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EXISTENCE OF WEAK SOLUTIONS FOR NONLINEAR
ELLIPTIC SYSTEMS ON RN

EADA A. EL-ZAHRANI, HASSAN M. SERAG

Abstract. In this paper, we consider the nonlinear elliptic system

−∆pu = a(x)|u|p−2u− b(x)|u|α|v|βv + f,

−∆qv = −c(x)|u|α|v|βu + d(x)|v|q−2v + g,

lim
|x|→∞

u = lim
|x|→∞

v = 0 u, v > 0

on a bounded and unbounded domains of RN , where ∆p denotes the p-

Laplacian. The existence of weak solutions for these systems is proved using

the theory of monotone operators

1. Introduction

The generalized (the so-called weak) formulation of many stationary boundary-
value problems for partial differential equations leads to operator equation of type

A(u) = f

on a Banach space. Indeed, the weak formulation consists in looking for an unknown
function u from a Banach space V such that an integral identity containing u holds
for each test function v from the space V . Since the identity is linear in v, we
can take its sides as values of continuous linear functionals at the element v ∈ V .
Denoting the terms containing unknown u as the value of an operator A, we obtain

(A(u), v) = (f, v) ∀v ∈ V,

which is equivalent to equality of functionals on V , i.e. the equality of elements of
V ′ (the dual space of V ): A(u) = f . Functional analysis yields tools for proving
existence of generalized (weak) solutions to a relatively wide class of differential
equations that appear in mathematical physics and industry.

In our work, we consider nonlinear systems with model A of the form

A{u, v} = {−∆pu−a(x)|u|p−2u+b(x)|u|α|v|βv,−∆qv+c(x)|u|α|v|βu−d(x)|v|q−2v}
These nonlinear systems involving p-Laplacian appear in many problems in pure
and applied mathematics e.g. in quasiconformal mappings, non-Newtonian fluids,
and nonlinear elasticity [3, 4, 9].
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The existence of solutions for such systems was proved, using the method of sub
and super solutions in [7, 8, 20]. Here, we use another technique for proving the
existence of weak solutions. We use the theory of monotone operators.

First, we consider the following system defined on a bounded domain Ω of RN

with boundary ∂Ω:

−∆pu = a(x)|u|p−2u− b(x)|u|α|v|βv + f(x), in Ω

−∆qv = d(x)|v|q−2v − c(x)|v|β |u|αu + g(x), in Ω
u = v = 0, on ∂Ω .

Then, we generalize the discussion to system defined on the whole space RN .
This article is organized as follows: Some technical results and definitions are

introduced in section two concerning the theory of nonlinear monotone operators,
also, the scalar case is discussed. Section three, is devoted to study the existence
of solutions for nonlinear systems defined on a bounded domain. In section four,
the existence of solutions for nonlinear systems defined on unbounded domain is
proved.

2. Scalar case

First, we introduce some technical results [6, 8, 21].

Definitions. Let A : V → V ′ be an operator on a Banach space V . We say that
the operator A is:
Coercive if lim‖u‖→∞

〈A(u),u〉
‖u‖ = ∞;

Monotone if 〈A(u1)−A(u2), u1 − u2〉 ≥ 0 for all u1, u2;
Strongly continuous if un

w→ u implies A(un) → A(u);
Weakly continuous if un

w→ u implies A(un) w→ A(u);
Demicontinuous if un → u implies A(un) w→ A(u).
The operator A is said to satisfy the Mo-condition if un

w→ u, A(un) w→ f , and
[〈A(un), un〉 → 〈f, u〉] imply A(u) = f .

Theorem 2.1. Let V be a separable reflexive Banach space and A : V → V ′ an
operator which is: coercive, bounded, demicontinuous, and satisfying Mo condition.
Then the equation A(u) = f admits a solution for each f ∈ V ′.

Now, we prove the existence of a weak solution u ∈ W 1,p
0 (Ω) for the scalar case

−∆pu = m(x)|u|p−2u + f(x), x ∈ Ω,

u = 0 on ∂Ω
(2.1)

where 0 < a(x) ∈ L∞(Ω) and Ω is a bounded domain of RN . In this case, the
operator A is Au = −∆pu−m(x)|u|p−2u.

