\|\nabla f(v)\| \leq C\|v\|_{\left[H^{2}(\Omega)\right]^{3}}^{p-1}\|v\|_{\left[H_{0}^{1}(\Omega)\right]^{3}} \\
\left\|\frac{\partial^{2} f(v)}{\partial x_{i} \partial x_{j}}\right\| \leq C\|v\|_{\left[H^{2}(\Omega)\right]^{3}}^{p}, \quad i, j=1,2,3
\end{gathered}
$$

We recall that $\|g\|^{2}=\sum_{j=1}^{3} \int_{\Omega}\left|g_{j}\right|^{2} d x$ whenever $g=\left(g_{1}, g_{2}, g_{3}\right) \in\left[L^{2}(\Omega)\right]^{3}$. The above estimates imply

$$
f(v) \in C\left([0, T] ;\left[H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{3}\right)
$$

Now, we claim that $f(v) \in C^{1}\left([0, T] \cdot\left[H_{0}^{1}(\Omega)\right]^{3}\right) \cap C^{2}\left([0, T] ;\left[L^{2}(\Omega)\right]^{3}\right)$. In fact,

$$
\frac{d}{d t} f(v)=\left(\nabla f_{1}(v) \cdot v_{t}, \nabla f_{2}(v) \cdot v_{t}, \nabla f_{3}(v) \cdot v_{t}\right)
$$

Therefore, using assumption (H2) and Hölder's inequality we obtain

$$
\begin{aligned}
\left\|\frac{d}{d t} f(v)\right\|^{2} & \leq \int_{\Omega} \sum_{j=1}^{3}\left|\nabla f_{j}(v) \cdot v_{t}\right|^{2} d x \\
& \leq C \int_{\Omega}|v|^{2(p-1)}\left|v_{t}\right|^{2} d x \\
& \leq C\left\|v_{t}\right\|_{\left[L^{2 p}\right]^{3}}^{2}\|v\|_{\left[L^{2 p}\right]^{3}}^{2(p-1)} \\
& \leq C\left\|v_{t}\right\|_{\left[H_{0}^{1}\right]^{3}}^{2}\|v\|_{\left[H_{0}^{1}\right]^{3}}^{2(-1)} .
\end{aligned}
$$

Similarly, we can estimate

$$
\left|\frac{\partial}{\partial x_{j}}\left(\frac{d}{d t} f(v)\right)\right| \leq C\left|v_{t}\left\|\frac{\partial v}{\partial x_{j}}\right\| v\right|^{p-2}+C\left|\frac{\partial v_{t}}{\partial x_{j}} \| v\right|^{p-1}
$$

for some positive constant C. Consequently,

$$
\left\|\frac{\partial}{\partial x_{j}}\left(\frac{d}{d t} f(v)\right)\right\| \leq C\|v\|_{\left[H^{2}\right]^{3}}^{p-1}\left\|v_{t}\right\|_{\left[H_{0}^{1}\right]^{3}}
$$

for $j=1,2,3$. It follows from the above discussion that

$$
f(v) \in C^{1}\left([0, T] \cdot\left[H_{0}^{1}(\Omega)\right]^{3}\right)
$$

By a similar procedure we can prove that $f(v) \in C^{2}\left([0, T] ;\left[L^{2}(\Omega)\right]^{3}\right)$ which proves our claim. Thus, whenever we consider an element $\widetilde{U}=(\tilde{u}, \tilde{v}) \in Y(T)$ then, the nonlinearity $F(\widetilde{U})=(0, f(\tilde{v})+\tilde{u})$ belongs to

$$
C^{1}([0, T] ; \mathcal{D}(A)) \cap C^{2}([0, T] ; X)
$$

It follows by semigroup theory that the nonhomogeneous problem

$$
\begin{equation*}
\frac{d U}{d t}=A U+F(\widetilde{U}), \quad U(0)=U_{0}=\left(u_{0}, u_{1}\right) \tag{3.3}
\end{equation*}
$$

