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STABILITY OF SOLITARY WAVE SOLUTIONS FOR
EQUATIONS OF SHORT AND LONG DISPERSIVE WAVES

JAIME ANGULO PAVA

Abstract. In this paper, we consider the existence and stability of a novel set

of solitary-wave solutions for two models of short and long dispersive waves in a

two layer fluid. We prove the existence of solitary waves via the Concentration
Compactness Method. We then introduce the sets of solitary waves obtained

through our analysis for each model and we show that them are stable provided

the associated action is strictly convex. We also establish the existence of
intervals of convexity for each associated action. Our analysis does not depend

of spectral conditions.

1. Introduction

We study the existence and stability of solitary-wave solutions through of an
analysis of type variational for two models of interaction between long waves and
short waves under a weakly coupled nonlinearity in a two layer fluid and under
the setting of deep and shallow flows. When the fluid depth of the lower layer is
sufficiently large, in comparison with the wavelength of the internal wave, and the
fluids have different densities, we have the following nonlinear coupled system (see
Funakoshi and Oikawa [7])

iut + uxx = αvu,

vt + γDvx = β(|u|2)x,
u(x, 0) = u0(x), v(x, 0) = v0(x),

(1.1)

where u = u(x, t) : R × R → C denotes the short wave term and v = v(x, t) :
R × R → R denotes the long wave term. Here, α, β are positive constants, γ ∈ R,
and D = H∂x is a linear differential operator representing the dispersion of the
internal wave, where H denotes the Hilbert transform defined by

Hf(x) = p.v.
1
π

∫
f(y)
x− y

dy.
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When the fluid depth is sufficiently small in comparison with the wavelength of the
internal wave, the model describing the interaction takes the form (see [7, 8]

iut + uxx = αvu

vt + γvx + ηvxxx + µvvx = β(|u|2)x,
u(x, 0) = u0(x), v(x, 0) = v0(x),

(1.2)

where α, γ, η, µ, β ∈ R. Equation (1.2) is sometimes called the coupled Schrödinger
- Korteweg - de Vries equation (Schrödinger-KdV equation henceforth).

One of the interesting features of wave equations of the form (1.1) or (1.2) is
that due to nonlinearity and dispersion they often possess solitary-wave solutions.
Solitary waves for (1.1) or (1.2) are travelling-wave solutions of the form

u(x, t) = eiωteic(x−ct)/2φ(x− ct),

v(x, t) = ψ(x− ct),
(1.3)

where ω, c ∈ R and φ, ψ : R → R are typically smooth functions such that for each
n ∈ N, φ(n)(ξ) → 0 and ψ(n)(ξ) → 0, as |ξ| → ∞. We will see more later that
the existence of solitary-wave solutions plays a distinguished role in the long-time
evolution of solutions of (1.1) or (1.2). Substituting (1.3) in model (1.1) it follows
immediately that (φ, ψ) satisfies the pseudo-differential system

φ′′ − σφ = αψφ

γHψ′ − cψ = βφ2.
(1.4)

Similarly for model (1.2) we have that (φ, ψ) satisfies the differential system

φ′′ − σφ = αψφ

ηψ′′ − (c− γ)ψ +
µ

2
ψ2 = βφ2,

(1.5)

where in (1.4) and (1.5), “ ′” = d
dξ , with ξ = x− ct and σ = ω − c2

4 .
Next we establish some results known about the models (1.1) and (1.2). Sys-

tem (1.1) has been considered under various settings. For example, Funakoshi and
Oikawa [7]) have computed numerically solitary-wave solutions for (1.4). Recently,
Angulo and Montenegro [2] have proved the existence of even solitary-wave solu-
tions using the Concentration Compactness Method and the theory of symmetric
decreasing rearrangements. We recall that explicitly solutions for (1.4) are not
know for γ 6= 0. With regard to the initial value problem, Bekiranov, Ogawa and
Ponce [3] proved a well-posedness theory for (1.1) in Hs

C(R) × H
s− 1

2
R (R). More

precisely, if |γ| < 1 and s ≥ 0, then for any (u0, v0) ∈ Hs
C(R) × H

s− 1
2

R (R) there
exists T > 0 such that the initial value problem (1.1) admits a unique solution

(u(t), v(t)) ∈ C([0, T );Hs
C(R)) × C([0, T );Hs− 1

2
R (R)). Moreover, for T > 0 the

map (u0, v0) → (u(t), v(t)) is Lipschitz continuous from Hs
C(R) × H

s− 1
2

R (R) to

C([0, T );Hs
C(R)) × C([0, T );Hs− 1

2
R (R)). For the case |γ| = 1, we get the same

results as above, but for s > 0. We note that as a consequence of the conservation
laws (1.14) and (1.16) below, we can take T = +∞ if s ≥ 1 and γ < 0.

