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EXISTENCE RESULTS FOR NONLOCAL MULTIVALUED
BOUNDARY-VALUE PROBLEMS

PASQUALE CANDITO, GIOVANNI MOLICA BISCI

Abstract. In this paper we establish some existence results for nonlocal mul-
tivalued boundary-value problems. Our approach is based on existence results

for operator inclusions involving a suitable closed-valued multifunction; see
[2, 3]. Some applications are given.

1. Introduction

Let (X, ‖·‖X) be a separable real Banach space and let (Rn, ‖·‖) be the real Eu-
clidean n-space with the norm ‖z‖ = max1≤i≤n |zi| and induced metric d. Denote
by M([0, 1], X) the family of all (equivalence classes of) strongly Lebesgue mea-
surable functions from [0, 1] to X. The papers [2] and [3] provide some existence
results for operator inclusions of the type

u ∈ U,
Ψ(u)(t) ∈ F (t,Φ(u)(t)) a.e. in [0, 1],

(1.1)

where U is a nonempty set, F is a multifunction from [0, 1] × X into Rn, and
Φ : U → M([0, 1], X), Ψ : U → Ls([0, 1],Rn) are two abstract operators (see
Theorems 2.1, 2.2, and 2.3 below). Their approach is chiefly based on the following
conditions:

(U1) Ψ is bijective and for any v ∈ Ls([0, 1],Rn) and any sequence {vh} ⊂
Ls([0, 1],Rn) weakly converging to v in Lq([0, 1],Rn) there exists a subse-
quence of {Φ(Ψ−1(vh))} which converges a.e. in [0, 1] to Φ(Ψ−1(v)). Fur-
thermore, a nondecreasing function ϕ : [0,+∞[→ [0,+∞] can be defined
in such a way that

ess sup
t∈[0,1]

‖Φ(u)(t)‖ ≤ ϕ(‖Ψ(u)‖p) ∀u ∈ U. (1.2)

Here p, q, s ∈ [0,+∞] with q < +∞ and q ≤ p ≤ s.
(U2) To each ρ ∈ Ls([0, 1],R+

0 ) there corresponds a nonnegative measurable
function ρ∗ so that if u ∈ U and ‖Ψ(u)(t)‖ ≤ ρ(t) a.e. in [0, 1], then Φ(u)
is Lipschitz continuous with constant ρ∗(t) at almost all t ∈ [0, 1].
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(F1) There exists r > 0 such that the function

M(t) := sup
‖x‖X≤ϕ(r)

d(0, F (t, x)), t ∈ [0, 1],

belongs to Ls([0, 1],R+
0 ) and ‖M‖p ≤ r.

Let us denote by W 2,s([0, 1],Rn) the space of all u ∈ C1([0, 1],Rn) such that u′ is
absolutely continuous in [0, 1] and u′′ ∈ Ls([0, 1],Rn).

The aim of this paper is to establish, under suitable assumptions, the existence
of at least one generalized solution in W 2,s([0, 1],Rn) to the problem

u′′ ∈ F (t, u, u′) a.e. t ∈ [0, 1]

u(0)− k1u
′(0) = H1(u),

u(1) + k2u
′(1) = H2(u),

(1.3)

where F : [0, 1]× Rn × Rn → 2Rn

is a multifunction with nonempty closed values,
for i = 1, 2, LHi

and ki are nonnegative constants, Hi : W 2,s([0, 1],Rn) → Rn fulfill

‖Hi(u)−Hi(v)‖ ≤ LHi
‖u− v‖∞, ∀u, v ∈W 2,s([0, 1],Rn). (1.4)

The key to solve problem (1.3) is to show that the operators Φ, Ψ and F satisfy
the structural hypotheses (U1), (U2) and (F1). This study is motivated by many
nonlocal boundary-value problems discussed in [1, 4, 5, 10]. For more details on
these topics, see also [7, 8, 9]. Recent references are furnished in [6, 11, 13]. In our
opinion this method exhibits at least two interesting features: owing to (F1), no
compactness condition on the values of F is required; we can treat both the case
when F takes convex values, F (·, x, y) is measurable, while F (t, ·, ·) is upper semi-
continuous, and the one where F is measurable and F (t, ·, ·) is lower semicontinuos.
However, in the latter case, in addition to (U1), we also need (U2). In all concrete
situations, to verify (U1) and (U2) we exploit only the boundary conditions of (1.3)
and we do not use the assumptions on F .

