Electronic Journal of Differential Equations, Vol. 2006(2006), No. 68, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF POSITIVE SOLUTIONS FOR BOUNDARY-VALUE PROBLEMS FOR SINGULAR HIGHER-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

CHUANZHI BAI, QING YANG, JING GE

$$
\begin{aligned}
& \text { Abstract. We study the existence of positive solutions for the boundary- } \\
& \text { value problem of the singular higher-order functional differential equation } \\
& \qquad \begin{array}{c}
\left(L y^{(n-2)}\right)(t)+h(t) f\left(t, y_{t}\right)=0, \quad \text { for } t \in[0,1] \\
y^{(i)}(0)=0, \quad 0 \leq i \leq n-3
\end{array} \\
& \qquad \alpha y^{(n-2)}(t)-\beta y^{(n-1)}(t)=\eta(t), \quad \text { for } t \in[-\tau, 0] \\
& \gamma y^{(n-2)}(t)+\delta y^{(n-1)}(t)=\xi(t), \quad \text { for } t \in[1,1+a]
\end{aligned}
$$

where $L y:=-\left(p y^{\prime}\right)^{\prime}+q y, p \in C([0,1],(0,+\infty))$, and $q \in C([0,1],[0,+\infty))$. Our main tool is the fixed point theorem on a cone.

1. Introduction

As pointed out in 5, boundary-value problems associated with functional differential equations arise from problems in physics, from variational problems in control theory, and from applied mathematics; see for example [6, 8. Many authors have investigated the existence of solutions for boundary-value problems of functional differential equations; see [3, 9, 15, 18]. Recently an increasing interest in studying the existence of positive solutions for such problems has been observed. Among others publication, we refer to [1, 2, 10, 11, 13, 19].

In this paper, we investigate the existence of positive solutions for singular boundary-value problems (BVP) of an n-th order ($n \geq 3$) functional differential equation (FDE) of the form

$$
\begin{gather*}
\left(L y^{(n-2)}\right)(t)+h(t) f\left(t, y_{t}\right)=0, \quad \text { for } t \in[0,1] \tag{1.1}\\
y^{(i)}(0)=0, \quad 0 \leq i \leq n-3 \tag{1.2}\\
\alpha y^{(n-2)}(t)-\beta y^{(n-1)}(t)=\eta(t), \quad \text { for } t \in[-\tau, 0], \tag{1.3}\\
\gamma y^{(n-2)}(t)+\delta y^{(n-1)}(t)=\xi(t), \quad \text { for } t \in[1,1+a], \tag{1.4}
\end{gather*}
$$

[^0]where $L y:=-\left(p y^{\prime}\right)^{\prime}+q y, p \in C([0,1],(0,+\infty))$, and $q \in C([0,1],[0,+\infty))$; $\alpha, \beta, \gamma, \delta \geq 0$, and $\alpha \delta+\alpha \gamma+\beta \gamma>0 ; \eta \in C([-\tau, 0], \mathbb{R}), \xi \in C([1, b], \mathbb{R})(b=1+a)$, and $\eta(0)=\xi(1)=0 ; h \in C((0,1), \mathbb{R})(h(t)$ is allowed to have singularity at $t=0$ or 1$) ; f \in C([0,1] \times D, \mathbb{R}), D=C([-\tau, a], \mathbb{R})$, for every $t \in[0,1], y_{t} \in D$ is defined by $y_{t}(\theta)=y(t+\theta), \theta \in[-\tau, a]$.

The study of higher-order functional differential equation has received also some attention; see for example [3, 10, 17. Recently, Hong et al. 12 imposed conditions on $f\left(t, y^{t}\right)$ to yield at least one positive solution to 1.1$)-1.4$ for the special case $h(t) \equiv 1, p(t) \equiv 1$, and $q(t) \equiv 0$. They applied the Krasnosel'skii fixed-point theorem.

The purpose of this paper is to establish the existence of positive solutions of the singular higher-order functional differential equation 1.1 with boundary conditions (1.2)-(1.4) under suitable conditions on f.

2. Preliminaries

To abbreviate our discussion, we assume the following hypotheses:
(H1) $G(t, s)$ is the Green's function of the differential equation

$$
\left(L y^{(n-2)}\right)(t)=0, \quad 0<t<1
$$

subject to the boundary condition 1.2 - 1.4 with $\tau=a=0$.
(H2) $g(t, s)$ is the Green's function of the differential equation

$$
L y(t)=0 \quad t \in(0,1)
$$

subject to the boundary conditions

$$
\alpha y(0)-\beta y^{\prime}(0)=0, \quad \gamma y(1)+\delta y^{\prime}(1)=0
$$

where α, β, γ and δ are as in (1.3) and 1.4.
(H3) $h \in C((0,1),[0,+\infty))$ and satisfies

$$
0<\int_{0}^{1} g(s, s) h(s) d s<+\infty
$$

(H4) $f \in C\left([0,1] \times D^{+},[0, \infty)\right)$, where $D^{+}=C([-\tau, a],[0,+\infty))$.
(H5) $\eta \in C([-\tau, 0],[0,+\infty)), \xi \in C([1,1+a],[0,+\infty))$, and $\eta(0)=\xi(1)=0$.
It is easy to see that

$$
\frac{\partial^{n-2}}{\partial t^{n-2}} G(t, s)=g(t, s), \quad t, s \in[0,1]
$$

It is also well known that the Green's function $g(t, s)$ is

$$
g(t, s)=\frac{1}{c} \begin{cases}\phi(s) \psi(t), & \text { if } 0 \leq s \leq t \leq 1 \\ \phi(t) \psi(s), & \text { if } 0 \leq t \leq s \leq 1\end{cases}
$$

where ϕ and ψ are solutions, respectively, of

$$
\begin{gather*}
L \phi=0, \quad \phi(0)=\beta, \quad \phi^{\prime}(0)=\alpha \tag{2.1}\\
L \psi=0, \quad \psi(1)=\delta, \quad \psi^{\prime}(1)=-\gamma \tag{2.2}
\end{gather*}
$$