For the system (1.2) we have the following results of well-posedness. Tsutsumi

[17] showed a global well-posedness theory in Hm+ 1
2

C (R)×Hm
R (R) for m = 1, 2, 3 . . . ,

Bekiranov, Ogawa and Ponce [5] proved a local theory in Hs
C(R) × H

s− 1
2

R (R) for
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s ≥ 0, and Fernandez and Linares [6] showed a local result in L2
C(R) × H

− 3
4+

R (R)
and a global result in H1

C(R)×H1
R(R) with the parameters in (1.2) having the same

sign.
With regard to the existence and stability of solitary-wave solutions of the form

(1.3), we have the results by Lin [11] and by Albert and Angulo [1]. More precisely,
in [11], the existence of solutions of the form

φ(x) = ±
√

2σ((c− γ)− 8σ) sech(
√
σx)

ψ(x) = 2σ
2

sech(
√
σx)

for (1.5) with α = β = −1, η = 2, µ = 12, c > γ and σ ∈ (0, (c− γ)/8), was found.
Then, using stability theory of [8], he went on to show that this solution is orbitally
stable provided c − γ ≤ 1 and σ ∈ (0, (c − γ)/12). In [1], for α = β = −1, η = 2,
γ = 0 and µ = 6q it was proved for a certain range of values of q, equation (1.5)
has a non-empty set of ground-state solutions which is stable.

The result in the present paper are complementary to those in [1, 2, 11], where
different techniques were used. The main purpose here is to show the existence and
stability of a novel set of solitary waves solutions for equations (1.1) and (1.2). Our
approach is based essentially in variational methods and techniques of convexity
type.

Next we describe briefly our results. Our theory of existence of smooth real
solutions for (1.4) follows from the work of Angulo and Montenegro [2] (a sketch
of the proof is given in Theorem 2.1 below), where by using the Concentration
Compactness Method (Lions [12, 13]) and the conditions α, β, σ, c > 0 and γ < 0,
it is obtained solutions for (1.4) as minimimizer of the variational problem

Iλ = inf{V (f, g)|(f, g) ∈ H1
R(R)×H

1/2
R (R) and F (f, g) = λ}, (1.6)

where λ > 0,

V (f, g) =
∫

R
[(f ′(x))2 − γ(D1/2g(x))2 + σf2(x) + cg2(x)]dx, (1.7)

F (f, g) =
∫

R
f2(x)g(x)dx. (1.8)

So, if we denote the set of minimizers associated to Iλ by Gλ, namely,

Gλ = {(f, g) ∈ H1
R(R)×H

1/2
R (R)| V (f, g) = Iλ and F (f, g) = λ} (1.9)

thenGλ 6= ∅ and each element ofGλ yields a solution of (1.4) via a scaling argument.
With regard to solutions for system (1.5), we shall establish here a theory of

existence with the conditions αβ > 0, η, σ > 0, c > γ and µ = −3α. Our argument
will be again via an compactness argument, but in this case the proof is more easy
compared with that given for the existence of solution of (1.4) because we do not
have the nonlocal term D = H∂x. Here, we will use some results from Lopes [14, 15]
for finding solutions of the minimization problem

Jλ = inf{Z(f, g)|(f, g) ∈ H1
R(R)×H1

R(R) and N(f, g) = λ}, (1.10)
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where λ > 0,

Z(f, g) =
∫

R
[(f ′(x))2 + η(g′(x))2 + σf2(x) + (c− γ)g2(x)]dx , (1.11)

N(f, g) =
∫

R
g(x)[f2(x) + g2(x)] dx . (1.12)

We note that once established the existence of solutions for (1.5) with the con-
dition µ = −3α, we can obtain a existence result for solitary wave for (1.5) under
the condition that µ and α have opposite sign. In fact, under this constraint for µ
and α, one can multiply the second equation in (1.5) by a positive constant and to
obtain a equivalent system in which the condition µ = −3α holds.

