Electronic Journal of Differential Equations, Vol. 2006(2006), No. 71, pp. 1-17. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ENERGY QUANTIZATION FOR YAMABE'S PROBLEM IN CONFORMAL DIMENSION

FETHI MAHMOUDI

$$
\begin{aligned}
& \text { ABSTRACT. Rivière }[11] \text { proved an energy quantization for Yang-Mills fields } \\
& \text { defined on } n \text {-dimensional Riemannian manifolds, when } n \text { is larger than the } \\
& \text { critical dimension } 4 \text {. More precisely, he proved that the defect measure of } \\
& \text { a weakly converging sequence of Yang-Mills fields is quantized, provided the } \\
& W^{2,1} \text { norm of their curvature is uniformly bounded. In the present paper, we } \\
& \text { prove a similar quantization phenomenon for the nonlinear elliptic equation } \\
& \qquad-\Delta u=u|u|^{4 /(n-2)}
\end{aligned}
$$

in a subset Ω of \mathbb{R}^{n}.

1. Introduction

Let Ω be an open subset of \mathbb{R}^{n} with $n \geq 3$. We consider the equation

$$
\begin{equation*}
-\Delta u=u|u|^{4 /(n-2)} \quad \text { in } \quad \Omega \tag{1.1}
\end{equation*}
$$

We will say that u is a weak solution of 1.1 in Ω, if, for all $\Phi \in C^{\infty}(\Omega)$ with compact support in Ω, we have

$$
\begin{equation*}
-\int_{\Omega} \Delta \Phi(x) u(x) d x=\int_{\Omega} \Phi(x) u(x)|u(x)|^{4 /(n-2)} d x \tag{1.2}
\end{equation*}
$$

If in addition u satisfies

$$
\begin{equation*}
\int_{\Omega}\left[\frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} \frac{\partial \Phi^{j}}{\partial x_{i}}-\frac{1}{2}|\nabla u|^{2} \frac{\partial \Phi^{i}}{\partial x_{i}}+\frac{n-2}{2 n}|u|^{2 n /(n-2)} \frac{\partial \Phi^{i}}{\partial x_{i}}\right] d x=0 \tag{1.3}
\end{equation*}
$$

for any $\Phi=\left(\Phi^{1}, \Phi^{2} \ldots, \Phi^{n}\right) \in C^{\infty}(\Omega)$ with compact support in Ω, we say that u is stationary. In other words, a weak solution u in $\mathbf{H}^{1}(\Omega) \cap \mathbf{L}^{2 n /(n-2)}(\Omega)$ of 1.1. is stationary if the functional E defined by

$$
E(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}+\frac{n-2}{2 n} \int_{\Omega}|u|^{2 n /(n-2)}
$$

is stationary with respect to domain variations, i.e.

$$
\left.\frac{d}{d t}\left(E\left(u_{t}\right)\right)\right|_{t=0}=0
$$

where $u_{t}(x)=u(x+t \Phi)$. It is easy to verify that a smooth solution is stationary.

[^0]In this paper we prove a monotonicity formula for stationary weak solution u in $\mathbf{H}^{1}(\Omega) \cap \mathbf{L}^{2 n /(n-2)}(\Omega)$ of 1.1) by a similar idea as in 6]. More precisely we have the following result.
Lemma 1.1. Suppose that $u \in \mathbf{L}^{2 n /(n-2)}(\Omega) \cap \mathbf{H}^{1}(\Omega)$ is a stationary weak solution of 1.1. Consider the function

$$
E_{u}(x, r)=\int_{B(x, r)}|u|^{2 n /(n-2)} d y+\frac{d}{d r} \int_{\partial B(x, r)} u^{2} d s+r^{-1} \int_{B(x, r)} u^{2} d s
$$

Then $r \mapsto E_{u}(x, r)$ is positive, nondecreasing and continuous.
This monotonicity formula together with ideas which go back to the work of Schoen [12], allowed to prove the following result.

Theorem 1.2. There exists $\varepsilon>0$ and $r_{0}>0$ depend only on n such that, for any smooth solution $u \in \boldsymbol{H}^{1}(\Omega) \cap \boldsymbol{L}^{2 n /(n-2)}(\Omega)$ of (1.1), we have: For any $x_{0} \in \Omega$, if

$$
\int_{B\left(x_{0}, r_{0}\right)}|\nabla u|^{2}+|u|^{2 n /(n-2)} \leq \varepsilon
$$

then
where $B_{\frac{r}{2}}\left(x_{0}\right)$ is the ball centered at x_{0} with radius $\frac{r}{2}$, and $C(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Zongming Guo and Jiay Li [5] studied sequences of smooth solutions of 1.1) having uniformly bounded energy, they proved the following result.
Theorem 1.3. Let u_{i} be a sequence of smooth solutions of (1.1) such that

$$
\left\|u_{i}\right\|_{H^{1}(\Omega)}+\left\|u_{i}\right\|_{L^{2 n /(n-2)}(\Omega)}
$$

is bounded. Let u_{∞} be the weak limit of u_{i} in $\boldsymbol{H}^{1}(\Omega) \cap \boldsymbol{L}^{2 n /(n-2)}(\Omega)$. Then u_{∞} is smooth and satisfies equation (1.1) outside a closed singular subset Σ of Ω. Moreover, there exists $r_{0}>0$ and $\varepsilon_{0}>0$ such that

$$
\Sigma=\cap_{0<r<r_{0}}\left\{x \in \Omega: \liminf _{i \rightarrow \infty} E_{u_{i}}(x, r) \geq \varepsilon_{0}\right\}
$$

We define the sequence of Radon measures

$$
\eta_{i}:=\left(\frac{1}{2}\left|\nabla u_{i}\right|^{2}+\frac{n-2}{2 n}\left|u_{i}\right|^{2 n /(n-2)}\right) d x
$$

Assumption that the sequence $\left(\left\|\nabla u_{i}\right\|_{\mathbf{H}^{1}(\Omega)}+\left\|u_{i}\right\|_{\mathbf{L}^{2 n /(n-2)}(\Omega)}\right)_{i}$ is bounded, and up to a subsequences, we can assume that $\eta_{i} \rightharpoonup \eta$ in the sense of measures as $i \rightarrow \infty$. Namely, for any continuous function ϕ with compact support in Ω

$$
\lim _{i \rightarrow \infty} \int_{\Omega} \phi d \eta_{i}=\int_{\Omega} \phi d \eta
$$

Fatou's Lemma then implies that we can decompose

$$
\eta=\left(\frac{1}{2}|\nabla u|^{2}+\frac{n-2}{2 n}|u|^{\frac{2 n}{n-2}}\right) d x+\nu
$$

where ν is a nonnegative Radon measure. Moreover, we prove that ν satisfies the following lemma.
Lemma 1.4. Let $\delta>0$ such that $B_{\delta} \subset \Omega$. Then we have
(i) $\Sigma \subset \operatorname{spt}(\nu)$
(ii) There exists a measurable, upper-semi-continuous function Θ such that

$$
\nu(x)=\Theta(x) \mathcal{H}^{0}\lfloor\Sigma, \quad \text { for } x \in \Sigma
$$

Moreover, there exists some constants c and $C>0$ (only depending on n and Ω) such that

$$
c \varepsilon_{0}<\Theta(x)<C \quad \mathcal{H}^{0}-\text { a.e. in } \Sigma
$$

where $H^{0}\lfloor\Sigma$ is the restriction to Σ of the Hausdorff measure and Θ is a measurable function on Σ.

The main question we would like to address in the present paper concerns the multiplicity Θ of the defect measure which has been defined above. More precisely, we have proved the following theorem.

Theorem 1.5. Let ν be the defect measure of the sequence $\left(\left|\nabla u_{i}\right|^{2}+\left|u_{i}\right|^{2 n /(n-2)}\right) d x$ defined above. Then ν is quantized. That is, for a.e $x \in \Sigma$,

$$
\begin{equation*}
\Theta(x)=\sum_{j=1}^{j=N_{x}}\left\|\nabla v_{x, j}\right\|_{L^{2}(\Omega)}^{2}+\left\|v_{x, j}\right\|_{L^{2 n /(n-2)}(\Omega)}^{2 n /(n-2)} \tag{1.4}
\end{equation*}
$$

where N_{x} is a positive integer and where the functions $v_{x, j}$ are solutions of $\Delta v+$ $v^{\frac{n+2}{n-2}}=0$ which are defined on \mathbb{R}^{n}, issued from $\left(u_{i^{\prime}}\right)$ and that concentrate at x as $i \rightarrow \infty$.