One can show that $c=-p(t)\left(\phi(t) \psi^{\prime}(t)-\phi^{\prime}(t) \psi(t)\right)>0$ and $\phi^{\prime}(t)>0$ on $(0,1]$ and $\psi^{\prime}(t)<0$ on $[0,1)$. Clearly

$$
\begin{equation*}
g(t, s) \leq g(s, s), \quad 0 \leq t, s \leq 1 \tag{2.3}
\end{equation*}
$$

By (H3), there exists $t_{0} \in(0,1)$ such that $h\left(t_{0}\right)>0$. We may choose $\varepsilon \in(0,1 / 2)$ such that $t_{0} \in(\varepsilon, 1-\varepsilon)$. Then for $\varepsilon \leq t \leq 1-\varepsilon$ we have $\phi(\varepsilon) \leq \phi(t) \leq \phi(1-\varepsilon)$ and $\psi(1-\varepsilon) \leq \psi(t) \leq \psi(\varepsilon)$. Also for $(t, s) \in[\varepsilon, 1-\varepsilon] \times(0,1)$

$$
\begin{equation*}
\frac{g(t, s)}{g(s, s)} \geq \min \left\{\frac{\psi(1-\varepsilon)}{\psi(s)}, \frac{\phi(\varepsilon)}{\phi(s)}\right\} \geq \min \left\{\frac{\psi(1-\varepsilon)}{\psi(0)}, \frac{\phi(\varepsilon)}{\phi(1)}\right\}:=\sigma \tag{2.4}
\end{equation*}
$$

Let $E=C^{(n-2)}([-\tau, b] ; \mathbb{R})$ with a norm $\|u\|_{[-\tau, b]}=\sup _{-\tau \leq t \leq b}\left|u^{(n-2)}(t)\right|$ for $u \in E$. Obviously, E is a Banach space. And let $C=C^{(n-2)}([-\tau, a], \mathbb{R})$ be a space with norm $\|\psi\|_{[-\tau, a]}=\sup _{-\tau \leq t \leq a}\left|\psi^{(n-2)}(x)\right|$ for $\psi \in C$. Let

$$
C^{+}=\{\psi \in C: \psi(x) \geq 0, x \in[-\tau, a]\} .
$$

It is easy to see that C^{+}is a subspace of C.
Define a cone $K \subset E$ as follows:

$$
\begin{equation*}
K=\left\{y \in E: y(t) \geq 0, \min _{t \in[\varepsilon, 1-\varepsilon]} y^{(n-2)}(t) \geq \bar{\sigma}\|y\|_{[-\tau, b]}\right\} \tag{2.5}
\end{equation*}
$$

where $\bar{\sigma}=\frac{1}{b} \min \{\varepsilon, \sigma\}, \sigma$ is as in 2.4.
For each $\rho>0$, we define $K_{\rho}=\left\{y \in K:\|y\|_{[-\tau, b]}<\rho\right\}$. Furthermore, we define a set Ω_{ρ} as follows:

$$
\Omega_{\rho}=\left\{y \in K: \min _{\varepsilon \leq t \leq 1-\varepsilon} y^{(n-2)}(t)<\bar{\sigma} \rho\right\} .
$$

Similar to the [14, Lemma 2.5], we have
Lemma 2.1. Ω_{ρ} defined above has the following properties:
(a) Ω_{ρ} is open relative to K.
(b) $K_{\bar{\sigma} \rho} \subset \Omega_{\rho} \subset K_{\rho}$.
(c) $y \in \partial \Omega_{\rho}$ if and only if $\min _{\varepsilon \leq t \leq 1-\varepsilon} y^{(n-2)}(t)=\bar{\sigma} \rho$.
(d) If $y \in \partial \Omega_{\rho}$, then $\bar{\sigma} \rho \leq y^{(n-2)}(t) \leq \rho$ for $t \in[\varepsilon, 1-\varepsilon]$.

To obtain the positive solutions of $(\sqrt{1.1})-(\sqrt{1.4})$, the following fixed point theorem in cones will be fundamental.

Lemma 2.2. Let K be a cone in a Banach space E. Let D be an open bounded subset of E with $D_{K}=D \cap K \neq \emptyset$ and $\bar{D}_{K} \neq K$. Assume that $A: \bar{D}_{K} \rightarrow K$ is a compact map such that $x \neq A x$ for $x \in \partial D_{K}$. Then the following results hold.
(1) $\|A x\| \leq\|x\|, \quad x \in \partial D_{K}$, then $i_{K}\left(A, D_{K}\right)=1$.
(2) If there exists $e \in K \backslash\{0\}$ such that $x \neq A x+\lambda e$ for all $x \in \partial D_{K}$ and all $\lambda>0$, then $i_{K}\left(A, D_{K}\right)=0$.
(3) Let U be an open set in E such that $\bar{U} \subset D_{K}$. If $i_{K}\left(A, D_{K}\right)=1$ and $i_{K}\left(A, U_{K}\right)=0$, then A has a fixed point in $D_{K} \backslash \bar{U}_{K}$. The same results holds if $i_{K}\left(A, D_{K}\right)=0$ and $i_{K}\left(A, U_{K}\right)=1$.
Suppose that $y(t)$ is a solution of $\sqrt{1.1}-(\sqrt{1.4}$, then it can be written as

$$
y(t)= \begin{cases}y(-\tau ; t), & -\tau \leq t \leq 0 \\ \int_{0}^{1} G(t, s) h(s) f\left(s, y_{s}\right) d s, & 0 \leq t \leq 1 \\ y(b ; t), & 1 \leq t \leq b\end{cases}
$$