Basic definitions and preliminary results are given in Section 2. Main results are
contained in Section 3, while Section 4 is devoted to some applications.

2. Basic definitions and preliminary results

Given a separable real Banach space (X, ‖ · ‖X), the symbol B(X) indicates the
Borel σ-algebra of X. If W is a nonempty subset of X, x0 ∈W and ε > 0, we write
d(x0,W ) := infw∈W ‖x0 − w‖X as well as

B(x0, ε) := {z ∈ X : ‖x0 − z‖X ≤ ε}, B0(x0, ε) := {z ∈ X : ‖x0 − z‖X < ε}.
A function ψ from [0, 1] into X is said to be Lipschitz continuous at the point
t ∈ [0, 1] when there exist a neighborhood Vt of t and a constant kt ≥ 0 such
that ‖ψ(τ) − ψ(t)‖X ≤ kt|τ − t| for every τ ∈ [0, 1] ∩ Vt. Given any p ∈ [1,+∞],
we write p′ for the conjugate exponent of p besides Lp([0, 1], X) for the space of
u ∈M([0, 1], X) satisfying ‖u‖p < +∞, where

‖u‖p :=

{( ∫ 1

0
‖u(t)‖p

Xdµ
)1/p if p < +∞,

ess supt∈[0,1] ‖u(t)‖X if p = +∞,

and µ is the Lebesgue measure on [0, 1]. Let F be a multifunction from W into Rn

(briefly, F : W → 2Rn

), namely a function which assigns to each point x ∈ W a
nonempty subset F (x) of Rn. If V ⊆W we write F (V ) := ∪x∈V F (x) and F |V for
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the restriction of F to V . The graph of F is the set {(x, z) ∈W × Rn : z ∈ F (x)}.
If Y ⊆ Rn we define F−(Y ) := {x ∈ W : F (x) ∩ Y 6= ∅}. If (W,F) is a measurable
space and F−(Y ) ∈ F for any open subset Y of Rn, we say that F is F-measurable,
or simply measurable as soon as no confusion can arise. We denote with L the
Lebesgue σ−algebra in Rn. We say that F is upper semicontinuous at the point
x0 ∈ W if to every open set Y ⊆ Rn satisfying F (x0) ⊆ Y there corresponds a
neighborhood W0 of x0 such that F (W0) ⊆ Y . The multifunction F is called upper
semicontinuous when it is upper semicontinuous at each point of W . In such a case
its graph is clearly closed in W × Rn provided that F (x) is closed for all x ∈ W .
We say that F has a closed graph at x0 if the condition {xk} ⊆ W , {zk} ⊆ Rn,
limk→+∞xk = x0, limk→+∞zk = z0, zk ∈ F (xk), k ∈ N, imply z0 ∈ F (x0). We
say that F is lower semicontinuous at the point x0 if to every open set Y ⊆ Rn

satisfying F (x0) ∩ Y 6= ∅ there corresponds a neighborhood V0 of x0 such that
F (x) ∩ Y 6= ∅, x ∈ V0. The multifunction F is called lower semicontinuous when it
is lower semicontinuous at each point of W . Finally, for B ⊆ [0, 1]×X, projX(B)
indicates the projection of B onto X. We say that a multifunction F : B → 2Rn

has
the lower Scorza Dragoni property if to every ε > 0 there corresponds a closed subset
Iε of [0, 1] such that µ([0, 1] \ Iε) < ε and F |(Iε×X)∩B is lower semicontinuous. Let
D be a nonempty closed subset of X, let A ⊆ [0, 1]×D, and let C := ([0, 1]×D)\A.
We always suppose that the set A complies with

(A1) A ∈ L ⊗ B(X) and At = {x ∈ D : (t, x) ∈ A} is open in D for every
t ∈ [0, 1].

Moreover, let F be a closed-valued multifunction from [0, 1] ×D into Rn, let m ∈
Ls([0, 1],R+

0 ), and let N ∈ L with µ(N) = 0. The conditions below will be assumed
in what follows.