The sentence "issued from $\left(u_{i^{\prime}}\right)$ and that concentrate at x as $i \rightarrow \infty$ " means that there are sequences of conformal maps ψ_{j}^{i}, a finite family of balls $\left(B_{i, j}^{l}\right)_{l}$ such that the pulled back function

$$
\tilde{u}_{i, j}=\left(\psi_{j}^{i}\right)^{*} u_{i^{\prime}}
$$

satisfies

$$
\begin{aligned}
\tilde{u}_{i, j} & \left.\rightarrow v_{j} \quad \text { strongly in } \quad \mathbf{L}^{2}\left(\mathbb{R}^{n} \backslash \cup_{l} B_{i, j}^{l}\right)\right) \\
\nabla \tilde{u}_{i, j} & \left.\rightarrow \nabla v_{j} \quad \text { strongly in } \quad \mathbf{L}^{2}\left(\mathbb{R}^{n} \backslash \cup_{l} B_{i, j}^{l}\right)\right)
\end{aligned}
$$

In the context of Yang-Mills fields in dimension $n \geq 4$ a similar concentration result has been proven by Rivière [11. More precisely, Rivière has shown that, if $\left(A_{i}\right)_{i}$ is a sequence of Yang-Mills connections such that $\left(\left\|\nabla_{A} \nabla_{A} F_{A}\right\|_{\mathbf{L}^{1}\left(B_{1}^{n}\right)}\right)_{i}$ is bounded, then the corresponding defect measure $\nu=\Theta \mathcal{H}^{n-4}\lfloor\Sigma$ of a sequence of smooth Yang-Mills connections is quantized.

The proof of Theorem 1.5 uses technics introduced by Lin and Rivière in their study of Ginzburg-Landau vortices [10] and also the technics developed by Rivière in [5]. These technics use as an essential tool the Lorentz spaces, more specifically the $\mathbf{L}^{2, \infty}-\mathbf{L}^{2,1}$ duality [14].

This paper is organized in the following way: In Section 2 we establish first a monotonicity formula for smooth solutions of problem (1.1) which allows us to prove an ε-regularity Theorem. Then, we prove Theorem 1.2 and Lemma 1.4 While Section 3 is devoted to the proof of our main result, Theorem 1.5.

2. A monotonicity Inequality

In this section, we establish a monotonicity formula for smooth solutions of problem 1.1. Using Pohozaev identity: Multiplying 1.1) by $x_{i} \frac{\partial u}{\partial x_{i}}$ (summation over i is understood) and integrating over $\mathrm{B}(\mathrm{x}, \mathrm{r})$, the ball centered at x of radius r, we obtain

$$
-\int_{B(x, r)} x_{i} \frac{\partial u}{\partial x_{i}} \Delta u d y=-\int_{B(x, r)} x_{i} \frac{\partial u}{\partial x_{i}} u|u|^{4 /(n-2)} d y
$$

By Green formula, we get

$$
\begin{align*}
& \frac{n-2}{2} \int_{B(x, r)}|u|^{2 n /(n-2)} d y-\frac{n-2}{2} \int_{B(x, r)}|\nabla u|^{2} d y \\
& -\frac{n-2}{2 n} \int_{\partial B(x, r)}|u|^{2 n /(n-2)} d s+\frac{1}{2} r \int_{\partial B(x, r)}|\nabla u|^{2} d s \tag{2.1}\\
& =r \int_{\partial B(x, r)}\left|\frac{\partial u}{\partial r}\right|^{2} d y
\end{align*}
$$

On the other hand, multiplying (1.1) by u and integrating over $B(x, r)$, we get

$$
\begin{equation*}
\int_{B(x, r)}|\nabla u|^{2} d y-\int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s=\int_{B(x, r)}|u|^{2 n /(n-2)} d y \tag{2.2}
\end{equation*}
$$

Deriving 2.2 with respect to r, we obtain

$$
\begin{equation*}
\int_{\partial B(x, r)}|\nabla u|^{2} d y-\frac{d}{d r} \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s=\int_{\partial B(x, r)}|u|^{2 n /(n-2)} d y \tag{2.3}
\end{equation*}
$$

Combining (2.1), (2.2) and (2.3), we get

$$
\begin{aligned}
& -\frac{r}{n} \int_{\partial B(x, r)}|u|^{2 n /(n-2)} d s \\
& =\frac{1}{2} r \frac{d}{d r} \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s-r \int_{\partial B(x, r)}\left|\frac{\partial u}{\partial r}\right|^{2} d y+r^{-1} u \frac{\partial u}{\partial r} d s
\end{aligned}
$$

Moreover, we have that

$$
\begin{aligned}
\frac{d^{2}}{d r^{2}}\left(\int_{\partial B(x, r)} u^{2} d s\right)= & \frac{d}{d r}\left(2 \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s+\frac{n-1}{r} \int_{\partial B(x, r)} u^{2} d s\right) \\
= & (n-1)\left[\frac{2}{r} \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s+\left(\frac{n-1}{r^{2}}-\frac{1}{r^{2}}\right) \int_{\partial B(x, r)} u^{2} d s\right] \\
& +2 \frac{d}{d r} \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s \\
= & \frac{n-1}{r}\left[2 \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s+\frac{n-2}{r} \int_{\partial B(x, r)} u^{2} d s\right] \\
& +2 \frac{d}{d r} \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{1}{n} \frac{d}{d r} \int_{B(x, r)}|u|^{2 n /(n-2)} d y+\frac{1}{n} \frac{d^{2}}{d r^{2}} \int_{\partial B(x, r)} u^{2} d s \\
& =\int_{\partial B(x, r)}\left(\left|\frac{\partial u}{\partial r}\right|^{2}+\frac{2 n-3}{2 r} u \frac{\partial u}{\partial r}+\frac{(n-1)(n-2)}{4} r^{-2} u^{2}\right) d s
\end{aligned}
$$

Moreover

$$
\begin{aligned}
& \frac{d}{d r}\left(\frac{1}{r} \int_{\partial B(x, r)} u^{2} d s\right) \\
& =-\frac{1}{r^{2}} \int_{\partial B(x, r)} u^{2} d s+\frac{2}{r} \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s+\frac{n-1}{r^{2}} \int_{\partial B(x, r)} u^{2} d s \\
& =\frac{n-2}{r^{2}} \int_{\partial B(x, r)} u^{2} d s+\frac{2}{r} \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s
\end{aligned}
$$

We obtain

$$
\begin{aligned}
& \frac{d}{d r}\left[\frac{1}{n} \int_{B(x, r)}|u|^{2 n /(n-2)} d y+\frac{1}{n} \frac{d}{d r} \int_{\partial B(x, r)} u^{2} d s-\frac{1}{n} \frac{1}{r} \int_{\partial B(x, r)} u^{2} d s\right] \\
& =\int_{\partial B(x, r)}\left(\left|\frac{\partial u}{\partial r}\right|^{2}+(n-2) r^{-1} u\left|\frac{\partial u}{\partial r}\right|+\frac{(n-2)^{2}}{4} r^{-2} u^{2}\right) d s \\
& =\int_{\partial B(x, r)}\left(\frac{\partial u}{\partial r}+\frac{n-2}{2} r^{-1} u\right)^{2} d s \geq 0
\end{aligned}
$$