where $y(-\tau ; t)$ and $y(b ; t)$ satisfy

$$
y^{(n-2)}(-\tau ; t)= \begin{cases}e^{\frac{\alpha}{\beta} t}\left(\frac{1}{\beta} \int_{t}^{0} e^{-\frac{\alpha}{\beta} s} \eta(s) d s+y^{(n-2)}(0)\right), & t \in[-\tau, 0], \beta \neq 0 \\ \frac{1}{\alpha} \eta(t), & t \in[-\tau, 0], \beta=0\end{cases}
$$

and

$$
y^{(n-2)}(b ; t)= \begin{cases}e^{-\frac{\gamma}{\delta} t}\left(\frac{1}{\delta} \int_{1}^{t} e^{\frac{\gamma}{\delta} s} \xi(s) d s+e^{\frac{\gamma}{\delta}} y^{(n-2)}(1)\right), & t \in[1, b], \delta \neq 0 \\ \frac{1}{\gamma} \xi(t), & t \in[1, b], \delta=0\end{cases}
$$

Throughout this paper, we assume that $u_{0}(t)$ is the solution of (1.1)-(1.4) with $f \equiv 0$, and $\left\|u_{0}\right\|_{[-\tau, b]}=: M_{0}$. Clearly, $u_{0}^{(n-2)}(t)$ can be expressed as follows:

$$
u_{0}^{(n-2)}(t)= \begin{cases}u_{0}^{(n-2)}(-\tau ; t), & -\tau \leq t \leq 0 \\ 0, & 0 \leq t \leq 1 \\ u_{0}^{(n-2)}(b ; t), & 1 \leq t \leq b\end{cases}
$$

where

$$
u_{0}^{(n-2)}(-\tau ; t)= \begin{cases}\frac{1}{\beta} e^{\frac{\alpha}{\beta} t} \int_{t}^{0} e^{-\frac{\alpha}{\beta} s} \eta(s) d s, & t \in[-\tau, 0], \beta \neq 0 \\ \frac{1}{\alpha} \eta(t), & t \in[-\tau, 0], \beta=0\end{cases}
$$

and

$$
u_{0}^{(n-2)}(b ; t)= \begin{cases}\frac{1}{\delta} e^{-\frac{\gamma}{\delta} t} \int_{1}^{t} e^{\frac{\gamma}{\delta} s} \xi(s) d s, & t \in[1, b], \delta \neq 0 \\ \frac{1}{\gamma} \xi(t), & t \in[1, b], \delta=0\end{cases}
$$

Let $y(t)$ be a solution of BVP (1.1)-1.4) and $u(t)=y(t)-u_{0}(t)$. Noting that $u(t) \equiv y(t)$ for $0 \leq t \leq 1$, we have

$$
u^{(n-2)}(t)= \begin{cases}u^{(n-2)}(-\tau ; t), & -\tau \leq t \leq 0 \\ \int_{0}^{1} g(t, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & 0 \leq t \leq 1 \\ u^{(n-2)}(b ; t), & 1 \leq t \leq b\end{cases}
$$

where

$$
u^{(n-2)}(-\tau ; t)= \begin{cases}e^{\frac{\alpha}{\beta} t} \int_{0}^{1} g(0, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & t \in[-\tau, 0], \beta \neq 0 \\ 0, & t \in[-\tau, 0], \beta=0\end{cases}
$$

and

$$
u^{(n-2)}(b ; t)= \begin{cases}e^{-\frac{\gamma}{\delta}(t-1)} \int_{0}^{1} g(1, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & t \in[1, b], \delta \neq 0 \\ 0, & t \in[1, b], \delta=0\end{cases}
$$

It is easy to see that $y(t)$ is a solution of BVP 1.1)-1.4 if and only if $u(t)=$ $y(t)-u_{0}(t)$ is a solution of the operator equation

$$
\begin{equation*}
u(t)=A u(t) \quad \text { for } t \in[-\tau, b] . \tag{2.6}
\end{equation*}
$$

Here, operator $A: E \rightarrow E$ is defined by

$$
A u(t):= \begin{cases}B_{1} u(t), & -\tau \leq t \leq 0 \\ \int_{0}^{1} G(t, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & 0 \leq t \leq 1 \\ B_{2} u(t), & 1 \leq t \leq b\end{cases}
$$

where

$$
B_{1} u(t):= \begin{cases}\left(\frac{\beta}{\alpha}\right)^{n-2} e^{\frac{\alpha}{\beta} t} \int_{0}^{1} g(0, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & \beta \neq 0, \alpha \neq 0 \\ \frac{t^{n-2}}{(n-2)!} \int_{0}^{1} g(0, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & \beta \neq 0, \alpha=0 \\ 0, & \beta=0\end{cases}
$$

for each $t \in[-\tau, 0]$, and

$$
B_{2} u(t):= \begin{cases}\left(-\frac{\delta}{\gamma}\right)^{n-2} e^{-\frac{\gamma}{\delta}(t-1)} \int_{0}^{1} g(1, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & \delta \neq 0, \gamma \neq 0 \\ \frac{t^{n-2}}{(n-2)!} \int_{0}^{1} g(1, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & \delta \neq 0, \gamma=0 \\ 0, & \delta=0\end{cases}
$$

for any $t \in[1, b]$. Obviously,

$$
(A u)^{(n-2)}(t):= \begin{cases}\left(B_{1} u\right)^{(n-2)}(t), & -\tau \leq t \leq 0 \\ \int_{0}^{1} g(t, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & 0 \leq t \leq 1 \\ \left(B_{2} u\right)^{(n-2)}(t), & 1 \leq t \leq b\end{cases}
$$

where

$$
\left(B_{1} u\right)^{(n-2)}(t):= \begin{cases}e^{\frac{\alpha}{\beta} t} \int_{0}^{1} g(0, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & t \in[-\tau, 0], \beta \neq 0 \\ 0, & t \in[-\tau, 0], \beta=0\end{cases}
$$

and

$$
\left(B_{2} u\right)^{(n-2)}(t):= \begin{cases}e^{-\frac{\gamma}{\delta}(t-1)} \int_{0}^{1} g(1, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & t \in[1, b], \delta \neq 0 \\ 0, & t \in[1, b], \delta=0\end{cases}
$$