(A2) F |A has the lower Scorza Dragoni property.
(A3) F (t, x) ∩B0(0,m(t)) 6= ∅ whenever (t, x) ∈ A ∩ [([0, 1] \N)×D].
(A4) The set {x ∈ projX(C) : F |C(·, x) is measurable} is dense in projX(C).
(A5) For every (t, x) ∈ C ∩ [([0, 1] \N)×D] the set F (t, x) is convex, F (t, ·) has

a closed graph at x, and F (t, x) ∩B(0,m(t)) 6= ∅.
Combining opportunely the above conditions we point out the abstract results

that we will apply to study problem (1.1). More precisely we have the following
results.

Theorem 2.1 ([2, Theorem 3.1]). Let Φ,Ψ, ϕ be as in (U1) and let F : [0, 1]×X →
2Rn

be a multifunction with convex closed values satisfying (F1). Suppose that
(A4’) The set {x ∈ X : F (·, x) is F-measurable} is dense in X
(A5’) For almost every t ∈ [0, 1] and every x ∈ X, F (t, ·) has closed graph at x.

Then (1.1) has at least one solution u ∈ U with ‖Ψ(u)(t)‖ ≤M(t) a.e. in [0, 1].

Theorem 2.2 ([3, Theorem 2.3]). Let r > 0 be such that ‖m‖p ≤ r, and let
D = B(0X , ϕ(r)). Suppose that F,Φ,Ψ satisfy (A2)-(A5), (U1) and (U2). Then
problem (1.1) has at least one solution u ∈ U with ‖Ψ(u)(t)‖ ≤M(t) a.e. in [0, 1].

Theorem 2.3 ([3, Theorem 2.5]). Suppose that H : [0, 1]× Rn → 2Rn

is a closed-
valued multifunction with the following properties:

(C1) For almost all t ∈ [0, 1] and for all x ∈ Rn, either H(t, x) is convex or
H(t, ·) is lower semicontinuous at x.

(C2) The set {x ∈ Rn : H(·, x) is measurable} is dense in Rn.
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(C3) For almost every t ∈ [0, 1] and every x ∈ X, H(t, ·) has closed graph at x.
(C4) There is m1 ∈ Ls([0, 1],R+

0 ) such that H(t, x) ∩ B(0,m1(t)) 6= ∅ a.e. in
[0, 1], for all x ∈ Rn.

Then there exists a set A ⊆ [0, 1]×Rn and a closed-valued multifunction F from
[0, 1]× Rn into Rn satisfying (A1)-(A5). Moreover, for almost every t ∈ [0, 1] and
every x ∈ Rn, one has F (t, x) ⊆ H(t, x).

Moreover, to problem (1.3) we associate the following functions: G : [0, 1] ×
[0, 1] → R (the Green function associated with (1.3)),

G(t, s) :=
g(t, s)

1 + k1 + k2
, with g(t, s) :=

{
(k1 + t)(s− 1− k2), 0 ≤ t ≤ s ≤ 1
(k1 + s)(t− 1− k2), 0 ≤ s ≤ t ≤ 1;

for every r ∈]0,+∞[, put

ϕ′(r) = mϕ′r + qϕ′ , ϕ′′(r) = mϕ′′r + qϕ′′ , ϕ(r) = max{ϕ(r), ϕ′(r)},

where

mϕ′ :=
sup[0,1]2 |g(t, s)|

1 + k1(1− LH2) + k2(1− LH1)− (LH1 + LH2)
,

qϕ′ :=
((1 + k2)‖H1(0)‖+ (1 + k1)‖H2(0)‖)

1 + k1(1− LH2) + k2(1− LH1)− (LH1 + LH2)
,

mϕ′′ := (LH1 + LH2)mϕ′ + sup
[0,1]2

|g(t, s)|,

qϕ′′ := (LH1 + LH2)qϕ′ + ‖H1(0)‖+ ‖H2(0)‖.

3. Main results

Let F be a closed-valued multifunction from [0, 1] × Rn × Rn → 2Rn

fulfilling
(F1).

Theorem 3.1. Suppose that:
(I1) There exist c, d ∈ Rn such that

H1(ct+ d) = d− ck1, H2(ct+ d) = d+ c(1 + k2).

(I2)
(1 + k2)LH1 + (1 + k1)LH2

1 + k1 + k2
< 1.

(I3) For almost all t ∈ [0, 1] and all (x, y) ∈ Rn × Rn, F (t, x, y) is convex.
(I4) The set {(x, y) ∈ Rn × Rn : F (·, x, y) is measurable} is dense in Rn × Rn.
(I5) For almost every t ∈ [0, 1] the graph of F (t, ·, ·) is closed.
Then problem (1.3) admits at least one solution u ∈W 2,s([0, 1]) such that

‖u‖∞ ≤ ϕ′(r), ‖u′‖∞ ≤ ϕ′′(r), ‖u′′(t)‖ ≤M(t) for a.e. t ∈ [0, 1].