We conclude that

$$
\begin{equation*}
E_{u}(x, r)=\frac{1}{n} \int_{B(x, r)}|u|^{2 n /(n-2)} d y+\frac{1}{n} \frac{d}{d r} \int_{B(x, r)} u^{2} d s+\frac{1}{n} r^{-1} \int_{B(x, r)} u^{2} d s \tag{2.4}
\end{equation*}
$$

is a nondecreasing function of r. Using the fact that

$$
\int_{B(x, r)}|u|^{2 n /(n-2)} d y-\int_{\partial B(x, r)}|\nabla u|^{2} d y=-\int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s
$$

one can easily get

$$
\begin{aligned}
E_{u}(x, r)= & \frac{1}{n} \int_{B(x, r)}|u|^{2 n /(n-2)} d y+\frac{1}{4} \frac{d}{d r} \int_{\partial B(x, r)} u^{2} d s-\frac{1}{4} r^{-1} \int_{\partial B(x, r)} u^{2} d s \\
= & \frac{\frac{n}{2}}{n} \int_{B(x, r)}|u|^{2 n /(n-2)} d y+\frac{1-\frac{n}{2}}{n} \int_{B(x, r)}|u|^{2 n /(n-2)} d y \\
& +\frac{1}{4} \frac{d}{d r} \int_{\partial B(x, r)} u^{2} d s-\frac{1}{4} r^{-1} \int_{\partial B(x, r)} u^{2} d s \\
= & \frac{1}{2} \int_{B(x, r)}|\nabla u|^{2} d y-\frac{1}{2} \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s-\frac{n-2}{2 n} \int_{B(x, r)}|u|^{2 n /(n-2)} d y \\
& +\frac{1}{4} \frac{d}{d r} \int_{\partial B(x, r)} u^{2} d s-\frac{1}{4} r^{-1} \int_{\partial B(x, r)} u^{2} d s \\
= & \frac{1}{2} \int_{B(x, r)}\left(|\nabla u|^{2}-\frac{n-2}{2 n}|u|^{2 n /(n-2)}\right) d y+\frac{1}{4} \frac{d}{d r} \int_{\partial B(x, r)} u^{2} d s \\
& -\frac{1}{4} r^{-1} \int_{\partial B(x, r)} u^{2} d s-\frac{1}{2} \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s .
\end{aligned}
$$

We obtain an equivalent formulation of $E_{u}(x, r)$

$$
\begin{equation*}
E_{u}(x, r)=\frac{1}{2} \int_{B(x, r)}\left(|\nabla u|^{2}-\frac{n-2}{2 n}|u|^{2 n /(n-2)} d y+\frac{n-2}{4} r^{-1} \int_{\partial B(x, r)} u^{2} d s\right. \tag{2.5}
\end{equation*}
$$

Moreover, using the fact that

$$
\frac{d}{d r} \int_{\partial B(x, r)} u^{2} d s=2 \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s+\frac{n-1}{r} \int_{\partial B(x, r)} u^{2}
$$

we obtain

$$
\begin{aligned}
\frac{1}{r} \int_{\partial B(x, r)} u^{2} d s= & \frac{1}{n-1} \frac{d}{d r} \int_{\partial B(x, r)} u^{2} d s-\frac{2}{n-1} \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s \\
= & \frac{1}{n-1} \frac{d}{d r} \int_{\partial B(x, r)} u^{2} d s \\
& +\frac{2}{n-1}\left[\int_{B(x, r)}|u|^{2 n /(n-2)} d y-\int_{B(x, r)}|\nabla u|^{2} d y\right]
\end{aligned}
$$

Then $E_{u}(x, r)$ can also be written

$$
\begin{aligned}
& E_{u}(x, r) \\
& =\frac{1}{2(n-1)} \int_{B(x, r)}\left(|\nabla u|^{2}+\frac{n-2}{n}|u|^{2 n /(n-2)}\right) d y+\frac{n-2}{4(n-1)} \frac{d}{d r} \int_{\partial B(x, r)} u^{2} d s .
\end{aligned}
$$

Proof of Lemma 1.1. To prove that $(x, r) \mapsto E_{u}(x, r)$ is continuous it suffices to prove that

$$
(x, r) \mapsto \int_{\partial B(x, r)} u^{2} d s
$$

is continuous with respect to x and r. We have

$$
\int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s=\int_{B(x, r)}|\nabla u|^{2}-\int_{B(x, r)}|u|^{2 n /(n-2)} d y
$$

Thus $(x, r) \mapsto \int_{\partial B(x, r)} u \frac{\partial u}{\partial r}$ is continuous, and this allows to get the conclusion.
Now, to prove that E_{u} is positive, we proceed by contradiction. If the result is not true, then there would exists $x \in \Omega$ and $R>0$ such that $E_{u}(x, R)<0$. For almost every y in some neighborhood of x, we have

$$
\lim _{r \rightarrow 0} \int_{\partial B(x, r)} u \frac{\partial u}{\partial r} d s=0
$$

integrating $E_{u}(x, r)$ over the interval $[0, R]$ and using the fact that $\mathrm{r} \mapsto E_{u}(x, r)$ is increasing, we obtain

$$
\begin{aligned}
\int_{0}^{R} E_{u}(y, r) d r= & \frac{1}{2(n-1)} \int_{0}^{R} d r \int_{B(y, r)}\left(|\nabla u|^{2}+\frac{n-2}{2 n}|u|^{2 n /(n-2)}\right) d x \\
& +\frac{n-2}{4(n-1)} \int_{\partial B(y, R)} u^{2} d s \\
\leq & R E_{u}(y, R)<0
\end{aligned}
$$

which is not possible. This proves Lemma 1.1.

Lemma 2.1. There exist $r_{0}>0$ and some constant $c>0$, depending only on n, such that

$$
\int_{B(x, r)}\left(|\nabla u|^{2}+|u|^{2 n /(n-2)}\right) d y<c E_{u}(x, r)
$$

for any $r<r_{0} / 2$.
Proof. Using the fact that $(x, r) \mapsto E_{u}(x, r)$ is nondecreasing, we have

$$
\begin{aligned}
r E_{u}(x, r) \geq & \int_{0}^{r} E_{u}(x, s) d s \\
= & \frac{1}{2 n-2} \int_{0}^{r} d s \int_{B(x, s)}\left(|\nabla u|^{2}+\frac{n-2}{n}|u|^{2 n /(n-2)}\right) d y \\
& +\frac{n-2}{4(n-1)} \int_{0}^{r} d s \int_{\partial B(x, s)} u^{2} d \sigma \\
\geq & \frac{1}{2(n-1)} \frac{n-2}{n} \int_{\frac{r}{2}}^{r} d s \int_{B(x, s)}\left(|\nabla u|^{2}+|u|^{2 n /(n-2)}\right) d y \\
\geq & C(n) \frac{r}{2} \int_{B\left(x, \frac{r}{2}\right)}\left(|\nabla u|^{2}+|u|^{2 n /(n-2)}\right) d y
\end{aligned}
$$

where $C(n)$ is a positive constant depending only on n. This gives the desired result.

As a consequence of Lemma 2.1. we have the following result.
Lemma 2.2. Assume that there exist x_{0} and $r_{0}>0$ such that $E_{u}\left(x_{0}, r_{0}\right) \leq \varepsilon$ then

$$
\int_{B(x, r)}\left(|\nabla u|^{2}+\frac{n-2}{n}|u|^{2 n /(n-2)}\right) d y \leq C \varepsilon \quad \forall \quad 0<r<2 r_{0}
$$

where C is a positive constant depending only on n.
Proof. Let x_{0} and r_{0} be such that $E_{u}\left(x_{0}, r_{0}\right) \leq \varepsilon$ and let $0<r<r_{0}$, then for all $x \in B\left(x_{0}, \frac{r}{2}\right)$ we have

$$
B\left(x, \frac{r}{2}\right) \subset B\left(x_{0}, r\right) \subset B\left(x_{0}, r_{0}\right)
$$

Thus

$$
\begin{aligned}
E_{u}\left(x_{0}, r_{0}\right) \geq & \frac{n-2}{2 n(n-1)} \int_{B\left(x, \frac{r}{2}\right)}|u|^{2 n /(n-2)} d y \\
& +\frac{1}{2(n-1)} \int_{B\left(x, \frac{r}{2}\right)}|\nabla u|^{2} d y+\frac{n-2}{4(n-1)} \frac{d}{d r} \int_{\partial B\left(x_{0}, r\right)} u^{2} d s \\
\geq & \frac{1}{2(n-1)} \int_{B\left(x, \frac{r}{2}\right)}\left(|u|^{2 n /(n-2)}+\left.\nabla u\right|^{2}\right) d y+\frac{n-2}{4(n-1)} \frac{d}{d r} \int_{\partial B\left(x_{0}, r\right)} u^{2} d s
\end{aligned}
$$