Lemma 2.3. With the above notation, $A(K) \subset K$.
Proof. By the assumptions of (H1)-(H5), it is easy to know that $A u \in E$ and $A u \geq 0$ for any $u \in K$. Moreover, it follows from

$$
\begin{gathered}
0 \leq(A u)^{(n-2)}(t) \leq(A u)^{(n-2)}(0) \quad \text { for }-\tau \leq t \leq 0 \\
0 \leq(A u)^{(n-2)}(t) \leq(A u)^{(n-2)}(1) \quad \text { for } 1 \leq t \leq b
\end{gathered}
$$

that $\|A u\|_{[-\tau, b]}=\|A u\|_{[0,1]}$. By 2.3 we have, for any $u \in K$ and $t \in[0,1]$ that

$$
\begin{equation*}
\|A u\|_{[-\tau, b]}=\|A u\|_{[0,1]} \leq \int_{0}^{1} g(s, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s \tag{2.7}
\end{equation*}
$$

From (2.4), we get

$$
\begin{align*}
\min _{\varepsilon \leq t \leq 1-\varepsilon}(A u)^{(n-2)}(t) & =\min _{\varepsilon \leq t \leq 1-\varepsilon} \int_{0}^{1} g(t, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s \\
& \geq \sigma \int_{0}^{1} g(s, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s \tag{2.8}\\
& \geq \bar{\sigma} \int_{0}^{1} g(s, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s
\end{align*}
$$

In view of 2.7 and 2.8, we obtain

$$
\min _{\varepsilon \leq t \leq 1-\varepsilon}(A u)^{(n-2)}(t) \geq \bar{\sigma}\|A u\|_{[-\tau, b]}, \quad u \in K
$$

which implies $A(K) \subset K$.
Let

$$
\begin{aligned}
C_{[k, r]}^{+} & =\left\{\varphi \in C^{+}: k \leq\|\varphi\|_{[-\tau, a]} \leq r\right\} \\
C_{[k, \infty)}^{+} & =\left\{\varphi \in C^{+}: k \leq\|\varphi\|_{[-\tau, a]}<\infty\right\}
\end{aligned}
$$

where $0 \leq k<r$.

Lemma 2.4. $A: K \rightarrow K$ is completely continuous.
Proof. We apply a truncation technique (cf. [16]). We define the function h_{m} for $m \geq 2$, by

$$
h_{m}(t)= \begin{cases}\min \left\{h(t), h\left(\frac{1}{m}\right)\right\}, & 0<t \leq \frac{1}{m} \\ h(t), & \frac{1}{m}<t<1-\frac{1}{m} \\ \min \left\{h(t), h\left(\frac{m-1}{m}\right)\right\}, & \frac{m-1}{m} \leq t<1\end{cases}
$$

It is clear that $h_{m}(t)$ is nonnegative and continuous on $[0,1]$. We define the operator A_{m} by

$$
A_{m} u(t):= \begin{cases}B_{1 m} u(t), & -\tau \leq t \leq 0 \\ \int_{0}^{1} G(t, s) h_{m}(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & 0 \leq t \leq 1 \\ B_{2 m} u(t), & 1 \leq t \leq b\end{cases}
$$

where

$$
B_{1 m} u(t):= \begin{cases}\left(\frac{\beta}{\alpha}\right)^{n-2} e^{\frac{\alpha}{\beta} t} \int_{0}^{1} g(0, s) h_{m}(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & \beta \neq 0, \alpha \neq 0 \\ \frac{t^{n-2}}{(n-2)!} \int_{0}^{1} g(0, s) h_{m}(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & \beta \neq 0, \alpha=0 \\ 0, & \beta=0\end{cases}
$$

for each $t \in[-\tau, 0]$, and
$B_{2 m} u(t):= \begin{cases}\left(-\frac{\delta}{\gamma}\right)^{n-2} e^{-\frac{\gamma}{\delta}(t-1)} \int_{0}^{1} g(1, s) h_{m}(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & \delta \neq 0, \gamma \neq 0, \\ \frac{t^{n-2}}{(n-2)!} \int_{0}^{1} g(1, s) h_{m}(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & \delta \neq 0, \gamma=0, \\ 0, & \delta=0\end{cases}$
for any $t \in[1, b]$. By Lemma 2.3, it is easy to check that $A_{m}: K \rightarrow K$. And, A_{m} is continuous, the proof is similar to that of [11, Theorem 2.1].