Proof. We apply Theorem 2.1 by choosing X = Rn × Rn, Φ(u)(t) = (u(t), u′(t))
and Ψ(u)(t) = u′′(t) for each u ∈ U , where

U =
{
u ∈W 2,s([0, 1],Rn) : ∃ σ ∈ Ls([0, 1],Rn) such that

u(t) =
1

1 + k1 + k2

[
(1 + k2 − t)H1(u) + (k1 + t)H2(u)

]
+

∫ 1

0

G(t, s)σ(s)ds
}
.
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Clearly, since Y has finite dimension and (F1) holds, we only need to show that U1

is verified. With this aim, we first observe that U is not empty. Indeed, by (I1),
the function w(t) := ct + d ∈ U . Moreover, for each u ∈ U , arguing in standard
way it results that u′′ ≡ σ and, by (1.4), we get the following inequalities

‖Hi(u)‖ ≤ ‖Hi(0)‖+ LHi
‖u‖∞. for i = 1, 2,

‖u‖∞ ≤ 1
1 + k1 + k2

(1 + k2)[‖H1(0)‖+ LH1‖u‖∞]

+
1 + k1

1 + k1 + k2
[LH2‖u‖∞ + ‖H2(0)‖] +

∫ 1

0

sup
[0,1]2

|G(t, s)|‖u′′(s)‖ ds.

Hence

‖u‖∞
(
1− (1 + k2)LH1 + (1 + k1)LH2

(1 + k1 + k2)

)
≤ (1 + k1)‖H2(0)‖+ (1 + k2)‖H2(0)‖

1 + k1 + k2
+

sup[0,1]2 |g(t, s)|
1 + k1 + k2

‖u′′‖p,

which implies
‖u‖∞ ≤ ϕ′(‖u′′‖p). (3.1)

Similarly, we have

‖u′‖∞ ≤ 1
1 + k1 + k2

[
(LH1 + LH2)ϕ

′(‖u′′‖p)

+ ‖H1(0)‖+ ‖H2(0)‖+ sup
[0,1]2

∣∣∣∂g
∂t

(t, s)
∣∣∣‖u′′‖p

]
,

which clearly ensures,
‖u′‖∞ ≤ ϕ′′(‖u′′‖p). (3.2)

So, (1.2) holds. Let us next prove that Ψ : U → Ls([0, 1],Rn) is injective. Arguing
by contradiction, suppose that there exist two functions u, v ∈ U and B ⊆ [0, 1]
with µ(B) > 0, such that u(t) 6= v(t) for each t ∈ B and u′′(t) = v′′(t) a.e. in [0, 1].
Pick t ∈ [0, 1]. By (1.4), one has

‖u(t)− v(t)‖ ≤ (1 + k2)LH1 + (1 + k1)LH2

1 + k1 + k2
‖u− v‖∞.

From this, taking into account (I2), we have ‖u− v‖∞ = 0, that is u(t) = v(t) a.e.
in [0, 1], which is absurd. Hence we get a contradiction. Next, fix v ∈ Ls([0, 1],Rn)
and a sequence {vh} weakly converging to v in Ls([0, 1],Rn). To simplify the
notation we put uh = Ψ−1(vh) and u = Ψ−1(v), i.e., u′′h = vh, u′′ = v, u′′h ⇀ u′′ in
Ls([0, 1],Rn) and for a.e. t in [0, 1] one has

Φ(Ψ−1(vh))(t) = (uh(t), u′h(t)).

We claim that

Φ(Ψ−1(vh))(t) → Φ(Ψ−1(v))(t), a.e. t ∈ [0, 1]. (3.3)

To see this, we first prove that

lim
h→+∞

uh(t) = u(t) for all t ∈ [0, 1]. (3.4)



6 P. CANDITO, G. MOLICA BISCI EJDE-2006/67

Fix t ∈ [0, 1]. By (1.4) it is easy to show that

‖uh(t)− u(t)‖

≤ 1
1 + k1 + k2

(
(1 + k2)‖H1(uh)−H1(u)‖+ (k1 + 1)‖H2(uh)−H2(u)‖

)
+

∥∥∫ 1

0

G(t, s)(u′′h(s)− u′′(s))ds
∥∥

≤ (1 + k2)LH1 + (1 + k1)LH2

1 + k1 + k2
‖uh − u‖∞ +

∥∥∥∫ 1

0

G(t, s)(u′′h(s)− u′′(s))ds
∥∥∥.