The following question arising in this point is whether the following set of
solitary-wave solutions for (1.1),

Sc,ω = {(eiθeicx/2φc,ωψc,ω) : (φc,ω, ψc,ω) ∈ H1
R(R)×H

1
2
R (R),

F (φc,ω, ψc,ω) = − 1
3β
V (φc,ω, ψc,ω) = − 1

27β3
I3
1},

(1.13)

with α = 2β > 0, ω > c2

4 and c > 0, is a stable set with respect to equation (1.1),
in the sense that if (h, g) ∈ Sc,ω and a slight perturbation of (h, g) is taken as initial
data for (1.1), then the resulting solution of (1.1) can be said to have a profile
which remains close to Sc,ω for all time. It is well known from Cazenave and Lions
[5] that we can obtain a result of stability of this type if the functionals involved
in the problem of minimization (1.6) are conserved quantities for equation (1.1),
however, we do not have this ideal situation with the functionals V and F . So, for
overcome this problem, we consider the following functionals

H(u) =
∫

R
|u(x)|2 dx, (1.14)

G1(u, v) ≡ Im
∫

R
u(x)ux(x) dx+

α

2β

∫
R
v2(x) dx, (1.15)

E1(u, v) ≡
∫

R
|ux(x)|2 dx+ αv(x)|u(x)|2 − αγ

2β
v(x)Dv(x) dx, (1.16)

which are conserved quantities or invariants of motion for (1.1), i.e., for u(x, 0) =
u0(x), v(x, 0) = v0(x) initial smooth functions, the solution of (1.1) emanating from
(u0, v0) has the property that H(u(t)) = H(u0), G1(u(t), v(t)) = G1(u0, v0) and
E1(u(t), v(t)) = E1(u0, v0) for all t for which the solution exists. Next, we define
the following functional

d(c, ω) = E1(Φc,ω,Ψc,ω) + ωH(Φc,ω) + cG1(Φc,ω,Ψc,ω) (1.17)

for every (Φc,ω,Ψc,ω) ∈ Sc,ω. So, by considering the following function of variable
ω,

dc(ω) ≡ d(c, ω),

with c > 0 fixed and ω > c2/4, we obtain that the set of solitary waves solutions Sc,ω
will be stable with respect to equation (1.1) if dc(ω) is a strictly convex function in
ω. In this paper we can prove the convexity of the function dc(ω) with ω close to
c2/4.
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A similar result of stability is also proved for the set of solitary-wave solutions
of (1.2) obtained via the minimization problem (1.10). In this case we use the
following conserved quantities for (1.2):

G2(u, v) ≡ Im
∫

R
u(x)ux(x) dx+

α

2β

∫
R
v2(x) dx,

E2(u, v) ≡
∫

R
|ux(x)|2 + αv(x)|u(x)|2 +

αη

2β
v2
x(x)−

αγ

2β
v2(x)− αµ

6β
v3(x) dx.

(1.18)
We note that as we do not have explicit formulas for the solutions (φc,ω, ψc,ω) in

(1.4)-(1.5) and a argument of dilation is not available to obtain a explicit expression
for the function d in function of c and ω, we need to apply a Lemma of convexity
of Shatah [16] (see Lemma 2.8 below).

This paper is organized as follows. In section 2, we give a sketch of the proof of
existence of solutions for (1.4). These solutions are obtained via the Concentration
Compactness Principle. We also prove that the set of solitary waves, Sc,ω, defined in
(2.11) is stable in H1

C(R)×H1/2
R (R). In section 3, we give the corresponding theory

of existence and stability of solitary waves solutions for system (1.2) following the
same ideas established in section 2.

Notation. We shall denote by f̂ the Fourier transform of f , defined as f̂(ξ) =∫
R f(x)e−iξx dx. |f |Lp denotes the Lp(R) norm of f , 1 ≤ p ≤ ∞. In particular,
| · |L2 = ‖ · ‖ and | · |L∞ = | · |∞. We denote by Hs

C(R) the Sobolev space of all
f (tempered distributions) for which the norm ‖f‖2s =

∫
R (1 + |ξ|2)s|f̂(ξ)|2 dξ is

finite. For s ≥ 0, Hs
R(R) denotes the space of all real-valued functions in Hs

C(R).
The product norm in Hs

C(R) × Hr
C(R) is denoted by ‖ · ‖s×r. We denote by XR

the product H1
R(R) × H

1/2
R (R), YR the product H1

R(R) × H1
R(R), XC the product

H1
C(R) × H

1/2
R (R), and YC the product H1

C(R) × H1
R(R). Js = (1 − ∂2

x)
s/2 and

Ds = (−∂2
x)
s/2 are the Bessel and Riesz potentials of order −s, respectively, defined

by Ĵsf(ξ) = (1 + ξ2)s/2f̂(ξ) and D̂sf(ξ) = |ξ|sf̂(ξ).