It is proved in [2], that if m(x) is a positive function in L∞(Ω), then the first
eigenvalue λp(m) of the Dirichlet p-Laplacian problem

−∆pu = λm(x)|u|p−2u in Ω

u(x) = 0 on ∂Ω
(2.2)

is simple, isolated and it is the unique positive eigenvalue having a nonnegative
eigenfunction. Moreover it is characterized by∫

Ω

|∇u|p ≥ λp(m)
∫

Ω

m(x)|u|p (2.3)
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We prove that (2.1) admits a weak solution if λp(m) > 1 . First, we prove that A
is a bounded operator:

(Au, v) =
∫

Ω

|∇u|p−2∇u∇v −
∫

Ω

m(x)|u|p−2uv

Using Hölder’s inequality, we obtain

|(Au, v)| ≤
( ∫

Ω

|∇u|p
) p−1

p
( ∫

Ω

|∇v|p
) 1

p

+
( ∫

Ω

m(x)|u|p
) p−1

p
( ∫

Ω

m(x)|v|p
) 1

p

≤ ‖u‖p−1
1,p ‖v‖1,p

To prove that A is continuous, let us assume that un → u in W 1,p
0 (Ω). Then

‖un − u‖1,p → 0 So that

‖∇un −∇u‖p → 0

Applying Dominated convergence theorem, we obtain

‖|∇un|p−2∇un − |∇u|p−2∇u‖p → 0

hence

‖Aun −Au‖p ≤ ‖|∇un|p−2∇un − |∇u|p−2∇u‖p + ‖|un|p−2un − |u|p−2u‖p → 0

Operator A is strictly monotone:

(Au1 −Au2, u1 − u2) =
∫

Ω

|∇u1|p−2∇u1∇u1 +
∫

Ω

|∇u2|p−2∇u2∇u2

−
∫

Ω

|∇u1|p−2∇u1∇u2 −
∫

Ω

|∇u2|p−2∇u2∇u1

≥
∫

Ω

|∇u1|p +
∫

Ω

|∇u2|p −
( ∫

Ω

|∇u1|p
)p−1/p( ∫

Ω

|∇u2|p
)1/p

−
( ∫

Ω

|∇u2|p
)p−1/p( ∫

Ω

|∇u1|p
)1/p

= ‖u1‖p
p + ‖u2‖p

p − ‖u1‖p−1
p ‖u2‖p − ‖u2‖p−1

p ‖u1‖p

=
(
‖u1‖p−1

1,p − ‖u2‖p−1
1,p

)(
‖u1‖1,p − ‖u2‖1,p

)
> 0 .

Also, A is a coercive operator, since from (2.3), we have

(Au, u) =
∫

Ω

|∇u|p −
∫

Ω

m|u|p

≥
∫

Ω

|∇u|p − 1
λp(m)

∫
Ω

|∇u|p

=
(
1− 1

λp(m)

) ∫
Ω

|∇u|p .

Then
(Au, u)
‖u‖p

= ‖u‖p−1
1,p →∞ as ‖u‖1,p →∞

which proves the existence of a weak solution for (2.1).
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3. Nonlinear systems on bounded domains

In this section, we consider the system

−∆pu = a(x)|u|p−2u− b(x)|u|α|v|βv + f(x), in Ω

−∆qv = d(x)|v|q−2v − c(x)|v|β |u|αu + g(x), in Ω
u = v = 0, on ∂Ω

(3.1)

where Ω is a bounded domain of RN , 1
p + 1

p′ = 1, 1
q + 1

q′ = 1, α + β + 2 < N and
a(x), b(x), c(x), d(x) are positive functions in L∞(Ω).