Moreover, since u′′h weakly converges to u′′ in Ls([0, 1],Rn), and G(t, ·) ∈ Ls([0, 1])
if s ≥ 1, it results

lim
h→+∞

∫ 1

0

G(t, s)(u′′h(s)− u′′(s))ds = 0.

Therefore, we have

lim sup
h→∞

‖uh − u‖∞ ≤ (1 + k2)LH1 + (1 + k1)LH2

1 + k1 + k2
lim sup

h→∞
‖uh − u‖∞.

Furthermore, since the sequence {‖uh‖p} is bounded, from (3.1), it is easy to show
that lim suph→∞ ‖uh − u‖∞ < +∞. Hence, on account of (I2), the preceding
inequality provides

lim
h→+∞

‖uh − u‖∞ = 0. (3.5)

Now we prove that
lim

h→+∞
u′h(t) = u′(t) a.e. in [0, 1].

To do this, we observe that if u ∈ U , then an easy computation ensures that

u′(t) =
1

1 + k1 + k2
(H2(u)−H1(u)) +

∫ 1

0

∂G(t, s)
∂t

u′′(s)ds.

Hence, for every t ∈ [0, 1], one has

‖u′h(t)− u′(t)‖ ≤ 1
1 + k1 + k2

(
‖H2(uh)−H2(u)‖

+ ‖H1(uh)−H1(u)‖
)

+
∥∥∥∫ 1

0

∂G(t, s)
∂t

(u′′h(s)− u′′(s))ds
∥∥∥

≤ LH1 + LH2

1 + k1 + k2
‖uh − u‖∞ +

∥∥∥∫ 1

0

∂G(t, s)
∂t

(u′′h(s)− u′′(s))ds
∥∥∥.

Thus by (3.5) and taking into account that ∂G(t,·)
∂t ∈ Ls([0, 1]), exploiting again

that u′′h ⇀ u′′ we also get

lim
h→+∞

‖u′h(t)− u′(t)‖ = 0. (3.6)

From (3.5) and (3.6), we conclude that (3.3) holds, and the proof is complete. �

Remark 3.2. If we take k1 = k2 = 0 and H1(·) = H2(·) = 0, problem (1.3) reduces
to homogeneous Dirichlet problem and Theorem 3.1 takes the form of [12, Theorem
2.1] provided Rn is equipped with the norm used here.

Theorem 3.3. Suppose that (I1) and (I2) hold. In addition, assume that:
(A1’) F has the lower Scorza Dragoni property.
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(A2’) There exist two positive constants r and δ with δ < r such that ‖M‖p ≤
r − δ.

Then the conclusion of Theorem 3.1 holds.

Proof. We apply Theorem 2.2 by putting A = D = [0, 1] × B(0, ϕ(r)) and m =
M + δ. Clearly, (A2’) yields ‖m‖p ≤ r and since C = ∅, (A2)-(A5) hold. Moreover
the same arguments used in the previous proof ensure (U1). Hence, to achieve the
conclusion we only need to verify (U2). To do this, let ρ ∈ Ls([0, 1],R+

0 ) be such
that ‖u′′(t)‖ ≤ ρ(t) a.e. in [0, 1] and let u ∈ U , t1, t2 ∈ [0, 1] with t1 < t2, (t2 < t1).
We observe that

‖u′j(t1)− u′j(t2)‖ = ‖u′′(ξ)‖|t1 − t2| ≤ ρ(ξ)|t1 − t2| ξ ∈ (t1, t2), ((t2, t1)).

Further, by (3.2), for every j = 1, . . . , n, one has

|uj(t1)− uj(t2)| ≤ ϕ′′(r)|t1 − t2|, ∀t1, t2 ∈ [0, 1].

Hence, putting ρ∗(t) = max{ρ(t), ϕ′′(r)}, for all t ∈ [0, 1], one has

‖Φ(u)(t1)−Φ(u)(t2)‖ = max
j=1,...,n

{|uj(t1)− uj(t2)|, |u′j(t1)− u′j(t2)|} ≤ ρ∗(t)|t1− t2|.