2. Existence and stability of solitary waves solutions for equation
(1.1)

In this section we give a theory of existence and stability of solitary waves so-
lutions for equation (1.1). We begin with the problem of existence. Initially, we
give a sketch of the proof of that Gλ defined in (1.9) is not empty. In fact, we call
{(fn, gn)}n≥1 in XR = H1

R(R)×H1/2
R (R) a minimizing sequence for Iλ if it satisfies

F (fn, gn) = λ, for all n,

lim
n→∞

V (fn, gn) = Iλ.

So we have the following Theorem of existence established in Angulo and Montene-
gro [2],

Theorem 2.1. Let α, β, σ, c > 0, γ < 0, and let λ be any positive number.
Then any minimizing sequence {(fn, gn)} for Iλ is relatively compact in XR up
to translation, i.e., there are subsequences {(fnk

, gnk
)} and {ynk

} ⊂ R such that
(fnk

(·−ynk
), gnk

(·−ynk
)) converges strongly in XR to some (f, g), which is a min-

imum of Iλ. Therefore, Gλ 6= ∅ and there are non-trivial solitary waves solutions
for equation (1.1).
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Sketch of the proof. From λ =
∫

R f
2(x)g(x)dx ≤ ‖f‖21‖g‖ 1

2
≤ ‖(f, g)‖3

1× 1
2

and

V (f, g) ≥ C‖(f, g)‖2
1× 1

2

, we obtain 0 < Iλ < ∞ and each minimizing sequence

is bounded in XR. Then there is a subsequence, still denoted by (fn, gn), such that
‖(fn, gn)‖2

1× 1
2

→ µ > 0. We then apply the Concentration Compactness Lemma

([12, Lemma I.1]) with

ρn(x) = (f ′n(x))
2 + (fn(x))2 + (J1/2gn(x))2.

The Vanishing case does not occur because for any R > 0

lim
n→∞

sup
y∈R

∫ y+R

y−R
(fn(x))2dx = 0.

Thus F (fn, gn) tends to zero as n goes to infinity. But this contradicts the fact
that F (fn, gn) = λ > 0.

In the Dichotomy case, one can show as in [2] that for some θ with 0 < θ < λ and
for all ε > 0 there exist η(ε) (with η(ε) → 0 as ε → 0), two sequences h(1)

n = ζnhn
and h(2)

n = ϕnhn in XR, with ϕn, ζn ∈ C∞(R; R), 0 ≤ ϕn, ζn ≤ 1, and an integer
k such that for n ≥ k and hn = (fn, gn),

‖h(1)
n + h(2)

n − hn‖1× 1
2
≤ η(ε),∣∣∣ ∫

R
ζ3
n(fn)

2gn dx− θ
∣∣∣ ≤ η(ε),∣∣∣ ∫

R
ϕ3
n(fn)

2gn dx− (λ− θ)
∣∣∣ ≤ η(ε).

Hence, these relations will imply that Iλ ≥ Iθ + Iλ−θ. But this is a contradiction,
since for τ > 0 we have Iτλ = τ2/3Iλ, and therefore

Iλ ≥ Iτλ + I(1−τ)λ = (τ2/3 + (1− τ)2/3)Iλ > Iλ,

where we have used that τ2/3 + (1− τ)2/3 > 1 for τ ∈ (0, 1) and Iλ > 0.
Since the Vanishing and Dichotomy cases have been ruled out, it follows that

there is a sequence {yn}n≥1 ⊂ R such that for any ε > 0, there is R > 0 large and
n0 > 0 such that for n ≥ n0,∫

|x−yn|≤R
ρn(x) dx ≥ µ− ε,

∫
|x−yn|≥R

ρn(x) dx ≤ ε.

Therefore∣∣ ∫
|x−yn|≥R

f2
ngn dx

∣∣ ≤ C‖gn‖ 1
2
|fn|2/3∞

( ∫
|x−yn|≥R

ρn(x) dx
)2/3 = O(ε).

Hence ∣∣ ∫
|x−yn|≤R

f2
ngn dx− λ

∣∣ ≤ ε.