has a unique (local) solution $U=(u, v) \in Y(T)$ provided $U_{0} \in \mathcal{D}\left(A^{2}\right)$.
Lemma 3.2. Assume (H1) and (H2). Let $U_{0}=\left(u_{0}, u_{1}\right) \in \mathcal{D}\left(A^{2}\right)$. Then, there exist $T_{0}>0$ such that problem (1.1) has a unique solution $U=\left(u, u_{t}\right)$ belonging to the space

$$
C\left(\left[0, T_{0}\right] ; \mathcal{D}\left(A^{2}\right)\right) \cap C^{1}\left(\left[0, T_{0}\right] ; \mathcal{D}(A)\right) \cap C^{2}\left(\left[0, T_{0}\right] ; X\right)
$$

Sketch of proof. We consider the map $\Phi: Y(T) \mapsto Y(T)$ given by $\Phi(\widetilde{U})=U$ where U is the solution of (3.3) and we will prove that Φ has a unique fixed point in $Y(T)$ as long as we choose T sufficiently small. We achieve this in the following way: Using the formula of variation of parameters and our assumptions of f we can prove that the solution U of (3.3) satisfies

$$
\begin{equation*}
\|U\|_{Y(T)} \leq C\left(U_{0}\right)+C T\left\{\|\widetilde{U}\|_{Y(T)}^{p}+\|\widetilde{U}\|_{Y(T)}\right\} \tag{3.4}
\end{equation*}
$$

where $C\left(U_{0}\right)$ depends only on the norm $\left\|A^{2} U_{0}\right\|_{X}$ and the Sobolev norms (up to order three) of $U(0)$ and $U_{t}(0)$. Next, we choose $K \geq 1$ and consider the set

$$
B_{K}=\left\{\widetilde{U} \in Y(t) ; \widetilde{U}(0)=U_{0}, \widetilde{U}_{t}(0)=U_{1},\|\widetilde{U}\|_{Y(T)} \leq K\right\}
$$

where

$$
U_{1}=\left(u_{1}, \sum_{i, j=1}^{3} \frac{\partial}{\partial x_{i}}\left(A_{i j} \frac{\partial u_{0}}{\partial x_{j}}\right)-u_{0}-u_{1}\right)
$$

We claim that $\Phi\left(B_{K}\right) \subseteq B_{K}$, if we choose T small and K large. In fact, let $\widetilde{U} \in B_{K}$ then, from (3.4) we obtain

$$
\|U\|_{Y(T)} \leq C\left(U_{0}\right)+C T\left\{K^{p}+K\right\} .
$$

Now, we choose K such that $C\left(U_{0}\right) \leq K / 2$ and $T>0$ such that $T<\left[2 C\left(K^{p-1}+\right.\right.$ $1)]^{-1}$. Thus $\|U\|_{Y(T)} \leq K$. Obviously $U(0)=U_{0}$ and $U_{t}(0)=U_{1}$. Using the semigroup properties and the formula of variation of parameters we can prove that Φ is a contraction map, that is for any \widetilde{U} and \widetilde{W} belonging to B_{K} we have

$$
\|\Phi(\widetilde{U})-\Phi(\widetilde{W})\|_{Y(T)} \leq \alpha\|\widetilde{U}-\widetilde{W}\|_{Y(T)}
$$

where $0<\alpha=\alpha(K, T)<1$ as long as we choose K large and $T>0$ sufficiently small. This proves Lemma 3.2

Next we prove Theorem 3.1. First, we extend the local solution we found in Lemma 3.2 to the maximal interval of existence $\left[0, T_{\max }\right)$. Technically it will be more convenient to rewrite problem (1.1) as

$$
\begin{equation*}
\frac{d U}{d t}=\widetilde{A} U+\widetilde{F}(U), \quad U(0)=U_{0}=\left(u_{0}, u_{1}\right) \tag{3.5}
\end{equation*}
$$

with

$$
\widetilde{A}(u, v)=\left(v, \sum_{i, j=1}^{3} \frac{\partial}{\partial x_{j}}\left(A_{i j} \frac{\partial u}{\partial x_{i}}\right)-v\right)
$$

and $\widetilde{F}(U)=\left(0, f\left(u_{t}\right)\right)$ where $U=(u, v), v=u_{t}$. Let $\{S(t)\}$ be the semigroup associated to the generator \widetilde{A}. Then Theorem 2.1 tell us that the solution of the linear equation satisfies

$$
\begin{equation*}
E(t) \leq C I_{0}(1+t)^{-2} \quad \forall t \geq 0 \tag{3.6}
\end{equation*}
$$