So the proof is complete. �

Finally, we have the result.

Theorem 3.4. Assume that H1 and H2 are two bounded functions satisfying (1.4)
and replace (I3) in Theorem 3.1 and (F1), respectively, with

(Q1) For almost every t ∈ [0, 1] and for all (x, y) ∈ Rn ×Rn, F (t, x, y) is convex
or F (t, ·, ·) is lower semicontinuous at (x, y).

(Q2) The function

m′(t) := sup
{
d(0, F (t, x, y)), (x, y) ∈ Rn × Rn

}
for a.e. t ∈ [0, 1],

lies in Ls([0, 1],R+
0 ).

Then problem (1.3) admits at least one generalized solution in W 2,s([0, 1],Rn).

Proof. Arguing as in the proof of Theorem 2.3 we obtain a closed-valued multi-
function F ′ : [0, 1]× Rn × Rn → 2Rn

satisfying properties (A1)-(A5). Moreover, in
this framework, by [3, Theorem 2.1], we can associate to F ′ a convex closed-valued
multifunction G : [0, 1] × Rn × Rn → 2Rn

fulfilling the assumptions of Theorem
2.2 and such that any solution of problem (1.1), with F = G, is also solution of
(1.1) with F ′ instead of F . Bearing in mind that H1 and H2 are bounded and
that a weakly convergent sequence in Lp is bounded, arguing as above it is easy
to show that (U1) and (U2) hold. Then due to Theorem 3.1, problem (1.3) with
G instead of F has a solution, thereby implying that problem (1.3) with F ′ in-
stead of F has a solution. Therefore the conclusion follows taking into account that
F ′(t, x, y) ⊆ H(t, x, y). �

4. Applications

This section is devoted to study some boundary-value problems by means of
the results obtained before. In this order of ideas, let T : [0, 1] × R → 2R be a
closed-valued multifunction such that T (·, x) is measurable for every x ∈ R and let
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h1, h2 : R → R be two Lipschitz continuous functions with constants L1 and L2

respectively. For every u ∈W 2,s([0, 1], put

Hi(u) =
∫ 1

0

hi(u(s))ds, i = 1, 2.

We first study a second order differential inclusion with boundary integral condi-
tions.

Theorem 4.1. Assume that:
(C1) There exist two constants c, d ∈ R such that∫ d+c

d

h1(s)ds = cd− c2k1,

∫ d+c

d

h2(s)ds = c2(1 + k2)2 + cd

or h1(d) = h2(d) = d according to whether c 6= 0 or c = 0.
(C2)

(1 + k2)L1 + (1 + k1)L2

1 + k1 + k2
< 1.

(C3) For almost every t ∈ [0, 1], T (t, ·) is upper semicontinuous and takes convex
values.

(C4) There exist α, β ∈ L1([0, 1]) with ‖α‖1mϕ′ < 1 such that for a.e. t ∈ [0, 1]
one has

m(t) := sup
{
d(0, T (t, x)) : |x| ≤ ϕ′(‖β‖1)

1− ‖α‖1mϕ′

}
≤ α(t)|x|+ β(t).

Then problem
u′′ ∈ T (t, u) a.e. t ∈ [0, 1]

u(0)− k1u
′(0) =

∫ 1

0

h1(u(s))ds,

u(1) + k2u
′(1) =

∫ 1

0

h2(u(s))ds,

(4.1)

admits at least one generalized solution u ∈W 2,1([0, 1],R2) such that

‖u‖∞ ≤ ϕ′(‖β‖1)
1− ‖α‖1mϕ′

and ‖u′′(t)‖ ≤ m(t) a.e in [0, 1].

Proof. Taking r = ‖α‖1qϕ′+‖β‖1
1−‖α‖1mϕ′

, an easy computation shows that

ϕ′(r) =
ϕ′(‖β‖1)
1− ‖α‖1

.

Moreover, by (C4), one has ‖M‖1 ≤ r. Then the conclusion follows at once from
Theorem 3.1. �

Remark 4.2. We point out that Theorem 4.1 and [4, Theorem 3.3] are mutually
independent. Indeed, here, T does not take compact values, whereas there h1 and
h2 are two continuous and bounded functions.

Arguing as above and using Theorem 3.4 it is easy to verify the following result.