Letting h∗n(x) = (f∗n(x), g∗n(x)) ≡ (fn(x − yn), gn(x − yn)), we have that {h∗n}n≥1

converges weakly in XR to a vector-function h∗ = (f0, g0). Then for n ≥ n0,

λ ≥
∫ R

−R
(f∗n(x))2g∗n(x) dx ≥ λ− ε.
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Since H1((−R,R)) and H1/2((−R,R)) are compactly embedded in L2((−R,R)),
we have from the Cauchy-Schwarz inequality that∣∣∣ ∫ R

−R
(f∗n(x))2g∗n(x) dx−

∫ R

−R
(f0(x))2g0(x) dx

∣∣∣
≤ C

(
‖f∗n − f0‖L2(−R,R) + ‖g∗n − g0‖L2(−R,R)

)
→ 0, as n→∞ .

Therefore,

λ ≥
∫ R

−R
f2
0 (x)g0(x) dx ≥ λ− ε.

Thus for ε = 1/j, j ∈ N, there exists Rj > j such that

λ ≥
∫ Rj

−Rj

f2
0 (x)g0(x) dx ≥ λ− 1

j
.

So, for j → ∞, we finally have that F (f0, g0) = λ. Furthermore, from the weak
lower semicontinuity of V and the invariance of V by translations, we have

Iλ = lim inf
n→∞

V (f∗n, g
∗
n) ≥ V (f0, g0) ≥ Iλ.

Thus the vector-function h∗ = (f0, g0) ∈ Gλ. Moreover, since

‖(f∗n, g∗n)‖1× 1
2
→ ‖(f0, g0)‖1× 1

2
,

we have that (f∗n, g
∗
n) → (f0, g0) strongly in XR. Thus the Theorem is proved. �

Remark 2.2. Note that from [2, Theorem 3.5] we have that each component of
(f, g) ∈ Gλ is even (up translations) and strictly decreasing positive function on
(0,+∞). More precisely, f(x) = f∗(x+ r), g(x) = g∗(x+ r) for some r ∈ R, where
f∗ and g∗ are the symmetric decreasing rearrangements of f and g respectively.

Our theory of stability has another variational characterization of solitary waves
solutions for (1.1). We consider the following minimization problem in XC =
H1

C(R)×H
1/2
R (R) for λ > 0,

Mλ = inf{Wc,ω(h, g)|(h, g) ∈ XC and F(h, g) = λ},

where

Wc,ω(h, g) =
∫

R
|h′(x)|2−γ(D1/2g(x))2+ω|h(x)|2+cg2(x) dx+c Im

∫
R
h(x)h′(x) dx,

(2.1)
γ < 0, ω > c2/4, c > 0, and

F(h, g) =
∫

R
|h(x)|2g(x) dx. (2.2)

Also, we denote the set of minimizers for Mλ by Gλ, namely,

Gλ = {(h, g) ∈ XC : Wc,ω(h, g) = Mλ and F(h, g) = λ}. (2.3)

Next show that every minimizing sequence for Mλ converges strongly in XC,
up to rotations and translations, to some element of Gλ. Initially, we establish a
similar result as in Theorem 2.1 but considering complex-valued functions. More
precisely, we consider the following minimization problem

IC
λ = inf{VC(h, g)|(h, g) ∈ XC and F(h, g) = λ}, (2.4)
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where λ > 0,

VC(h, g) =
∫

R
[|h′(x)|2 − γ(D1/2g(x))2 + σ|h(x)|2 + cg2(x)]dx

and F is defined as in (2.2). So we have the following Theorem.

Theorem 2.3. Let σ, c > 0, γ < 0, and let λ be any positive number. Then any
minimizing sequence {(hn, gn)} for IC

λ is relatively compact in XC up to transla-
tion, i.e., there are subsequences {(hnk

, gnk
)} and {ynk

} ⊂ R such that (hnk
(· −

ynk
), gnk

(· − ynk
)) converges strongly in XC to some (h, g) which is a minimum of

IC
λ . Moreover, (h, g) = (eiθf, g), where θ ∈ R and (f, g) ∈ Gλ.

Proof. The existence of a minimum is proved as in Theorem 2.1 (we apply the
Concentration Compactness Lemma to ρn(x) = |f ′n(x)|2 + |fn(x)|2 + |J1/2gn(x)|2).
Now, let (h, g) be a minimizer of the problem (2.4) and consider h = h1 + ih2, then
h0 = |h1|+ i|h2| is a minimizer of problem (2.4). In fact, from the inequality∫

R
|h′i(x)|2dx ≥

∫
R
| |hi|′(x)|2dx

and the condition F(h0, g) = F(h, g) = λ, it follows that

IC
λ = VC(h, g) ≥ VC(h0, g) ≥ IC

λ .