In this article, we denote by C various positive constants which may vary from line to line. Let $v=u_{t}$. Taking the derivative in time of equation 2.1) we deduce that v satisfies

$$
\begin{gathered}
v_{t t}-\sum^{3} \frac{\partial}{\partial x_{i}}\left(A_{i j} \frac{\partial v}{\partial x_{i}}\right)+v_{t}=0 \quad \text { in } \Omega \times[0, \infty) \\
v(x, 0)=u_{1}(x), \quad v_{t}(x, 0)=\sum^{3} \frac{\partial}{\partial x_{j}}\left(A_{i j} \frac{\partial u_{0}}{\partial x_{i}}\right)-u_{1}(x) \\
v=0 \quad \text { on } \partial \Omega \times[0,+\infty)
\end{gathered}
$$

Applying the same reasoning as in the proof of Theorem 2.2 ,

$$
\begin{equation*}
E_{1}(t)=\frac{1}{2} \int_{\Omega}\left\{\left|v_{1}\right|^{2}+\sum_{i, j=1}^{3} A_{i j} \frac{\partial v}{\partial x_{j}} \cdot \frac{\partial v}{\partial x_{i}}\right\} d x \leq C I_{1}(1+t)^{-2} \tag{3.7}
\end{equation*}
$$

with $v=u_{t}$, where I_{1} depends on the Sobolev norms (up to order two) of the initial data and the quantity $\int_{\Omega}|x|^{2}\left|\sum_{i, j=1}^{3} \frac{\partial}{\partial x_{j}}\left(A_{i j} \frac{\partial u_{0}}{\partial x_{i}}\right)\right|^{2} d x$. Thus, from the equation (2.1) we also obtain

$$
\begin{equation*}
\left\|\sum_{i, j=1}^{3} \frac{\partial}{\partial x_{j}}\left(A_{i j} \frac{\partial u}{\partial x_{i}}\right)\right\|^{2} \leq C\left(I_{0}+I_{1}\right)(1+t)^{-2} \tag{3.8}
\end{equation*}
$$

Similarly, if $w=v_{t}=u_{t t}$ we obtain

$$
\begin{equation*}
E_{2}(t)=\frac{1}{2} \int_{\Omega}\left\{\left|w_{t}\right|^{2}+\sum_{i, j=1}^{3} \sum_{i, j=1}^{3} A_{i j} \frac{\partial w}{\partial x_{j}} \cdot \frac{\partial w}{\partial x_{i}}\right\} d x \leq C I_{2}(1+t)^{-2} \tag{3.9}
\end{equation*}
$$

where I_{2} depends on the Sobolev norm (up to order three) of the initial data and the quantity $\int_{\Omega}|x|^{2}\left|\sum_{i, j=1}^{3} \frac{\partial}{\partial x_{j}}\left(A_{i j} \frac{\partial u_{1}}{\partial x_{i}}\right)\right|^{2} d x$. Let $\widetilde{I}=I_{0}+I_{1}+I_{2}$ and $K>1$ such that

$$
\begin{gather*}
\left\|u_{0}\right\|^{2}<K \widetilde{I} \tag{3.10}\\
E(0)+E_{1}(0)+E_{2}(0)+\left\|L u_{0}\right\|^{2}+\left\|L u_{1}\right\|^{2}<K \widetilde{I} \tag{3.11}
\end{gather*}
$$