Next let $B \subset K$ be a bounded subset of K, and $M_{1}>0$ be a constant such that $\|u\|_{[-\tau, b]} \leq M_{1}$ for $u \in B$. Noting that if $x_{t} \in C=C^{n-2}([-\tau, a], \mathbb{R})$, then $x_{t}^{(n-2)} \in C([-\tau, a], \mathbb{R})$, and $x_{t}^{(n-2)}(\theta)=x^{(n-2)}(t+\theta), \theta \in[-\theta, a]$. Thus

$$
\begin{align*}
\left\|u_{s}+\left(u_{0}\right)_{s}\right\|_{[-\tau, a]} & =\sup _{-\tau \leq \theta \leq a}\left|\left(u^{s}+u_{0}^{s}\right)^{(n-2)}(\theta)\right| \\
& \leq \sup _{-\tau \leq \theta \leq a} \mid\left(u^{(n-2)}(s+\theta)\left|+\sup _{-\tau \leq \theta \leq a}\right| u_{0}^{(n-2)}(s+\theta) \mid\right. \\
& \leq \sup _{-\tau \leq t \leq b}\left|u^{(n-2)}(t)\right|+\sup _{-\tau \leq t \leq b}\left|u_{0}^{(n-2)}(t)\right|=\|u\|_{[-\tau, b]}+\left\|u_{0}\right\|_{[-\tau, b]} \\
& \leq M_{1}+M_{0}:=M_{2} \tag{2.9}
\end{align*}
$$

for $u \in B$ and $s \in[0,1]$. Hence, there exists a constant $M_{3}>0$ such that

$$
\begin{equation*}
\left|f\left(s, u_{s}+\left(u_{0}\right)_{s}\right)\right| \leq M_{3}, \quad \text { on }[0,1] \times C_{\left[0, M_{3}\right]}^{+} \tag{2.10}
\end{equation*}
$$

since f is continuous on $[0,1] \times C^{+}$. For $u \in B$ we have

$$
\left(A_{m} u\right)^{(n-2)}(t):= \begin{cases}\left(B_{1 m} u\right)^{(n-2)}(t), & -\tau \leq t \leq 0 \\ \int_{0}^{1} g(t, s) h_{m}(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & 0 \leq t \leq 1 \\ \left(B_{2 m} u\right)^{(n-2)}(t), & 1 \leq t \leq b\end{cases}
$$

where

$$
\left(B_{1 m} u\right)^{(n-2)}(t):= \begin{cases}e^{\frac{\alpha}{\beta} t} \int_{0}^{1} g(0, s) h_{m}(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & t \in[-\tau, 0], \beta \neq 0 \\ 0, & t \in[-\tau, 0], \beta=0\end{cases}
$$

and

$$
\left(B_{2 m} u\right)^{(n-2)}(t):= \begin{cases}e^{-\frac{\gamma}{\delta}(t-1)} \int_{0}^{1} g(1, s) h_{m}(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s, & t \in[1, b], \delta \neq 0 \\ 0, & t \in[1, b], \delta=0\end{cases}
$$

These and 2.10 imply $\left(A_{m} u\right)^{(n-2)}(t)$ is continuous and uniformly bounded for $u \in B$. So $\left(A_{m} u\right)^{\prime}(t)$ is continuous and uniformly bounded for $u \in B$ also. The Ascoli-Arzela Theorem implies that A_{m} is a completely continuous operator on K for any $m \geq 2$.

Moreover, A_{m} converges uniformly to A as $m \rightarrow \infty$ on any bounded subset of K. To see this, note that if $u \in K$ with $\|u\|_{[-\tau, b]} \leq M$, then from (H3) and $0 \leq h_{n}(s) \leq h(s)$,

$$
\begin{aligned}
\left|\left(A_{m} u\right)^{(n-2)}(t)-(A u)^{(n-2)}(t)\right|= & \left\lvert\, \int_{0}^{\frac{1}{m}} g(t, s)\left[h(s)-h_{m}(s)\right] f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s\right. \\
& \left.+\int_{\frac{m-1}{m}}^{1} g(t, s)\left[h(s)-h_{m}(s)\right] f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s \right\rvert\, \\
\leq & \int_{0}^{\frac{1}{m}} g(s, s)\left|h(s)-h_{m}(s)\right| f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s \\
& +\int_{\frac{m-1}{m}}^{1} g(s, s)\left|h(s)-h_{m}(s)\right| f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s \\
\leq & 2 \bar{M}\left[\int_{0}^{\frac{1}{m}} g(s, s) h(s) d s+\int_{\frac{m-1}{m}}^{1} g(s, s) h(s) d s\right] \\
& 0 \text { as } m \rightarrow \infty,
\end{aligned}
$$

where $\bar{M}:=\max _{t \in[0,1], \varphi \in C_{\left[0, M+M_{0}\right]}^{+}} f(t, \varphi)$. Thus, we have

$$
\left\|A_{m} u-A u\right\|_{[-\tau, b]}=\left\|A_{m} u-A u\right\|_{[0,1]} \rightarrow 0, \quad n \rightarrow \infty
$$

for each $u \in K$ with $\|u\|_{[-\tau, b]} \leq M$. Hence, A_{m} converges uniformly to A as $m \rightarrow \infty$ and therefore A is completely continuous also. This completes the proof of Lemma 2.4 .

3. Main Results

For convenience, we introduce the following notation. Let

$$
\begin{gathered}
\omega=\left(\int_{0}^{1} g(s, s) h(s) d s\right)^{-1} ; \quad N=\left(\min _{\varepsilon \leq t \leq 1-\varepsilon} \int_{\varepsilon}^{1-\varepsilon} g(t, s) h(s) d s\right)^{-1} ; \\
f_{\bar{\sigma} \rho}^{\rho}=\inf \left\{\min _{t \in[\varepsilon, 1-\varepsilon]} \frac{f(t, \varphi)}{\rho}: \varphi \in C_{\left[\bar{\sigma} \rho, \rho+M_{0}\right]}^{+}\right\} \\
f_{0}^{\rho}=\sup \left\{\max _{t \in[0,1]} \frac{f(t, \varphi)}{\rho}: \varphi \in C_{\left[0, \rho+M_{0}\right]}^{+}\right\} \\
f^{\mu}=\lim _{\|\varphi\|_{[-\tau, a]} \rightarrow \mu} \sup _{\max _{t \in[0,1]}} \frac{f(t, \varphi)}{\|\varphi\|_{[-\tau, a]}} ; \\
f_{\mu}=\lim _{\|\varphi\|_{[-\tau, a]} \rightarrow \mu} \inf _{\min _{t \in[\varepsilon, 1-\varepsilon]}} \frac{f(t, \varphi)}{\|\varphi\|_{[-\tau, a]}}, \quad\left(\mu:=\infty \text { or } 0^{+}\right)
\end{gathered}
$$