Integrating between 0 and r, we obtain

$$
\begin{aligned}
& r E_{u}\left(x_{0}, r_{0}\right) \\
& \geq \frac{1}{2(n-1)} \int_{0}^{r} d s \int_{B\left(x, \frac{s}{2}\right)}\left(|u|^{2 n /(n-2)}+\left.\nabla u\right|^{2}\right) d y+\frac{n-2}{4(n-1)} \int_{\partial B\left(x_{0}, r\right)} u^{2} d s \\
& \geq \frac{1}{2(n-1)} \int_{0}^{r} d s \int_{B\left(x, \frac{s}{2}\right)}\left(|\nabla u|^{2}+|u|^{2 n /(n-2)}\right) d y \\
& \geq \frac{1}{2(n-1)} \int_{\frac{r}{2}}^{r} d s \int_{B\left(x, \frac{s}{2}\right)}\left(|\nabla u|^{2}+|u|^{2 n /(n-2)}\right) d y \\
& \geq \frac{1}{2(n-1)} \frac{r}{2} \int_{B\left(x, \frac{r}{2}\right)}\left(|\nabla u|^{2}+|u|^{2 n /(n-2)}\right) d y
\end{aligned}
$$

Then

$$
E_{u}\left(x_{0}, r_{0}\right) \geq \frac{1}{4(n-1)} \int_{B\left(x, \frac{r}{2}\right)}\left(|\nabla u|^{2}+|u|^{2 n /(n-2)}\right) d y
$$

thus

$$
\int_{B(x, r)}\left(|\nabla u|^{2}+|u|^{2 n /(n-2)}\right) d y \leq C \varepsilon \quad \forall r<2 r_{0}
$$

This proves the desired result.
Proof of Theorem 1.2. Without loss of generality, we can assume that $x_{0}=0$ and we denote by $B_{r_{0}}$ the ball of radius r_{0} centered at $x_{0}=0$.

We use the idea of Schoen [12]. For $r<r_{0}$, we define

$$
F(y)=\left(\frac{r}{2}-|y|\right)^{(n-2) / 2} u(y)
$$

Clearly F is continuous over $B_{\frac{r}{2}}$, then there exist $y_{0} \in B_{\frac{r}{2}}$ such that

$$
F\left(y_{0}\right)=\max _{y \in B \frac{r}{2}}\left(\frac{r}{2}-|y|\right)^{(n-2) / 2} u(y)=\left(\frac{r}{2}-\left|y_{0}\right|\right)^{(n-2) / 2} u\left(y_{0}\right)
$$

Let $0<\sigma<\frac{r}{2}$, for all $y \in B_{\sigma}$, we have

$$
u(y) \leq \frac{\left(\frac{r}{2}-\left|y_{0}\right|\right)^{(n-2) / 2}}{\left(\frac{r}{2}-|y|\right)^{(n-2) / 2}} u\left(y_{0}\right)
$$

Then

$$
\sup _{y \in B_{\sigma}} u(y) \leq \frac{\left(\frac{r}{2}-\left|y_{0}\right|\right)^{(n-2) / 2}}{\left(\frac{r}{2}-|y|\right)^{(n-2) / 2}} \sup _{y \in B_{\sigma_{0}}} u(y)
$$

where $\sigma_{0}=\left|y_{0}\right|$. Let $y_{1} \in B_{\sigma_{0}}$ be such that

$$
u\left(y_{1}\right)=\sup _{y \in B_{\sigma_{0}}} u(y)
$$

We claim that

$$
u\left(y_{1}\right) \leq \frac{2^{(n-2) / 2}}{\left(\frac{r}{2}-\left|y_{0}\right|\right)^{(n-2) / 2}}
$$

Indeed, on the contrary case, we get

$$
\left(u\left(y_{1}\right)\right)^{-2 /(n-2)} \leq \frac{1}{2}\left(\frac{r}{2}-\left|y_{0}\right|\right)
$$

Let $\mu=\left(u\left(y_{1}\right)\right)^{-2 /(n-2)}$. We have

$$
B_{\mu}\left(y_{1}\right) \subset B_{\frac{\sigma_{0}+\frac{r}{2}}{2}}
$$

$\left(\left|z-y_{1}\right|<\mu\right.$ take $\left.|z|<\frac{\frac{r}{2}+\left|y_{0}\right|}{2}\right)$. Hence

$$
\sup _{y \in B_{\mu}\left(y_{1}\right)} u(y) \leq \frac{\left(\frac{r}{2}-\left|y_{0}\right|\right)^{(n-2) / 2}}{\left(\frac{\frac{r}{2}-\left|y_{0}\right|}{2}\right)^{(n-2) / 2}} u\left(y_{1}\right)=2^{(n-2) / 2} u\left(y_{1}\right)
$$

Let $v(x)=\mu^{(n-2) / 2} u\left(\mu x+y_{1}\right)$. Easy computations shows that v satisfies

$$
\begin{aligned}
\Delta v^{2 n /(n-2)} & =\frac{2 n}{n-2}\left[\frac{n+2}{n-2} v^{4 /(n-2)}|\nabla v|^{2}+v^{\frac{n+2}{n-2}} \triangle v\right] \\
& \geq \frac{2 n}{n-2} v^{\frac{n+2}{n-2}} \triangle v=-\frac{2 n}{n-2} v^{2 \frac{n+2}{n-2}}
\end{aligned}
$$

On the other hand

$$
v^{2 n /(n-2)}(0)=\mu^{\frac{n-2}{2} \frac{2 n}{n-2}} u^{\frac{2 n}{n-2}}\left(y_{1}\right)=1
$$

Moreover, we have

$$
\begin{aligned}
\sup _{B_{1}} v(x) & =\mu^{(n-2) / 2} \sup _{B_{1}} u\left(\mu x+y_{1}\right) \\
& =\mu^{(n-2) / 2} \sup _{B_{\mu}\left(y_{1}\right)} u(x) \\
& \leq \mu^{(n-2) / 2} 2^{(n-2) / 2} u\left(y_{1}\right)=2^{(n-2) / 2}
\end{aligned}
$$

Then $\sup _{B_{1}} v^{2 n /(n-2)} \leq 2^{n}$. Therefore,

$$
-\Delta v^{2 n /(n-2)} \leq C(n) v^{2 n /(n-2)}
$$

We conclude that

$$
1=v^{2 n /(n-2)}(0) \leq C \int_{B_{1}} v^{2 n /(n-2)}(x) d x=C \mu^{n} \int_{B_{\mu}} u^{2 n /(n-2)}(x) d x \leq C \varepsilon
$$

For ϵ sufficiently small, we derive a contradiction. It follows that

$$
\sup _{B_{\frac{r}{2}}} u(y) \leq \frac{\left(\frac{r}{2}-\left|y_{0}\right|\right)^{(n-2) / 2}}{\left(\frac{r}{2}-|y|\right)^{(n-2) / 2}} \cdot \frac{2^{(n-2) / 2}}{\left(\frac{r}{2}-\left|y_{0}\right|\right)^{(n-2) / 2}}=\frac{2^{(n-2) / 2}}{\left(\frac{r}{2}-|y|\right)^{(n-2) / 2}}
$$

For $|y|<r / 4$, we have

$$
\sup _{B_{\frac{r}{4}}} u(y) \leq C(n) / r^{(n-2) / 2}
$$

This in turns proves the Theorem 1.3 .
Proof of Lemma 1.4. We keep the above notations. To show (i), suppose $x_{0} \in$ $B_{1} \backslash \Sigma$, then there exists $r_{1}>0$ such that

$$
\liminf _{i \rightarrow \infty} E_{u_{i}}\left(x_{0}, r_{1}\right)<\varepsilon_{0}
$$

Then, we may find a sequence $n_{j} \rightarrow \infty$ as $j \rightarrow \infty$ such that

$$
\sup _{n_{j}} E_{u_{n_{j}}}\left(x_{0}, r_{1}\right)<\varepsilon_{0}
$$

We deduce from the ε-regularity Theorem (Theorem 1.2 that

$$
\sup _{n_{j}} \sup _{x \in B_{\frac{r_{1}}{16}}\left(x_{0}\right)}\left|u_{n_{j}}\right| \leq \frac{C}{r_{1}^{(n-2) / 2}}
$$

for some constant C depending only on n. Then

$$
u_{n_{j}} \rightarrow u \quad \text { in } C^{1}\left(B_{\frac{r_{1}}{16}}\left(x_{0}\right)\right)
$$

a similar argument allows to show that

$$
\nabla u_{n_{j}} \rightarrow \nabla u \quad \text { in } C^{1}\left(B_{\frac{r_{1}}{16}}\left(x_{0}\right)\right)
$$

Then

$$
\mu_{n_{j}}:=\left(\frac{1}{2}\left|\nabla u_{n_{j}}\right|^{2}+\frac{n-2}{2 n} u_{n_{j}}^{2 n /(n-2)}\right) d x \rightarrow\left(\frac{1}{2}|\nabla u|^{2}+\frac{n-2}{2 n} u^{2 n /(n-2)}\right) d x
$$

as radon measure. Hence $\nu=0$ on $B_{\frac{r_{1}}{16}}\left(x_{0}\right)$ i.e $x_{0} \notin \operatorname{supp}(\nu)$ and then we deduce that $\operatorname{supp}(\nu) \subset \Sigma$.