where $L=\sum_{i, j=1}^{3} \frac{\partial}{\partial x_{j}}\left(A_{i j} \frac{\partial}{\partial x_{i}}\right)$.
We proceed to prove Theorem 3.1. Let $\left(u, u_{t}\right)$ be the local solution for the semilinear model (1.1) obtained in Lemma 3.2 . Clearly, by continuity of the quantities on the left hand side of (3.6), 3.7) and (3.9) then in an small interval $[0, t)$ we will have that

$$
\begin{gather*}
(1+t)\|u(\cdot, t)\|^{2}<K \widetilde{I} \tag{3.12}\\
(1+t)^{2}\left\{E(t)+E_{1}(t)+E_{2}(t)+\|L u(\cdot, t)\|^{2}+\left\|L u_{t}\right\|^{2}\right\}<K \widetilde{I} \tag{3.13}
\end{gather*}
$$

are valid. We want to prove that (3.12) and 3.13 hold for any $t \geq 0$. To do this we will choose K large and after \widetilde{I} small. Suppose that (3.12) and $(3.13$ are not valid for any \widetilde{T} "near" $T_{\max }$. Therefore, there must exist $T \in[0, \widetilde{T}]$ such that (3.12) and (3.13) hold in [0,T) but

$$
\begin{equation*}
(1+T)\|u(\cdot, T)\|^{2}=K \widetilde{I} \tag{3.14}
\end{equation*}
$$

and/or

$$
\begin{equation*}
(1+T)^{2}\left\{E(T)+E_{1}(T)+E_{2}(T)+\|L u(\cdot, T)\|^{2}+\left\|L u_{t}(\cdot, T)\right\|^{2}\right\}=K \widetilde{I} \tag{3.15}
\end{equation*}
$$

From 3.5 it follows that

$$
U(t)=S(t) U_{0}+\int_{0}^{t} S(t-r) \widetilde{F}(r) d r
$$

Consequently, from Theorem 2.2 we deduce

$$
\begin{equation*}
E(t) \leq C \widetilde{I}(1+t)^{-1}+C \int_{0}^{t}(1+t+r)^{-1} J(r) d r \tag{3.16}
\end{equation*}
$$

where $J(r)=\left\|f\left(u_{r}\right)\right\|+\| \| \cdot \mid f\left(u_{r}\right) \|$. Using assumptions (H2) and GagliardoNirenberg's inequality we obtain

$$
\left\|f\left(u_{r}\right)\right\| \leq C\left\|u_{r}\right\|_{L^{2 p}}^{p} \leq C\left\|u_{r}\right\|^{(1-\theta) p}\left(\int_{\Omega} \sum_{i, j=1}^{3} A_{i j} \frac{\partial u_{r}}{\partial x_{j}} \cdot \frac{\partial u_{r}}{\partial x_{i}} d x\right)^{\theta p / 2}
$$

where $0<\theta=\frac{3(p-1)}{2 p} \leq 1$ because $\frac{7}{3}<p \leq 3$. Due to 3.12 - 3.15 it follows that

$$
\begin{equation*}
\left\|f\left(u_{r}\right)\right\| \leq C\left\{K \widetilde{I}(1+r)^{-1}\right\}^{(1-\theta) p}\left\{K \widetilde{I}(1+r)^{-1}\right\}^{\theta p}=C K^{p} \widetilde{I}^{p}(1+r)^{-p} \tag{3.17}
\end{equation*}
$$

for any $r \in[0, T]$. Now we use finite propagation speed valid for the solution of problem 1.1): If $\operatorname{supp} u_{0} \cup \operatorname{supp} u_{1} \subseteq\left\{x \in \mathbb{R}^{3},|x| \leq R\right\}$ then in the interval of existence $\left(u, u_{t}\right)=(0,0)$, if $|x| \geq C_{1} t+R$ where $C_{1}=\|A\| / \sqrt{C_{0}},\|A\|^{2}=$ $\sum_{i, j=1}^{3}\left\|A_{i j}\right\|^{2}$ and C_{0} is as in (1.4). We estimate