Now, we impose conditions on f which we assure that $i_{K}\left(A, K_{\rho}\right)=1$.
Lemma 3.1. Assume that

$$
\begin{equation*}
f_{0}^{\rho} \leq \omega \quad \text { and } \quad u \neq A u \quad \text { for } u \in \partial K_{\rho} \tag{3.1}
\end{equation*}
$$

Then $i_{K}\left(A, K_{\rho}\right)=1$.
Proof. For $u \in \partial K_{\rho}$, we have $\left\|u_{s}+\left(u_{0}\right)_{s}\right\|_{[-\tau, a]} \leq \rho+M_{0}$, for all $s \in[0,1]$, i.e., $u_{s}+\left(u_{0}\right)_{s} \in C_{\left[0, \rho+M_{0}\right]}$ for any $s \in[0,1]$. It follows from 3.1) that for $t \in[0,1]$,

$$
\begin{aligned}
(A u)^{(n-2)}(t) & =\int_{0}^{1} g(t, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s \\
& \leq \int_{0}^{1} g(s, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s \\
& <\rho \omega \int_{0}^{1} g(s, s) h(s) d s \\
& =\rho=\|u\|_{[-\tau, b]}
\end{aligned}
$$

This implies that $\|A u\|_{[-\tau, b]}<\|u\|_{[-\tau, b]}$ for $u \in \partial K_{\rho}$. By Lemma 2.2 (1), we have $i_{K}\left(A, K_{\rho}\right)=1$.

Let $u \in \partial \Omega_{\rho}$, then for any $s \in[\varepsilon, 1-\varepsilon]$, we have by Lemma 2.1 (c) that

$$
\begin{aligned}
\left\|u_{s}+\left(u_{0}\right)_{s}\right\|_{[-\tau, a]} & =\sup _{\theta \in[-\tau, a]}\left(u^{(n-2)}(s+\theta)+\left(u_{0}\right)^{(n-2)}(s+\theta)\right) \\
& \geq \sup _{\theta \in[-\tau, a]} u^{(n-2)}(s+\theta)\left(\text { since }\left(u_{0}\right)^{(n-2)}(t) \geq 0 \text { for } t \in[-\tau, b]\right) \\
& \geq u^{(n-2)}(s) \\
& \geq \min _{t \in[\varepsilon, 1-\varepsilon]} u^{(n-2)}(t)=\bar{\sigma} \rho .
\end{aligned}
$$

By Lemma 2.1(b), we have $\bar{\Omega}_{\rho} \subset \bar{K}_{\rho}$, that is $\|u\|_{[-\tau, b]} \leq \rho$. Thus, from 2.9) we get

$$
\left\|u_{s}+\left(u_{0}\right)_{s}\right\|_{[-\tau, a]} \leq\|u\|_{[-\tau, b]}+\left\|u_{0}\right\|_{[-\tau, b]} \leq \rho+M_{0}, \quad \forall s \in[0,1] .
$$

Hence

$$
\begin{equation*}
u_{s}+\left(u_{0}\right)_{s} \in C_{\left[\bar{\sigma} \rho, \rho+M_{0}\right]}^{+}, \quad \text { for } u \in \partial \Omega_{\rho}, s \in[\varepsilon, 1-\varepsilon] . \tag{3.2}
\end{equation*}
$$

Next, we impose conditions on f which assure that $i_{K}\left(A, \Omega_{\rho}\right)=0$.

Lemma 3.2. If f satisfies the condition

$$
\begin{equation*}
f_{\bar{\sigma} \rho}^{\rho} \geq N \bar{\sigma} \quad \text { and } \quad u \neq A u \quad \text { for } u \in \partial \Omega_{\rho} \tag{3.3}
\end{equation*}
$$

Then $i_{K}\left(A, \Omega_{\rho}\right)=0$.
Proof. Let

$$
e(t)= \begin{cases}-\frac{t^{n-1}}{(1+\tau)(n-1)!}, & n \text { is odd },-\tau \leq t \leq 0 \\ \frac{t^{n}}{(1+\tau)^{2} n!}, & n \text { is even },-\tau \leq t \leq 0 \\ \frac{t^{n-1}}{b(n-1)!}, & 0 \leq t \leq b\end{cases}
$$

It is easy to verify that $e \in C^{(n-2)}([-\tau, b], \mathbb{R}), e(t) \geq 0$ for $t \in[-\tau, b]$, and

$$
e^{(n-2)}(t)= \begin{cases}-\frac{t}{1+\tau}, & n \text { is odd },-\tau \leq t \leq 0 \\ \frac{t^{2}}{2(1+\tau)^{2}}, & n \text { is even },-\tau \leq t \leq 0 \\ \frac{t}{b}, & 0 \leq t \leq b\end{cases}
$$

which implies that $e \in K$ and $\|e\|_{[-\tau, b]}=1$, that is $e \in \partial K_{1}$. We claim that

$$
u \neq A u+\lambda e, \quad u \in \partial \Omega_{\rho}, \quad \lambda>0
$$

In fact, if not, there exist $u \in \partial \Omega_{\rho}$ and $\lambda_{0}>0$ such that $u=A u+\lambda_{0} e$. Then by (3.2) for $t \in[\varepsilon, 1-\varepsilon]$, we get