Theorem 3.1. For (f, g) ∈ Lp(Ω) × Lq(Ω), there exists a weak solution (u, v) ∈
W 1,p

0 (Ω)×W 1,q
0 (Ω) for system (3.1) if the following condition is satisfied:

λp(a) > 1, and λq(d) > 1 . (3.2)

Proof. We transform the weak formulation of the system (3.1) to the operator form

A(u, v)−B(u, v) = F

where, A,B and F are operators defined on W 1,p
0 (Ω)×W 1,q

0 (Ω) by

(A(u, v), (Φ1,Φ2)) =
∫

Ω

|∇u|p−2∇u∇Φ1 +
∫

Ω

|∇v|q−2∇v∇Φ2,

(B(u, v), (Φ1,Φ2)) =
∫

Ω

a(x)|u|p−2uΦ1 +
∫

Ω

d(x)|v|q−2vΦ2

−
∫

Ω

b(x)|u|α|v|βvΦ1 −
∫

Ω

c(x)|v|β |u|αuΦ2

and

(F,Φ) = ((f1, f2), (Φ1,Φ2)) =
∫

Ω

f1Φ1 +
∫

Ω

f2Φ2

We can write the operator A(u, v) as the sum of the two operators J2(v), J1(u),
where

(J2(v), (Φ2)) =
∫

Ω

|∇v|q−2∇v∇Φ2 and (J1(u), (Φ1)) =
∫

Ω

|∇u|p−2∇u∇Φ1 .

Operators J1 and J2 are bounded, continuous, and strictly monotone; so their sum,
the operator A, will be the same. For the operator B(u, v),

B(u, v) : W 1,p
0 (Ω)×W 1,q

0 (Ω) → Lp(Ω)× Lq(Ω) ⊂ W−1,p′

0 (Ω)×W−1,q′

0 (Ω),

using Dominated convergence theorem and compact imbedding property [1] for the
space W 1,p

0 (Ω) inside the space Lp(Ω) and the space W 1,q
0 (Ω) inside Lq(Ω), when Ω

is a bounded domain of RN , we can prove that it is a strongly continuous operator.
To prove that let us assume that vn →w v in W 1,q

0 (Ω) and un
w→ u in W 1,p

0 (Ω). Then
(un, vn) → (u, v) in Lp(Ω)×Lq(Ω). Also, (∇un,∇vn) → (∇u,∇v) in Lp(Ω)×Lq(Ω).
By the Dominated Convergence Theorem, we have:

a(x)|un|p−2un → a(x)|u|p−2u in Lp(Ω)

d(x)|vn|q−2vn → d(x)|v|q−2v in Lq(Ω)

−b(x)|un|α|vn|βvn → −b(x)|u|α|v|βv in Lp(Ω)

−c(x)|vn|β |un|αun → −c(x)|v|β |u|αu in Lq(Ω) .
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Since

(B(un, vn)−B(u, v), (w1, w2))

=
∫

Ω

a(x)(|un|p−2un − |u|p−2u)w1 +
∫

Ω

d(x)(|vn|q−2vn − |v|q−2v)w2

−
∫

b(x)(|un|α|vn|βvn − |u|α|v|βv)w1 −
∫

Ω

c(x)(|vn|β |un|αun − |v|β |u|αu)w2,

it follows that

‖B(un, vn)−B(u, v)‖
≤ ‖a(x)(|un|p−2un − |u|p−2u)‖p + ‖d(x)(|vn|q−2vn − |v|q−2v)‖q

+ ‖b(x)(|un|α|vn|β+1 − |u|α|v|β+1)‖p + ‖c(x)(|un|α+1|vn|β − |u|α+1|v|β)‖q → 0 .

This proves that −B(u, v) is a strongly continuous operator. So A(u, v) − B(u, v)
will be an operator satisfying the Mo-condition. Now, it remains to prove that
A(u, v)−B(u, v) is a coercive operator:

|(A(u, v)−B(u, v), (u, v))|

=
∫

Ω

|∇u|p +
∫
|∇v|q −

∫
Ω

a(x)|u|p −
∫

d(x)|v|q

+
∫

Ω

b(x)|u|α+1|v|β+1 +
∫

Ω

c(x)|u|α+1|v|β+1

≥
∫

Ω

|∇u|p +
∫

Ω

|∇v|q − 1
λp(a)

∫
Ω

|∇u|p − 1
λq(d)

∫
Ω

|∇v|q

=
(
1− 1

λp(a)

) ∫
Ω

|∇u|p +
(
1− 1

λq(d)

) ∫
Ω

|∇v|q

From (3.2), we deduce

(A(u, v)−B(u, v), (u, v)) ≥ c(‖u‖p
1,p + ‖v‖q

1,q) = c|(u, v)‖W 1,p
0 ×W 1,q

0

So that

〈A(u, v)−B(u, v), (u, v)〉 → ∞ as ‖(u, v)‖W 1,p
0 ×W 1,q

0
→∞ .