To show (ii), let us first recall some properties of the function $E_{u}(x, r)$ that has been defined above:

- For all $x \in \Omega$, there exists $r_{0}>0$ and a constant $C>0$ such that

$$
\int_{B(x, r)}\left(\frac{1}{2}|\nabla u|^{2}+\frac{n-2}{2 n}|u|^{2 n /(n-2)}\right)<C E_{u}\left(x, r_{0}\right) \quad \forall r<\frac{r_{0}}{2}
$$

This is explained in the proof of Lemma 1.1 .

- Using the fact that $E_{u}(x,$.$) is increasing on r$ together with the fact that

$$
\lim _{r \backslash 0} E_{u}(x, r)=0 \quad \mathcal{H}^{0}-\text { a.e. } x \in \Omega
$$

we deduce that for \mathcal{H}^{0}-a.e. $x \in \Sigma, \lim _{r \searrow 0} \int_{B(x, r)} \nu$ exists. and the density $\Theta(\eta,$. defined by

$$
\begin{equation*}
\Theta(\eta, x):=\lim _{r \backslash 0} \eta\left(B_{r}(x)\right) \tag{2.6}
\end{equation*}
$$

exists for every $x \in \Omega$. Moreover, for \mathcal{H}^{0}-a.e. $x \in \Omega, \Theta_{u}(x)=0$, where

$$
\begin{equation*}
\Theta_{u}(x):=\lim _{r \searrow 0} \int_{B(x, r)}\left(\frac{1}{2}|\nabla u|^{2}+\frac{n-2}{2 n}|u|^{\frac{2 n}{n-2}}\right) d y \tag{2.7}
\end{equation*}
$$

Now, for r sufficiently small and i sufficiently large

$$
\begin{equation*}
\int_{B(x, r)} \frac{1}{2}\left|\nabla u_{i}\right|^{2}+\frac{n-2}{2 n} u_{i}^{2 n /(n-2)} \leq C E_{u_{i}}(x, r) \leq C(\Lambda, \Omega) \tag{2.8}
\end{equation*}
$$

where Λ is given above and $C(\Lambda, \Omega)$ is a constant depending only on Λ and Ω. Hence

$$
\begin{equation*}
\eta(B(x, r)) \leq C(\Lambda, \Omega) \quad \text { for } x \in B_{1}^{n} \tag{2.9}
\end{equation*}
$$

In particular, this implies that $\eta \backslash \Sigma$ is absolutely continuous with respect to $\mathcal{H}^{0}\lfloor\Sigma$. Applying Radon-Nikodym's Theorem [4, we conclude that

$$
\begin{equation*}
\eta\left\lfloor\Sigma=\Theta(x) \mathcal{H}^{0}\left\lfloor\Sigma \quad \text { for } \mathcal{H}^{0} \text {-a.e. } x \in \Sigma\right.\right. \tag{2.10}
\end{equation*}
$$

Using 2.8 we conclude that

$$
\begin{equation*}
\nu(x)=\Theta(x) \mathcal{H}^{0}\lfloor\Sigma \tag{2.11}
\end{equation*}
$$

for a \mathcal{H}^{0}-a.e. $x \in \Sigma\left(\right.$ recall that $\eta=\left(\frac{1}{2}|\nabla u|^{2}+\frac{n-2}{2 n}|u|^{\frac{2 n}{n-2}}\right) d x+\nu$ and $\left.\operatorname{supp}(\nu) \subset \Sigma\right)$. The estimate on Θ follows from 2.9.

For any $y \in B_{1}^{n}$ and any sufficiently small $\lambda>0$, we define the scaled measure $\eta_{y, \lambda}$ by

$$
\begin{equation*}
\eta_{y, \lambda}(x):=\eta(y+\lambda x) \tag{2.12}
\end{equation*}
$$

We have the following lemma.

Lemma 2.3. Assume that $\left(\lambda_{j}\right)_{j}$ satisfies $\lim _{j \rightarrow \infty} \lambda_{j}=0$. Then, there exist a subsequence $\left(\lambda_{j^{\prime}}\right)_{j^{\prime}}$ and a Radon measure χ defined on Ω, such that $\eta_{y, \lambda_{j^{\prime}}} \rightharpoonup \chi$ in the sense of measures.

Proof. For each $i \in \mathbb{N}$, we define the scaled function $u_{i, y, \lambda}$ by

$$
\begin{equation*}
u_{i, y, \lambda}(x):=\lambda^{\frac{n-2}{2}} u_{i}(\lambda x+y) \quad \text { for } y \in B_{1}^{n} \tag{2.13}
\end{equation*}
$$

Then $u_{i, y, \lambda}$ is a solution of

$$
-\Delta u=u|u|^{4 /(n-2)} \quad \text { on } B_{1}^{n} .
$$

In addition, for any $r>0$ sufficiently small, we have

$$
\begin{align*}
& \int_{B_{r}(0)}\left(\frac{1}{2}\left|\nabla u_{i, y, \lambda}\right|^{2}+\frac{n-2}{2 n}\left|u_{i, y, \lambda}\right|^{\frac{2 k}{k-2}}\right) d x \\
& =\int_{B_{\lambda r}(y)}\left(\frac{1}{2}\left|\nabla u_{i}\right|^{2}+\frac{n-2}{2 n}\left|u_{i}\right|^{\frac{2 n}{n-2}}\right) d x \leq C(\Lambda, \Omega) \tag{2.14}
\end{align*}
$$

Finally for fixed λ,

$$
\begin{aligned}
& \left(\frac{1}{2}\left|\nabla u_{i, y, \lambda}\right|^{2}+\frac{n-2}{2 n}\left|u_{i, y, \lambda}\right|^{2 n /(n-2)}\right)(x) d x \\
& =\lambda^{n}\left(\frac{1}{2}\left|\nabla u_{i}\right|^{2}-\frac{n-2}{2 n}\left|u_{i}\right|^{2 n /(n-2)}\right)(\lambda x+y) d x \\
& \rightharpoonup \eta(\lambda x+y)=\eta_{y, \lambda}(x)
\end{aligned}
$$

in the sense of measures as $i \rightarrow \infty$. On the other hand letting i tends to infinity in (2.14), we conclude that for any $r>0$

$$
\begin{equation*}
\eta_{y, \lambda}\left(B_{r}(0)\right) \leq C(\Omega, \Lambda) \tag{2.15}
\end{equation*}
$$

Hence, we may find a subsequence $\left\{\lambda_{j}^{\prime}\right\}$ of $\left\{\lambda_{j}\right\}$ and a Radon measure χ such that $\eta_{y, \lambda_{j}^{\prime}}$ converge weakly to χ as Radon measure on Ω. Then

$$
\lim _{j \rightarrow \infty} \lim _{i \rightarrow \infty}\left(\frac{1}{2}\left|\nabla u_{i, y, \lambda_{j}^{\prime}}\right|^{2}+\frac{n-2}{2 n}\left|u_{i, y, \lambda_{j}^{\prime}}\right|^{\frac{2 n}{n-2}}\right) d x=\lim _{j \rightarrow \infty} \eta_{y, \lambda_{j}^{\prime}}(x)=\chi
$$

Using a diagonal subsequence argument, we may find a subsequence $i_{j} \rightarrow \infty$, such that

$$
\lim _{j \rightarrow \infty}\left(\frac{1}{2}\left|\nabla u_{i_{j}, y, \lambda_{j}^{\prime}}\right|^{2}+\frac{n-2}{2 n}\left|u_{i_{j}, y, \lambda_{j}^{\prime}}\right|^{\frac{2 n}{n-2}}\right) d x=\chi
$$

This proves the Lemma.
Remark 2.4. Observe that

$$
\chi\left(B_{r}(0)\right)=\lim _{j \rightarrow \infty} \eta_{y, \lambda_{j}^{\prime}}\left(B_{r}(0)\right)=\lim _{j \rightarrow \infty} \eta\left(B_{\lambda_{j}^{\prime} r}(y)\right)=\Theta(\eta, y)
$$

In particular, we deduce that $\chi\left(B_{r}(0)\right)$ is independent of r .