$$
\begin{aligned}
u^{(n-2)}(t) & =(A u)^{(n-2)}(t)+\lambda_{0} e^{(n-2)}(t) \\
& =\int_{0}^{1} g(t, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s+\lambda_{0} e^{(n-2)}(t) \\
& \geq \int_{\varepsilon}^{1-\varepsilon} g(t, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)_{s}\right) d s+\lambda_{0} \frac{\varepsilon}{b} \\
& \geq \min _{\varepsilon \leq t \leq 1-\varepsilon} \int_{\varepsilon}^{1-\varepsilon} g(t, s) h(s) f\left(s, u_{s}+\left(u_{0}\right)^{s}\right) d s+\lambda_{0} \bar{\sigma} \\
& \geq \rho N \bar{\sigma} \min _{\varepsilon \leq t \leq 1-\varepsilon} \int_{\varepsilon}^{1-\varepsilon} g(t, s) h(s) d s+\lambda_{0} \bar{\sigma} \\
& \geq \bar{\sigma} \rho+\lambda_{0} \bar{\sigma} .
\end{aligned}
$$

This implies that $\bar{\sigma} \rho \geq \bar{\sigma} \rho+\lambda_{0} \bar{\sigma}$, a contradiction. Moreover, it is easy to check that $u \neq A u$ for $u \in \partial \Omega_{\rho}$ from (3.3). Hence, by Lemma 2.2 (2), it follows that $i_{K}\left(A, \Omega_{\rho}\right)=0$.

Theorem 3.3. If one of the following conditions holds:
(H7) There exist $\rho_{1}, \rho_{2}, \rho_{3} \in(0, \infty)$ with $\rho_{1}<\bar{\sigma} \rho_{2}$ and $\rho_{2}<\rho_{3}$ such that

$$
f_{0}^{\rho_{1}} \leq \omega, \quad f_{\bar{\sigma} \rho_{2}}^{\rho_{2}} \geq N \bar{\sigma}, \quad u \neq A u \quad \text { for } u \in \partial \Omega_{\rho_{2}} \quad \text { and } \quad f_{0}^{\rho_{3}} \leq \omega
$$

(H8) There exist $\rho_{1}, \rho_{2}, \rho_{3} \in(0, \infty)$ with $\rho_{1}<\rho_{2}<\bar{\sigma} \rho_{3}$ such that

$$
f_{\bar{\sigma} \rho_{1}}^{\rho_{1}} \geq N \bar{\sigma}, \quad f_{0}^{\rho_{2}} \leq \omega, \quad u \neq A u \quad \text { for } u \in \partial K_{\rho_{2}} \quad \text { and } \quad f_{\bar{\sigma} \rho_{3}}^{\rho_{3}} \geq N \bar{\sigma}
$$

Then $B V P(1.1)-1.4)$ has two positive solutions. Moreover, if in (H7), $f_{0}^{\rho_{1}} \leq \omega$ is replaced by $f_{0}^{\rho_{1}}<\omega$, then (1.1)-1.4 has a third positive solution $u_{3} \in K_{\rho_{1}}$.

Proof. Suppose that (H7) holds. We show that either A has a fixed point u_{1} in $\partial K_{\rho_{1}}$ or in $\Omega_{\rho_{2}} \backslash \overline{K_{\rho_{1}}}$. If $u \neq A u$ for $u \in \partial K_{\rho_{1}} \cup \partial K_{\rho_{3}}$, by Lemmas 3.1 3.2, we have $i_{K}\left(A, K_{\rho_{1}}\right)=1, i_{K}\left(A, \Omega_{\rho_{2}}\right)=0$ and $i_{K}\left(A, K_{\rho_{3}}\right)=1$. Since $\rho_{1}<\bar{\sigma} \rho_{2}$, we have $\overline{K_{\rho_{1}}} \subset K_{\bar{\sigma} \rho_{2}} \subset \Omega_{\rho_{2}}$ by Lemma 2.1 (b). It follows from Lemma 2.2 that A has a fixed point $u_{1} \in \Omega_{\rho_{2}} \backslash \overline{K_{\rho_{1}}}$. Similarly, A has a fixed point $u_{2} \in K_{\rho_{3}} \backslash \overline{\Omega_{\rho_{2}}}$. The proof is similar when (H8) holds.

As a special case of Theorem 3.3 we obtain the following result.
Corollary 3.4. Let $\xi(t) \equiv 0, \eta(t) \equiv 0$. If there exists $\rho>0$ such that one of the following conditions holds:
(H9) $0 \leq f^{0}<\omega, f_{\bar{\sigma} \rho}^{\rho} \geq N \bar{\sigma}, u \neq A u$ for $u \in \partial \Omega_{\rho}$ and $0 \leq f^{\infty}<\omega$.
(H10) $N<f_{0} \leq \infty, f_{0}^{\rho} \leq \omega, u \neq A u$ for $u \in \partial K_{\rho}$ and $N<f_{\infty} \leq \infty$.
Then BVP (1.1)-1.4 has two positive solutions.
Proof. From $\xi(t) \equiv 0, \eta(t) \equiv 0$, it is clear that $u_{0}(t) \equiv 0$ for $t \in[-\tau, b]$, thus $M_{0}=0$. We now show that $\left(H_{9}\right)$ implies $\left(H_{7}\right)$. It is easy to verify that $0 \leq f^{0}<\omega$ implies that there exists $\rho_{1} \in(0, \bar{\sigma} \rho)$ such that $f_{0}^{\rho_{1}}<\omega$. Let $k \in\left(f^{\infty}, \omega\right)$. Then there exists $r>\rho$ such that $\max _{t \in[0,1]} f(t, \varphi) \leq k\|\varphi\|_{[-\tau, a]}$ for $\varphi \in C_{[r, \infty)}^{+}$since $0 \leq f^{\infty}<\omega$. Let

$$
l=\max \left\{\max _{t \in[0,1]} f(t, \varphi): \varphi \in C_{[0, r]}^{+}\right\}, \quad \text { and } \quad \rho_{3}>\max \left\{\frac{l}{\omega-k}, \rho\right\}
$$

Then we have

$$
\max _{t \in[0,1]} f(t, \varphi) \leq k\|\varphi\|_{[-\tau, a]}+l \leq k \rho_{3}+l<\omega \rho_{3} \quad \text { for } \varphi \in C_{\left[0, \rho_{3}\right]}^{+}
$$

This implies that $f_{0}^{\rho_{3}}<\omega$ and (H7) holds. Similarly, (H10) implies (H8).
By a similar argument to that of Theorem 3.3, we obtain the following results on existence of at least one positive solution of (1.1)- 1.4.