This proves the coercive condition and so, the existence of a weak solution for
system (3.1). �

4. Nonlinear systems defined on Rn

We consider the nonlinear system

−∆pu = a(x)|u|p−2u− b(x)|u|α|v|βv + f,

−∆qv = −c(x)|u|α|v|βu + d(x)|v|q−2v + g,

lim
|x|→∞

u = lim
|x|→∞

v = 0 u, v > 0
(4.1)

which is defined on RN . We assume that 1 ≤ 2N
N+1 < p, q < N and the coefficients

a(x), b(x), c(x), d(x) are smooth positive functions such that

a(x), d(x) ∈ Lp/N (Rn) ∩ L∞(Rn),
α + 1

p
+

β + 1
q

= 1, α + β + 2 < N,
(4.2)
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and
b(x) < (a(x))α+1/p(d(x))β+1/q

c(x) < (a(x))α+1/p(d(x))β+1/q
(4.3)

To prove our theorem, we need the following results which are studied in [12] and
that we recall briefly: Let us introduce the Sobolev space D1,p(RN ) defined as the
completion of C∞

0 (RN ) with respect to the norm

‖u‖D1,p =
( ∫

RN

|∇u|p
)1/p

.

It can be shown that

D1,p(RN ) =
{
u ∈ L

Np
N−p (RN ) : ∇u ∈ (Lp(RN ))N

}
and that there exists k > 0 such that for all u ∈ D1,p(RN ),

‖u‖LNp/(N−p) ≤ K‖u‖D1,p(RN ) . (4.4)

Clearly, the space D1,p(RN ) is a reflexive Banach space embedded continuously in
the space LNp/(N−p)(RN ).

Lemma 4.1. The eigenvalue problem

−∆pu = λa(x)|u|p−2u in RN

u(x) → 0 as |x| → ∞
(4.5)

admits a positive principal eigenvalue Λa(p) which is associated with a positive
eigenfunction φ ∈ D1,p(RN ); moreover Λa(p) is characterized by

Λa(p)
∫

RN

a(x)|u|p ≤
∫

RN

|∇u|p, ∀u ∈ D1,p(RN ) (4.6)

Theorem 4.2. For (f, g) ∈ L
Np

N(p−1)+p (RN ) × L
Nq

N(q−1)+q (RN ), there exists a weak
solution (u, v) ∈ D1,p(RN )×D1,q(RN ) for system (4.1) if the following conditions
are satisfied:

Λp(a) > 1, and Λq(d) > 1 . (4.7)

Proof. By transforming the weak formulation for the system to the operator formu-
lation, we will get the bounded operators A,B, F on the space D1,p(RN )×D1,q(RN )
which take the same previous definitions in Theorem 3.1. To distinguish that: let
us assume that (Φ1,Φ2) in D1,p(RN )×D1,q(RN ), then applying Hölder inequality,
we get

|(A(u, v), (Φ1,Φ2))|

≤
∫

RN

|∇u|p−1|∇Φ1|+
∫

RN

|∇v|q−1|∇Φ2|

≤
( ∫

RN

|∇u|p
) p−1

p
( ∫

RN

|∇Φ1|p
) 1

p

+
( ∫

RN

|∇v|q
) q−1

q
( ∫

RN

|∇Φ2|q
) 1

q

= ‖u‖p−1
D1,p‖Φ1‖D1,p + ‖v‖q−1

D1,q‖Φ2‖D1,q

≤ (‖u‖p−1
D1,p + ‖v‖q−1

D1,q )(‖Φ1‖D1,p + ‖Φ2‖D1,q )