$$
\begin{aligned}
\left\||\cdot| f\left(u_{r}\right)\right\|^{2} & \leq C \int_{\Omega}|x|^{2}\left|u_{r}(x, r)\right|^{2 p} d x \\
& =C \int_{\Omega \cap\left\{|x| \leq C_{1} r+R\right\}}|x|^{2}\left|u_{r}(x, r)\right|^{2 p} d x \\
& \leq\left(C_{1} r+R\right)^{2} C\left\|u_{r}(\cdot, r)\right\|_{L^{2 p}}^{2 p}
\end{aligned}
$$

and by Gagliardo-Nirenberg it follows that

$$
\begin{equation*}
\left\||\cdot| f\left(u_{r}\right)\right\| \leq C\left(C_{1} r+R\right) K^{p} \widetilde{I}^{p}(1+r)^{-p} \tag{3.18}
\end{equation*}
$$

From (3.16, (3.17) and (3.18 we deduce

$$
\begin{align*}
E(t) & \leq C \widetilde{I}(1+t)^{-1}+C K^{p} \widetilde{I}^{p} \int_{0}^{t}(1+t-r)^{-1}(1+r)^{-p+1} d r \tag{3.19}\\
& \left.\leq\left(C \widetilde{I}+C K^{p} \widetilde{I}^{p}\right)\right)(1+t)^{-1}
\end{align*}
$$

for any $t \in[0, T]$. Here we used a calculus type lemma (see [11, Lemma 7.4]). Using the formula of variation of parameters we also obtain

$$
\|u(\cdot, t)\| \leq C I_{0}(1+t)^{-1 / 2}+C \int_{0}^{t}(1+t-r)^{-1 / 2} J(r) d r
$$

where $J(r)$ is as in (3.16). Due to our above calculation we get

$$
\begin{aligned}
\|u(\cdot, t)\| & \leq C I_{0}(1+t)^{-1 / 2}+C K^{p} \widetilde{I}^{p} \int_{0}^{t}(1+t-r)^{-1 / 2}(1+r)^{-p+1} d r \\
& \leq\left(C I_{0}+C K^{p} \widetilde{I}^{p}\right)(1+t)^{-1 / 2}
\end{aligned}
$$

Next, we differentiate in time equation (1.1) and use the same sequence of ideas given above to obtain that $v=u_{t}$ satisfies

$$
E_{1}(t) \leq C\left(\widetilde{I}+\widetilde{I}^{p}+K^{p} \widetilde{I}^{p}\right)(1+t)^{-2}
$$

where $E_{1}(t)$ is given as in 3.7). Using the equation it follows that

$$
\|L u(\cdot, t)\| \leq C\left(\widetilde{I}+\widetilde{I}^{p}+K^{p} \widetilde{I}^{p}\right)(1+t)^{-2}
$$

for any $t \in[0, T]$. Finally, we differentiate twice in time equation 1.1 and repeat the above reasoning to obtain that $w=v_{t}=u_{t t}$ satisfies

$$
\begin{gather*}
E_{2}(t) \leq C\left(\widetilde{I}+\widetilde{I}^{p}+\widetilde{I}^{2 p-1)}+K^{p} \widetilde{I}^{p}\right)(1+t)^{-2} \tag{3.20}\\
\|L u(\cdot, t)\| \leq C\left(\widetilde{I}+\widetilde{I}^{p}+\widetilde{I}^{2 p-1)}+K^{p} \widetilde{I}^{p}\right)(1+t)^{-2} \tag{3.21}
\end{gather*}
$$

Collecting information from 3.19 up to 3.21, we have

$$
\begin{equation*}
\left.(1+t)\|u(\cdot, t)\|^{2} \leq \overline{C(1}+K^{p} \widetilde{I}^{p-1}\right) \widetilde{I} \tag{3.22}
\end{equation*}
$$

and

$$
\begin{align*}
& (1+t)^{2}\left\{E(t)+E_{1}(t)+E_{2}(t)+\|L u(\cdot, t)\|^{2}+\left\|L u_{t}\right\|^{2}\right\} \\
& \leq C\left(1+\widetilde{I}^{p-1}+\widetilde{I}^{2 p-2}+K^{p} \widetilde{I}^{p-1}\right) \widetilde{I} \tag{3.23}
\end{align*}
$$

for any $t \in[0, T]$ and some positive constant C. Now we choose K large so that $K>C$ and

$$
\widetilde{I}<\min \left\{\left(\frac{K-C}{3 C}\right)^{1 / p-1},\left(\frac{K-C}{3 C}\right)^{1 / 2 p-2},\left(\frac{K-C}{3 C K^{p}}\right)^{1 / p-1}\right\}
$$