Theorem 3.5. If one of the following conditions holds:
(H11) There exist $\rho_{1}, \rho_{2} \in(0, \infty)$ with $\rho_{1}<\bar{\sigma} \rho_{2}$ such that

$$
f_{0}^{\rho_{1}} \leq \omega \quad \text { and } \quad f_{\bar{\sigma} \rho_{2}}^{\rho_{2}} \geq N \bar{\sigma}
$$

(H12) There exist $\rho_{1}, \rho_{2} \in(0, \infty)$ with $\rho_{1}<\rho_{2}$ such that

$$
f_{\bar{\sigma} \rho_{1}}^{\rho_{1}} \geq N \bar{\sigma} \quad \text { and } \quad f_{0}^{\rho_{2}} \leq \omega
$$

Then BVP (1.1)-1.4 has a positive solution.
As a special case of Theorem 3.5, we obtain the following result.
Corollary 3.6. Let $\xi(t) \equiv 0, \eta(t) \equiv 0$. If one of the following conditions holds:
(H13) $0 \leq f^{0}<\omega$ and $N<f_{\infty} \leq \infty$.
(H14) $0 \leq f^{\infty}<\omega$ and $N<f_{0} \leq \infty$.
Then BVP (1.1)-1.4 has a positive solution.

References

[1] C. Bai, J. Ma; Eigenvalue criteria for existence of multiple positive solutions to boundaryvalue problems of second-order delay differential equations, J. Math. Anal. Appl. 301 (2005) 457-476.
[2] C. Bai, J. Fang; Existence of multiple positive solutions for functional differential equations, Comput. Math. Appl. 45(2003) 1797-1806.
[3] J.M. Davis, K.R. Prasad, W.K.C. Yin; Nonlinear eigenvalue problems involving two classa of functional differential equations, Houston J. Math. 26(2000) 597-608.
[4] K. Deimling; Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
[5] L.H. Erbe, Q.K. Kong; Boundary value problems for singular second order functional differential equations, J. Comput. Appl. Math. 53 (1994) 640-648.
[6] L.J. Grimm, K. Schmitt; Boundary value problem problems for differential equations with deviating arguments, Aequationes Math. 4 (1970) 176-190.
[7] D. Guo, V. Lakshmikantham; Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
[8] G.B. Gustafson, K. Schmitt; Nonzero solutions of boundary-value problems for second order ordinary and delay-differential equations, J. Differential Equations 12 (1972) 129-147.
[9] J. Henderson, Boundary Value Problems for Functional Differential Equations, World Scientific, 1995.
[10] J. Henderson, W.K.C. Yin; Positive solutions and nonlinear eigenvalue problems for functional differential equations, Appl. Math. Lett. 12 (1999) 63-68.
[11] C.H. Hong, C.C. Yeh, C.F. Lee, F. Hsiang, F.H. Wong; Existence of positive solutions for functional differential equations, Comput. Math. Appl. 40 (2000) 783-792.
[12] C.H. Hong, F.H. Wong, C.C. Yeh; Existence of positive solutions for higher-order functional differential equations, J. Math Anal. Appl. 297(2004) 14-23.
[13] G. L. Karakostas, K. G. Mavridis, P. Ch. Tsamotos; Multiple positive solutions for a functional second-order boundary-value problem, J. Math. Anal. Appl. 282 (2003) 567-577.
[14] K.Q. Lan; Multiple positive solutions of semilinear differential equations with singularities, J. London. Math. Soc. 63(2001) 690-704.
[15] S.K. Ntouyas, Y. Sficas, P.Ch. Tsamatos; An existence principle for boundary-value problems for second order functional differential equations, Nonlinear Anal. 20 (1993) 215-222.
[16] Y. Shi, S. Chen; Multiple positive solutions of singular boundary value problems, Indian J. Pure Appl. Math. 30 (1999) 847-855.
[17] D. Taunton, W.K.C. Yin; Existence of some functional differential equations, Comm. Appl. Nonlinear Anal. 4 (1997) 31-43.
[18] P.Ch. Tsamatos; On a boundary-value problem for a system for functional differential equations with nonlinear boundary conditions, Funkcial. Ekvac. 42 (1999) 105-114.
[19] P. Weng, D. Jiang; Existence of some positive solutions for boundary-value problem of secondorder FDE, J. Comput. Math. Appl. 37(1999) 1-9.

Chuanzhi Bai
Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsi 223001, China; and Department of Mathematics, Nanjing University, Nanjing 210093, China

E-mail address: czbai8@sohu.com
Qing Yang
Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsi 223001, China
E-mail address: yangqing3511115@163.com
Jing Ge
Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsi 223001, China
E-mail address: gejing0512@163.com

[^0]: 2000 Mathematics Subject Classification. 34K10, 34B16.
 Key words and phrases. Boundary value problem; higher-order; positive solution; functional differential equation; fixed point. (C)2006 Texas State University - San Marcos.

 Submitted April 21, 2006. Published July 6, 2006.
 Supported by the Natural Science Foundation of Jiangsu Education Office and by
 Jiangsu Planned Projects for Postdoctoral Research Funds.