3. Proof of Theorem 1.5

The idea of the proof comes from Rivière [11] in the context of Yang-Mills Fields. To simplify notation and since the result is local, we assume that Ω is the unit ball B^{n} of \mathbb{R}^{n}. Let $\left(u_{k}\right)$ be a sequence of smooth solutions of 1.1 such that

$$
\left(\left\|u_{k}\right\|_{\mathbf{H}^{1}(\Omega)}+\left\|u_{k}\right\|_{\mathbf{L}^{2 n /(n-2)}(\Omega)}\right)
$$

is bounded and let ν be the defect measure defined above. We claim that for $\delta>0$, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sup _{y \in B_{1}\left(x_{0}\right)} \int_{B_{\delta}\left(y_{0}\right)}\left(\left|u_{k}\right|^{2 n /(n-2)}+\left|\nabla u_{k}\right|^{2}\right) \geq \varepsilon(n) \tag{3.1}
\end{equation*}
$$

where $\varepsilon(n)$ is given by Theorem 1.5. Indeed if (3.1) would not hold, we have for $\delta>0$ and $k \in \mathbb{N}$ large enough

$$
\sup _{y \in B_{1}\left(x_{0}\right)} \int_{B_{\delta}\left(y_{0}\right)}\left(\left|u_{k}\right|^{2 n /(n-2)}+\left|\nabla u_{k}\right|^{2}\right) \leq \varepsilon(n)
$$

and by Theorem 1.2 we have

$$
\left\|\nabla u_{k}\right\|_{\mathbf{L}^{\infty}\left(B_{\frac{\delta}{2}}(y)\right)} \leq C(\epsilon) / r^{n / 2}
$$

This contradict the concentration phenomenon and the claim is proved. We then conclude that there exists sequences $\delta_{k} \rightarrow 0$ as $k \rightarrow \infty$ and $\left(y_{k}\right) \subset B_{1}\left(x_{0}\right)$ such that

$$
\begin{align*}
\int_{B_{\delta_{k}}\left(y_{0}\right)}\left(\left|u_{k}\right|^{2 n /(n-2)}+\left|\nabla u_{k}\right|^{2}\right) d x & =\sup _{y \in B_{1}\left(x_{0}\right)} \int_{B_{\delta_{k}\left(y_{0}\right)}}\left(\left|u_{k}\right|^{2 n /(n-2)}+\left|\nabla u_{k}\right|^{2}\right) d x \\
& =\frac{\varepsilon(n)}{2} \tag{3.2}
\end{align*}
$$

In other words, y_{k} is located at a bubble of characteristic size δ_{k}. More precisely, if one introduces the function

$$
\widetilde{u}_{k}(x)=\delta_{k}^{(n-2) / 2} u_{k}\left(\delta_{k} x+y_{k}\right)
$$

we have, up to a subsequence, that

$$
\begin{aligned}
\widetilde{u}_{k} & \rightarrow u_{\infty} \quad \text { in } \mathbf{C}_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{n}\right) \quad \text { as } k \rightarrow \infty \\
\nabla \widetilde{u}_{k} & \rightarrow \nabla u_{\infty} \quad \text { in } \mathbf{C}_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{n}\right) \quad \text { as } k \rightarrow \infty .
\end{aligned}
$$

Therefore,

$$
-\Delta u_{\infty}=u_{\infty}\left|u_{\infty}\right|^{4 /(n-2)} \quad \text { in } \mathbb{R}^{n}
$$

This is the first bubble we detect. On the other hand, we have clearly that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(\left|u_{\infty}\right|^{2 n /(n-2)}+\left|\nabla u_{\infty}\right|^{2}\right) d x=\lim _{R \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{B_{R \delta_{k}\left(y_{k}\right)}}\left(\left|u_{k}\right|^{2 n /(n-2)}+\left|\nabla u_{k}\right|^{2}\right) d x \tag{3.3}
\end{equation*}
$$

Indeed:

$$
\begin{aligned}
& \lim _{R \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{B_{R \delta_{k}\left(y_{k}\right)}}\left(\left|u_{k}\right|^{2 n /(n-2)}+\left|\nabla u_{k}\right|^{2}\right) d x \\
& =\lim _{R \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{B_{R}(0)}\left(\left|u_{k}\right|^{2 n /(n-2)}+\left|\nabla\left(u_{k}\right)\right|^{2}\right)\left(\delta_{k} x+y_{k}\right) \delta_{k}^{n} d x \\
& =\lim _{R \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{B_{R}(0)}\left(\left|\delta_{k}^{\frac{2-n}{2}} \widetilde{u}_{k}(x)\right|^{2 n /(n-2)}+\left|\delta_{k}^{\frac{2-n}{2}} \delta_{k}^{-1} \nabla \widetilde{u}_{k}(x)\right|^{2}\right) \delta_{k}^{n} d x \\
& =\lim _{R \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{B_{R}(0)}\left(\left|\widetilde{u}_{k}(x)\right|^{2 n /(n-2)}+\left|\nabla \widetilde{u}_{k}(x)\right|^{2}\right) d x \\
& =\lim _{R \rightarrow \infty} \int_{B_{R}(0)}\left(\left|u_{\infty}(x)\right|^{2 n /(n-2)}+\left|\nabla u_{\infty}(x)\right|^{2}\right) d x \\
& =\int_{\mathbb{R}^{n}}\left(\left|u_{\infty}(x)\right|^{2 n /(n-2)}+\left|\nabla u_{\infty}(x)\right|^{2}\right) d x .
\end{aligned}
$$

Assume first that we have only one bubble of characteristic δ_{k}. We have shown that

$$
\begin{equation*}
\Theta=\lim _{k \rightarrow \infty} \int_{B_{1}^{n}(0)}\left(\left|\nabla u_{k}\right|^{2}+\left|u_{k}\right|^{2 n /(n-2)}\right) d x=\int_{\mathbb{R}^{n}}\left(\left|\nabla u_{\infty}\right|^{2}+\left|u_{\infty}\right|^{2 n /(n-2)}\right) d x \tag{3.4}
\end{equation*}
$$

where Θ is defined above. It suffices to prove that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{B_{1}^{n}(0) \backslash B_{R \delta_{k}\left(y_{k}\right)}}\left(\left|u_{k}(x)\right|^{2 n /(n-2)}+\left|\nabla u_{k}(x)\right|^{2}\right) d x=0 \tag{3.5}
\end{equation*}
$$

In other words there is no "neck" of energy which is quantized.
To simplify notation, we assume that $y_{k}=0$. We claim that for any $\varepsilon>0$ small enough, there exists $R>0$ and $k_{0} \in \mathbb{N}$ such that for any $k \geq k_{0}$ and $R \delta_{k} \leq r \leq \frac{1}{2}$, we have

$$
\begin{equation*}
\int_{B_{2 r}^{n}(0) \backslash B_{r(0)}}\left(\left|u_{k}(x)\right|^{2 n /(n-2)}+\left|\nabla u_{k}(x)\right|^{2}\right) d x \leq \varepsilon \tag{3.6}
\end{equation*}
$$

Indeed, if is not the case, we may find $\varepsilon_{0}>0$, a subsequence $k^{\prime} \rightarrow \infty$ (Still denoted $k)$ and a sequence r_{k} such that

$$
\begin{gather*}
\int_{B_{2 r}^{n}(0) \backslash B_{r}(0)}\left(\left|u_{k}(x)\right|^{2 n /(n-2)}+\left|\nabla u_{k}(x)\right|^{2}\right) d x>\varepsilon_{0} \tag{3.7}\\
\frac{r_{k}}{\delta_{k}} \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty
\end{gather*}
$$

Let $\alpha_{k} \rightarrow 0$ such that $r_{k} / \alpha_{k}=o(1)$ and $\alpha_{k} r_{k} / \delta_{k} \rightarrow \infty$ and let

$$
v_{k}(x)=r_{k}^{(n-2) / 2} u_{k}\left(r_{k} x\right)
$$

clearly v_{k} satisfies

$$
-\Delta v_{k}=v_{k}\left|v_{k}\right|^{4 /(n-2)} \quad \text { in } B_{2 \alpha_{k}} \backslash B_{\alpha_{k}}
$$

Therefore,

$$
\int_{B_{2}^{n}(0) \backslash B_{1}(0)}\left(\left|v_{k}(x)\right|^{2 n /(n-2)}+\left|\nabla v_{k}(x)\right|^{2}\right) d x>\varepsilon(n)
$$

and then we have a second bubble. This contradict our assumption.