=
(
‖u‖p−1

D1,p + ‖v‖q−1
D1,q

)
‖(Φ1,Φ2)‖D1,p×D1,q
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For the operator B(u, v), we have

|(B(u, v), (Φ1,Φ2))|

≤
( ∫

(a(x))
N
p

) p
N

( ∫
RN

|u(x)|
Np

N−p

) (p−1)(N−p)
Np

( ∫
RN

|Φ1|
Np

N−p

)N−p
Np

+
( ∫

RN

(d(x))
N
q

) q
N

( ∫
RN

|v|
Nq

N−q

) (q−1)(N−q)
Nq

( ∫
RN

|Φ2|
Nq

N−q

)N−q
Nq

+
( ∫

RN

(b(x))
N

α+β+2

)α+β+2
N

( ∫
RN

|u|
Np

N−p

)α(N−p)
Np

( ∫
RN

|v|
Nq

N−q

) (β+1)(N−q)
Nq

×
( ∫

RN

|Φ1|
Np

N−p

)N−p
Np

+
( ∫

RN

(c(x))
N

α+β+2

)α+β+2
N

( ∫
RN

|u|
Np

N−p

) (α+1)(N−p)
Np

×
( ∫

RN

|v|
Nq

N−q

) β(N−q)
Nq

( ∫
RN

|Φ2|
Np

N−p

)N−q
Nq

≤ k1‖u‖p−1
D1,p‖Φ1‖D1,p + k2‖v‖q−1

D1,q‖Φ2‖D1,q

+ k3‖u‖α
D1,p‖v‖β+1

D1,p‖Φ1‖D1,p + k4‖u‖α+1
D1,p‖v‖β

D1,q‖Φ2‖D1,q

≤
(
k1‖u‖p−1

D1,p + k2‖v‖q−1
D1,q + k3‖u‖α

D1,p‖v‖β+1
D1,p + k4‖u‖α+1

D1,p‖v‖β
D1,q

)
× ‖(Φ1,Φ2)‖D1,p×D1,q ,

this proves the boundedness of the operator B(u, v). For F , we have

|(F,Φ)| = |((f1, f2), (Φ1,Φ2))|

≤
( ∫

RN

(|f1|)
Np

N(p−1)+p

)N(p−1)+p
Np

( ∫
RN

|Φ1|
Np

N−p
)N−p

Np

+
( ∫

RN

(|f2|)
Nq

N(q−1)+q

)N(q−1)+q
Nq

( ∫
RN

|Φ2|
Nq

N−q

)N−q
Nq

≤
(
‖f1‖ Np

N(p−1)+p
+ ‖f2‖ Nq

N(q−1)+q

)
‖(Φ1,Φ2)‖D1,p×D1,q .

Now, the operator A(u, v) = J1(u) + J2(v) is continuous and strictly monotone on
D1,p ×D1,q, since

(J1(u1)− J1(u2), u1 − u2) ≥ (‖u1‖p−1
D1,p − ‖u2‖p−1

D1,p)(‖u1‖D1,p − ‖u2‖D1,q ) > 0,

(J2(u1)− J2(u2), u1 − u2) ≥ (‖u1‖q−1
D1,q − ‖u2‖q−1

D1,q )(‖u1‖D1,q − ‖u2‖D1,q ) > 0

For the operator B(u, v), we can prove that it is a strongly continuous operator by
using Dominated convergence theorem and continuous imbedding property for the
space D1,p(RN )×D1,q(RN ) into L

Np
N−p (RN )×L

Nq
N−q (RN ): let us assume that vn →w v

in D1,q(RN ) and un →w u in D1,p(RN ). Then (un, vn) → (u, v) in Lp(RN )×Lq(RN )
and (∇un,∇vn) → (∇u,∇v) in Lp(RN ) × Lq(RN ). Now, the sequence (un) is
bounded in D1,p(RN ), then it is containing a subsequence again denoted by (un)
converges strongly to u in L

Np
N−p (Br0) for any bounded ball Br0 = {x ∈ RN : ‖x‖ ≤

r0} . Similarly (vn) converges strongly to v in L
Nq

N−q (Br0). Since un, u ∈ L
Np

N−p (Br0)
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and vn, v ∈ L
Nq

N−q (Br0). Then using the dominated convergence theorem, we have

‖a(x)(|un|p−2un − |u|p−2u)‖ Np
N(p−1)+p

→ 0, (4.8)