With this choice, we clearly have that

$$
C\left(1+\widetilde{I}^{p-1}+\widetilde{I}^{2 p-2}+K^{p} \widetilde{I}^{p-1}\right)<K
$$

Consequently from (3.22) and (3.23), we deduce that

$$
\begin{gathered}
(1+t)\|u(\cdot, t)\|^{2}<K \widetilde{I} \\
(1+t)^{2}\left\{E(t)+E_{1}(t)+E_{2}(t)+\|L u(\cdot, t)\|^{2}+\left\|L u_{t}\right\|^{2}\right\}<K \widetilde{I}
\end{gathered}
$$

for any $t \in[0, T]$ which is a contradiction with 3.14) and 3.15). It follows that (3.12) and (3.13) should be valid for any $t \in\left[0, T_{\max }\right)$; therefore, the solution of (1.1) exists globally and decays at the desired rate.

References

[1] M. Ferreira, Electromagnetic and elastic waves in exterior domains: Asymptotic properties (in Portuguese) PhD Thesis, Institute of Mathematics, Federal University of Rio de Janeiro, June 2005, Brasil.
[2] R. Ikehata, Energy decay of solutions for the semilinear dissipative wave equations in an exterior domain, Funkcialaj Ekvacioj 44 (2001), 487-499.
[3] R. Ikehata and T. Matsuyana, L^{2}-behavior to the linear heat and wave equations in exterior domains. Sci. Math. Japan, 55 (2002), 33-42.
[4] R. Ikehata, Fast decay of solutions for linear wave equations with dissipation localized near infinity in an exterior domain, J. Diff. Equations, 188 (2003), 390-405.
[5] B. Kapitonov, Decay of solutions of an exterior boundary value problem and the principle of limiting amplitude for a hyperbolic system, Soviet Math. Dokl., 33 (1), (1986), 243-247.
[6] B. Kapitonov, On exponential decay as $t \rightarrow+\infty$ of solutions of an exterior boundary value problem for the Maxwell system, Math. USSR Sbornik, 66 (2) (1990), 475-497.
[7] C. Morawetz, The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. Vol. 14 (1961), 561-568.
[8] C. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math. Vol. 19 (1966), 439-444.
[9] M. Nakao, Energy decay for the linear and semilinear wave equations in exterior domains with some localized dissipations, Math. Z. 238 (2001), 781-797.
[10] M. Nakao, Decay and global existence for nonlinear wave equations with localized dissipations in general exterior domains. New trends in the theory of hyperbolic equations, Ed. M. Reissig and B-W Schulze, Birkhausser, 2005.
[11] R. Racke, Lectures on nonlinear evolution equations. Initial value problems, Vieweg, Wiesbaden, 1992.
[12] G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Diff. Equations 174 (2001), 464-489.
[13] E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures et Appl., (9), 70 (1991), No. 4, 513-529.

Marcio V. Ferreira
Centro Universitário Franciscano, Rua dos Andradas 1614, Santa Maria, CEP 97010032, RS, Brazil

E-mail address: ferreira@unifra.br
Gustavo Perla Menzala
National Laboratory of Scientific Computation LNCC/MCT, Av. Getulio Vargas 333, Petropolis, CEP 25651-070, RJ, Brasil
and IM-UFRJ, P.O. Box 68530, RJ, Brazil
E-mail address: perla@lncc.br

[^0]: 2000 Mathematics Subject Classification. 35Q99, 35L99.
 Key words and phrases. Uniform stabilization; exterior domain; system of elastic waves; semilinear problem.
 (C) 2006 Texas State University - San Marcos.

 Submitted March 20, 2006. Published May 22, 2006.