Theorem 4.3. Assume that h1 and h2 are bounded. Let T : [0, 1] × R → 2R be
a closed-valued multifunction satisfying (C1), (C2) such that T (·, x) is measurable
for every x ∈ R. Further, we require
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(C5) For almost every t ∈ [0, 1], and for all u ∈ R, T (t, x) is convex or T (t, ·) is
lower semicontinuous;

(C6) There exist α, β ∈ L1([0, 1]) with ‖α‖1mϕ′ < 1, such that for a.e. t ∈ [0, 1]
and for every x ∈ R one has

d(0, T (t, x)) ≤ α(t)|x|+ β(t).

Then problem (T ) admits at least one solution u ∈W 2,1([0, 1]).

Remark 4.4. The following is a sufficient condition for (C5) and (C6) hold true:
(C6’) There exist α and β ∈ L1([0, 1]) such that for almost every t ∈ [0, 1] one

has

dH(T (t, x), T (t, y)) ≤ α(t)|x− y| and dH(0, T (t, 0)) ≤ β(t),

where dH(T (t, x), T (t, y)) = max{supz∈T (t,x) d(z, T (t, y)), supw∈T (t,y) d(w, T (t, x))}
indicates the Hausdorff distance in Rn. Here, with respect to [4, Theorem 3.5], h1

and h2 are bounded. However, in this framework on the data we only require that
(C2) is satisfied. To be precise, there they need the following condition

(1 + k2)LH1 + (1 + k1)LH2

1 + k1 + k2
+ sup

[0,1]2
|G(t, s)|‖β‖1 < 1.

Now as consequence of Theorem 3.3 we have the following theorem.

Theorem 4.5. Let Q : [0, 1] × R2 → 2R be a closed-valued multifunction fulfilling
the Scorza Dragoni property. Assume that

(C7) There exist α, β, γ ∈ L1([0, 1]) with ‖α‖1 + ‖β‖1 < 1/4 end a positive
constant ρ, such that for almost every t ∈ [0, 1] and for all (x, y) ∈ R2 with

max{|x|, |y|} ≤ 4
( ρ+ ‖γ‖1

1− 4(‖α‖1 + ‖β‖1)

)
,

one has M(t) ≤ α(t)|x|+ β(t)|y|+ γ(t).
Then the Nicoletti problem

u′′ ∈ Q(t, u, u′) a.e. t ∈ [0, 1]

u(0) = 0, u′(1) = 0,
(4.2)

admits at least one generalized solution u ∈ W 2,1([0, 1],R2) such that ‖u′′(t)‖ ≤
M(t) a.e in [0, 1],

‖u‖∞ ≤ 2
( ρ+ ‖γ‖1

1− 4(‖α‖1 + ‖β‖1)

)
and ‖u′‖∞ ≤ 4

( ρ+ ‖γ‖1

1− 4(‖α‖1 + ‖β‖1)

)
.

Proof. Choose H1 = 0, H2(u) = u(1), k1 = 0, k2 = 1 and

r =
ρ+ ‖γ‖1

1− (‖α‖1 + ‖β‖1)
.

Taking into account that ϕ(r) ≤ 4r, the conclusion follows immediately from The-
orem 3.3. �

The last application is devoted to study the following three-point boundary-value
problem with nonlinear boundary conditions

u′′ = f(t, u) a.e. in [0, 1]

u(0) = a, u(1) = g(u(η)), η ∈]0, 1[,
(4.3)
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where f : [0, 1] × R → R is a Carathéodory function, a ∈ R, and g : R → R is a
Lipschitz continuous function with Lipschitz constant Lg. Obviously, problem (4.3)
can be rewritten in the framework of problem (1.1). Due to Theorem 3.1 and by
means of arguments similar to those used above we obtain the following result.

Theorem 4.6. Assume that Lg < 1 and

(C8) There exists ξ ∈ R such that g(ξ) = a+ ξ−a
η .

(C9) There is r ∈]0,+∞[ such that for a.e. t ∈ [0, 1] and all x ∈ R with |x| ≤
1

1−Lg
(|a|+ |g(0)|+ r

4 ) one has |f(t, x)| ≤ r.

Then problem (4.3) admits at least one generalized solution u ∈ W 2,1([0, 1]) such
that

‖u‖∞ ≤ 1
1− Lg

(
|a|+ |g(0)|+ r

4

)
and ‖u′′‖∞ ≤ r.
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