‖d(x)(|vn|q−2vn − |v|q−2v)‖ Nq
N(q−1)+q

→ 0, (4.9)

‖b(x)(|un|α−1|vn|β+1un − |u|α−1|v|β+1u)‖ Np
N(p−1)+p

→ 0, (4.10)

‖c(x)(|un|α+1|vn|β−1un − |u|α+1|v|β−1u)‖ Nq
N(q−1)+q

→ 0 . (4.11)

Then

‖B(un, vn)−B(u, v)‖D1,p(Br0 )×D1,q(Br0 )

≤ ‖a(x)(|un|p−2un − |u|p−2u)‖ Np
N(p−1+p)

+ ‖d(x)(|vn|q−2vn − |v|q−2v)‖ Nq
N(q−1+q)

+ ‖b(x)(|un|α|vn|β+1un − |u|α|v|β+1v)‖ Np
N(p−1)+p

+ ‖c(x)(|un|α+1|vn|β−1un − |u|α+1|v|β−1v)‖ Nq
N(q−1)+q

→ 0 .

It remains to study the norm

‖B(un, vn)−B(u, v)‖D1,p(RN−Br0 )×D1,q(RN−Br0 )

It is sufficient to study the norms in the inequalities (4.8)–(4.11) and try to make
it as small as possible. We will study the norm in (4.8) only because the others will
be the same.

Since, (un) converges weakly in the space D1,p(RN ), using Sobelev inequal-
ity, (un) will be bounded in the space L

Np
N−p (RN ), so |un|p−1 will be bounded in

L
Np

N(p−1)+p (RN−Br0) and (|un|p−2un−|u|p−2u) is bounded in L
Np

N(p−1)+p (RN−Br0).
Since, a(x) ∈ L

N
p (RN ), we can make the integral

∫
(RN−Br0 )

|a(x)|
N
p as small as

possible by choosing r0 big as possible, this means that there exists r0 > 0 such
that

‖a(x)(|un|p−2un − |u|p−2u)‖
L

Np
N(p−1)+p (RN−Br0 )

<
ε

4
.M =

ε

4

for all n ≥ N0, r ≥ r0. Since

‖a(x)(|un|p−2un − |u|p−2u)‖
L

Np
N(p−1)+p (RN )

= ‖a(x)(|un|p−2un − |u|p−2u)‖
L

Np
N(p−1)+p (Br0 )

+ ‖a(x)(|un|p−2un − |u|p−2u)‖
L

Np
N(p−1)+p (RN−Br0 )

,

it follows that

‖a(x)(|un|p−2un − |u|p−2u)‖
L

Np
N(p−1)+p (RN )

→ 0 .

By repeating the previous steps on the remaining terms in

‖B(un, vn)−B(u, v)‖D1,p(RN )×D1,q(RN ),

we can prove that this norm tending strongly to zero and then the operator B(u, v)
is strongly continuous. It remains to justify that the operator A(u, v) − B(u, v) is
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a coercive operator. From (4.3), (4.6) and (4.7), we obtain

(A(u, v)−B(u, v), (u, v))

=
∫

RN

|∇u|p +
∫

RN

|∇v|q −
∫

RN

a(x)|u|p −
∫

RN

d(x)|v|q

+
∫

b(x)|u|α+1|v|β+1 +
∫

b(x)|u|α+1|v|β+1

≥
∫

RN

|∇u|p +
∫

RN

|∇v|q − 1
Λa(p)

∫
RN

|∇u|p − 1
Λd(q)

∫
RN

|∇v|q

=
(
1− 1

Λa(p)

) ∫
RN

|∇u|p +
(
1− 1

Λd(q)

) ∫
RN

|∇v|q

> c
(
‖u‖p

D1,p + ‖v‖q
D1,q

)
.

So that

(A(u, v)−B(u, v), (u, v)) →∞ as ‖(u, v)‖D1.p×D1,q →∞
The coercive condition for the operator completes the proof of the existence of a
weak solution for system (4.1). �
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