We deduce from (3.7) and Theorem 1.2 that for any $\varepsilon<\varepsilon(n)$, there exist $R>0$ and $k_{0} \in \mathbb{N}$ such that for all $k \geq k_{0}$ and $|x| \geq R \delta_{k}$

$$
\left|\nabla u_{k}\right|(x) \leq C(\epsilon) /|x|^{n / 2}
$$

where $C(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Then

$$
\begin{equation*}
\left|\nabla u_{k}\right|^{2}(x) \leq C(\varepsilon) /|x|^{n} \tag{3.8}
\end{equation*}
$$

We define E_{λ}^{k} by

$$
E_{\lambda}^{k}=\operatorname{meas}\left\{x \in \mathbb{R}^{n}:\left|\nabla u_{k}\right|(x) \geq \lambda\right\}
$$

We have $E_{\lambda}^{k} \leq C(\varepsilon) / \lambda^{2}$; indeed

$$
\left\{x \in \mathbb{R}^{n}:\left|\nabla u_{k}\right|(x) \geq \lambda\right\} \subset\left\{x \in \mathbb{R}^{n}:|x|^{n} \leq \frac{C(\varepsilon)}{\lambda^{2}}\right\}
$$

and

$$
\text { meas }\left\{x \in \mathbb{R}^{n}:|x|^{n} \leq \frac{C(\varepsilon)}{\lambda^{2}}\right\} \leq \frac{C(\varepsilon)}{\lambda^{2}}
$$

We deduce from (3.8) that

$$
\begin{equation*}
\left\|\nabla u_{k}\right\|_{\mathbf{L}^{2, \infty}\left(C_{B_{R \delta_{k}}}\right)} \leq C(\varepsilon) \tag{3.9}
\end{equation*}
$$

where $\mathbf{L}^{2, \infty}$ is the Lorentz space defined in [14], the weak \mathbf{L}^{2} space, and $\|\cdot\|_{\mathbf{L}^{2, \infty}}$ is the weak norm defined by

$$
\|f\|_{\mathbf{L}^{2, \infty}}=\sup _{0<t<\infty} t^{1 / 2} f^{*}(t)
$$

where f^{*} is the nonincreasing rearrangement of $|f|$. Indeed

$$
\left\|\nabla u_{k}\right\|_{\mathbf{L}^{2}, \infty}\left(C_{B_{R \delta_{k}}}\right)=\sup _{0<t<\infty} t^{1 / 2}\left(\nabla u_{k}\right)^{*}(t)
$$

by definition,

$$
\left(\nabla u_{k}\right)^{*}(t)=\inf \left\{\lambda>0 / E_{\lambda}^{k} \leq t\right\}
$$

For all $t>0$ such that $\frac{C(\varepsilon)}{\lambda^{2}} \leq t$, we have $E_{\lambda}^{k} \leq t$. Then

$$
\begin{aligned}
\inf \left\{\lambda>0: E_{\lambda}^{k} \leq t\right\} & \leq \inf \left\{\lambda>0: \frac{C(\varepsilon)}{\lambda^{2}} \leq t\right\} \\
& \leq \inf \left\{\lambda>0: \lambda \geq \frac{(C(\varepsilon))^{1 / 2}}{t^{1 / 2}}\right\} \\
& =\frac{(C(\varepsilon))^{1 / 2}}{t^{1 / 2}}
\end{aligned}
$$

Hence $t^{1 / 2}\left(\nabla u_{k}\right)^{*}(t) \leq C(\varepsilon)$ and so

$$
\begin{equation*}
\left\|\nabla u_{k}\right\|_{\mathbf{L}^{2, \infty}\left(C_{B_{R \delta_{k}}}\right)} \leq C(\varepsilon) \tag{3.10}
\end{equation*}
$$

We claim that the sequence $\left(\nabla u_{k}\right)$ is uniformly bounded in the Lorentz space $\mathbf{L}^{2,1}\left(B_{1}^{n}\right)$ (see [14] for the definition). We prove this claim using an iteration proceeding; Indeed, the sequence $\left(u_{k}\right)$ is bounded in $\mathbf{L}^{\frac{2 n}{n-2}}\left(B_{1}^{n}\right)$. Then

$$
\Delta u_{k}=-u_{k}\left|u_{k}\right|^{4 /(n-2)}
$$

is bounded in $\mathbf{L}^{\frac{2 n}{n+2}}\left(B_{1}^{n}\right)$ which implies by the elliptic regularity Theorem that the sequence $\left(u_{k}\right)$ is bounded in $\mathbf{W}^{2, \frac{2 n}{n+2}}\left(B_{1}^{n}\right)$. Using the imbedding Theorem for Sobolev spaces

$$
\mathbf{W}^{m, p}\left(B_{1}^{n}\right) \subset \mathbf{W}^{r, s}\left(B_{1}^{n}\right) \quad \text { if } m \geq r, p \geq s \text { and } m-\frac{n}{p}=r-\frac{n}{s} .
$$

In particular, $\mathbf{W}^{2, \frac{2 n}{n+2}}\left(B_{1}^{n}\right)$ is continuously imbedded in $\mathbf{W}^{1,2}\left(B_{1}^{n}\right)$. On the other hand by Proposition 4 in [14, we have

$$
\mathbf{W}^{1,2}\left(B_{1}^{n}\right) \hookrightarrow \mathbf{L}^{2^{*}, 2}\left(B_{1}^{n}\right)=\mathbf{L}^{\frac{2 n}{n-2}, 2}\left(B_{1}^{n}\right)
$$

continuously. We then deduce that

$$
\Delta u_{k}=-u_{k}\left|u_{k}\right|^{4 /(n-2)}
$$

is bounded in $\mathbf{L}^{\frac{2 n}{n+2}}, \frac{2(n-2)}{n+2}\left(B_{1}^{n}\right)$. Here, we have used the following lemma.
Lemma 3.1. If $f \in \boldsymbol{L}^{p, q}\left(B_{1}^{n}\right)$ and $\alpha \in \mathbb{Q}^{+}$, then $f^{\alpha} \in \boldsymbol{L}^{\frac{p}{\alpha}, \frac{q}{\alpha}}\left(B_{1}^{n}\right)$.
Proof. In the case where $\alpha \in \mathbb{N}$, the result follows from the fact that

$$
f \in \mathbf{L}^{a, b}\left(B_{1}^{n}\right) \text { and } g \in \mathbf{L}^{c, d}\left(B_{1}^{n}\right) \Rightarrow f . g \in \mathbf{L}^{q, r}\left(B_{1}^{n}\right)
$$

where $\frac{1}{q}=\frac{1}{a}+\frac{1}{b}$ and $\frac{1}{r}=\frac{1}{c}+\frac{1}{b}$ (see [2]). The general case is a consequence of the fact that the increasing rearrangement of the function $|f|^{\beta}$ is equal to the puissance β of the increasing rearrangement of $|f|$ since $\left(f^{\beta}\right)^{*}$ is the only one function verifying

$$
\operatorname{meas}\left\{x \in \mathbb{R}^{n}: f^{\beta}(x) \geq \lambda\right\}=\operatorname{meas}\left\{t>0:\left(f^{\beta}\right)^{*}(x) \geq \lambda\right\}
$$

This in turns proves Lemma 3.1
Now, using in [14, Theorem 8], we deduce from (3.7) that $\left(\nabla u_{k}\right)$ is uniformly bounded in the space $\mathbf{L}^{\left(\frac{2 n}{n+2}\right)^{*}, \frac{2(n-2)}{n+2}}\left(B_{1}^{n}\right)=\mathbf{L}^{2, \frac{2(n-2)}{n+2}}\left(B_{1}^{n}\right)$. Hence $\left(u_{k}\right)$ is bounded in $\mathbf{L}^{2^{*}, \frac{2(n-2)}{n+2}}\left(B_{1}^{n}\right)$. Then

$$
\Delta u_{k}=-u_{k}\left|u_{k}\right|^{4 /(n-2)}
$$

is bounded in $\mathbf{L}^{\frac{2 n}{n+2}, \frac{2(n-2)^{2}}{(n+2)^{2}}}\left(B_{1}^{n}\right)$. Hence, again by [14, Theorem 8], the sequence $\left(\nabla u_{k}\right)$ is bounded in $\mathbf{L}^{2, \frac{2(n-2)^{2}}{(n+2)^{2}}}\left(B_{1}^{n}\right)$ and by elliptic regularity Theorem

$$
\Delta u_{k}=-u_{k}\left|u_{k}\right|^{4 /(n-2)}
$$

is bounded in $\mathbf{L}^{\frac{2 n}{n+2}, \frac{2(n-2)^{3}}{(n+2)^{3}}}\left(B_{1}^{n}\right)$. We obtain after p iterations that

$$
\Delta u_{k}=-u_{k}\left|u_{k}\right|^{4 /(n-2)}
$$

is bounded in $\mathbf{L}^{\frac{2 n}{n+2}, \frac{2(n-2)^{p}}{(n+2)^{p}}}\left(B_{1}^{n}\right)$. We choose $p>0$ such that $6 p>n$, we have in particular $\frac{2(n-2)^{p}}{(n+2)^{p}}<1$ which gives

$$
\Delta u_{k}=-u_{k}\left|u_{k}\right|^{4 /(n-2)}
$$

is bounded in $\mathbf{L}^{\frac{2 n}{n+2}, 1}\left(B_{1}^{n}\right)$. Here we have used the fact that

$$
\mathbf{L}^{p, q_{1}}\left(B_{1}^{n}\right) \subset \mathbf{L}^{p, q_{2}}\left(B_{1}^{n}\right) \quad \text { if } q_{1}<q_{2}
$$

We use also [14, Theorem 8] to deduce that $\left(\nabla u_{k}\right)$ is bounded in $\mathbf{L}^{\left(\frac{2 n}{n+2}\right)^{*}, 1}\left(B_{1}^{n}\right)=$ $\mathbf{L}^{2,1}\left(B_{1}^{n}\right)$. In particular, there exist a constant $C>0$ depending only on n such that

$$
\begin{equation*}
\left\|\nabla u_{k}\right\|_{\mathbf{L}^{2,1}\left(B_{1}^{n}\right)} \leq C \tag{3.11}
\end{equation*}
$$

We deduce from 3.10, 3.11 together with the $\mathbf{L}^{2,1}-\mathbf{L}^{2, \infty}$ duality that

$$
\left\|\nabla u_{k}\right\|_{\mathbf{L}^{2}\left(B_{1}^{n} \backslash B_{R \delta_{k}}\right)} \leq\left\|\nabla u_{k}\right\|_{\mathbf{L}^{2,1}\left(B_{1}^{n} \backslash B_{R \delta_{k}}\right)}\left\|\nabla u_{k}\right\|_{\mathbf{L}^{2, \infty}\left(B_{1}^{n} \backslash B_{R \delta_{k}}\right)} \leq C(\epsilon)
$$

for a constant $C(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Now, we use the embedding $\mathbf{H}^{1} \hookrightarrow \mathbf{L}^{2 n /(n-2)}$ continuously, we obtain

$$
\begin{aligned}
\left\|u_{k}\right\|_{\mathbf{L}^{2 n /(n-2)}\left(B_{1}^{n} \backslash B_{R \delta_{k}}\right)} & \leq C\left\|\nabla u_{k}\right\|_{\mathbf{L}^{2}\left(B_{1}^{n} \backslash B_{R \delta_{k}}\right)} \\
& \leq C(\varepsilon) \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0 .
\end{aligned}
$$

We deduce that

$$
\lim _{R \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{B_{1}^{n}(0) \backslash B_{R \delta_{k}\left(y_{k}\right)}}\left(\left|u_{k}\right|^{2 n /(n-2)}+\left|\nabla u_{k}\right|^{2}\right)(x) d x=0
$$

This proves Theorem 1.5 in the case of one bubble.
The case of more than one bubble can be handled in a very similar way and we just give few details for $m=2$. The proof starts the same until (3.4) which cannot hold any more otherwise we would have had one bubble only as it is 3.4 holds. It remains to show that: for any $\varepsilon \geq 0$, there are sufficiently large $\mathrm{R}>0$ and a sequence $r_{i} \rightarrow 0$ such that for any $R \delta_{i} \leq r_{i} \leq 1 / 2$,

$$
\begin{gather*}
\lim _{R \rightarrow \infty} \lim _{i \rightarrow \infty} \int_{\{0\} \times B_{r_{i}}^{n} \backslash B_{R \delta_{i}}^{n}(0)}\left(\frac{1}{2}\left|\nabla v_{i}\right|^{2}+\frac{n-2}{2 n}\left|v_{i}\right|^{2 n /(n-2)}\right) d x=0 \\
\lim _{i \rightarrow \infty} \int_{\{0\} \times B_{1 / 2}^{n} \backslash B_{r_{i}}^{n}(0)}\left(\frac{1}{2}\left|\nabla v_{i}\right|^{2}+\frac{n-2}{2 n}\left|v_{i}\right|^{2 n /(n-2)}\right) d x=0 \tag{3.12}
\end{gather*}
$$

where v_{i} is defined by $v_{i}(y)=r_{i}{ }^{(n-2) / 2} u_{i}\left(r_{i} y\right), y \in \mathbb{R}^{n}$.
The proof of 3.12) can be done exactly as the proof of (3.4), the case of 2 bubbles is then proved. To prove the general case, for any number $m \geq 2$, one can follow exactly the same strategy.

References

[1] W. Allard, An integrity Theorem a regularity Theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled, Proc. Symp. Pure Math., 44, (1986), 1-28.
[2] H. Brezis and S. Wainger, A note on limiting cases of Sobolev embedding and convolution inequalities, Comm. P.D.E, 5, (1980), 773-789.
[3] S. K. Donaldson and R. P. Thomas, Gauge theory in higher dimensions in The geometric Universe (Oxford, 1996), Oxford Univ. Press, 1998, 31-47.
[4] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
[5] Z. Guo and Jiayu-Li, The blow-up locus of semilinear elliptic equations with subcritical exponent, Calc. Var. Partial Differential Equations 15 (2002), no. 2, 133-153.
[6] F. Pacard, Partial regulatity for weak solutions of a nonlinear elliptic equation, Manuscripta Math. 79 (1993), 161-172.
[7] T. Parker, Bubble tree convergence for harmonic maps, J. Diff. Geom. , 44, (1996), 545-633.
[8] J. Peetre, Espaces d'interpolations et théorème de Sobolev, Ann. Instit. Fourier, Grenoble, 16, (1966), 279-317.
[9] F. G. Lin, Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. Math., 149, (1999), 785-829.
[10] F. G. Lin and T. Rivière, A Quantization Property for Static Ginzburg-Landau vortices, Comm. Pure Appl. Math. 54 (2001), no. 2, 206-228.
[11] T. Rivière, Interpolation Spaces and Energy Quantization for Yang-Mills Fields, Comm. Anal. Geom. 10 (2002), no. 4, 683-708.
[12] R. Schoen, Analytic aspects for the harmonic map problem, Math. Sci. Res. Insti. Publi. 2, Springer, Berlin (1984), 312-358.
[13] L. Simon, Lectures on Geometric Measure Theory, Proc. of Math. Anal.3, Australian National Univ. (1983).
[14] L. Tartar, Imbedding Theorems of Sobolev Spaces into Lorentz Spaces, Boll. U.M.I. 1, B, (1998) 479-500.

Fethi Mahmoudi
Scuola Internazionale Superiore Di Studi Avanzati (Sissa), Via Beirut 2-4, 34014 Trieste, Italy

E-mail address: mahmoudi@sissa.it

[^0]: 2000 Mathematics Subject Classification. 35B33, 46E30, 46L65.
 Key words and phrases. Critical exponents; Lorentz spaces; quantization phenomena.
 © 2006 Texas State University - San Marcos.
 Submitted February 20, 2006. Published July 7, 2006.