Therefore, there exists K > 0 (Lagrange multiplier) such that

−h′′i + σhi = Khig

−|hi|′′ + σ|hi| = K|hi|g, for i = 1, 2.
(2.5)

Since |hi| > 0 it follows from the Sturm-Liouville Theory that −σ is the smallest
eigenvalue of operator − d2

dx2 −Kg, and therefore is simple. Hence, from (2.5) there
are µi ∈ R − {0} such that hi = µih

∗
0, where h∗0 is a positive function. Therefore,

there exists a positive function f and θ ∈ R such that h = eiθf . Moreover, from
the relations F (f, g) = F(h, g) = λ, IC

λ = VC(h, g) = V (f, g) ≥ Iλ, and Iλ ≥ IC
λ , we

have that (f, g) ∈ Gλ. This finishes the proof. �

The following Theorem proves the existence a minimum for Mλ.

Theorem 2.4. Let γ < 0, c > 0, ω > c2

4 , and λ > 0. Then, any minimiz-
ing sequence {(hn, gn)} for Mλ is relatively compact in XC up to rotations and
translation, i.e., there are subsequences {(hnk

, gnk
)} and {ynk

} ⊂ R such that
(eicyk/2hnk

(· − ynk
), gnk

(· − ynk
)) converges strongly in XC to some (h, g) which

is a minimum of Mλ. Moreover, (h, g) = (eiθeicx/2f, g) where (f, g) ∈ Gλ.

Proof. Let {(hn, gn)} be a minimizing sequence for Mλ. Then we have that
limn→∞Wc,ω(hn, gn) = Mλ and F(hn, gn) = λ. If fn ≡ e−icx/2hn, then we have
F(fn, gn) = λ and

Wc,ω(hn, gn) = Wc,ω(eicx/2fn, gn) = VC(fn, gn) ≥ IC
λ . (2.6)

Since IC
λ ≥Mλ, it follows from (2.6) that {(fn, gn)} is a minimizing sequence for IC

λ .
Therefore, from Theorem 2.3 there are subsequences {(fnk

, gnk
)} and {ynk

} ⊂ R
such that (fnk

(·−ynk
), gnk

(·−ynk
)) converges strongly in XC to some (h0, g) which

is a minimum of IC
λ . Then (h0, g) = (eiθf, g) where θ ∈ R and (f, g) ∈ Gλ. Hence,

from the definition of fn we have that

(eicyk/2hnk
(· − ynk

), gnk
(· − ynk

)) → (eiθeicx/2f, g) in XC.
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So, (h, g) = (eiθeicx/2f, g) ∈ Gλ and this proves the Theorem. �

Corollary 2.5. Let γ < 0, c > 0, ω > c2

4 , and λ > 0. Then the set Gλ is nonempty.
Moreover, if {(hn, gn)} is any minimizing sequence for Mλ, then

(i) There exist sequences {yn}, {θn} and an element (h, g) ∈ Gλ such that
{(eiθnhn(·+ yn), gn(·+ yn))} has a subsequence converging strongly in XC
to (h, g).

(ii) limn→∞ infθ,y∈R;~ψ∈Gλ
‖(eiθhn(·+ y), gn(·+ y))− ~ψ‖1× 1

2
= 0.

(iii) limn→∞ inf ~ψ∈Gλ
‖(hn, gn)− ~ψ‖1× 1

2
= 0.

Proof. By Theorem 2.4 we have that Gλ is nonempty and the item (i) holds.
Now, suppose that the item (ii) does not hold; then there exist a subsequence

{(hnk
, gnk

)} of {(hn, gn)} and a number ε > 0, such that

inf
θ,y∈R;~ψ∈Gλ

‖(eiθhnk
(·+ y), gnk

(·+ y))− ~ψ‖1× 1
2
≥ ε

for all k ∈ N. But, since {(hnk
, gnk

)} itself is a minimizing sequence for Mλ, from
statement (i), it follows that there exist sequences {ynk

}, {θnk
} and ~ψ ∈ Gλ such

that
lim inf
n→∞

inf
θ,y∈R;~ψ∈Gλ

‖(eiθnkhnk
(·+ ynk

), gnk
(·+ ynk

))− ~ψ‖1× 1
2

= 0.

This contradiction proves statement (ii).
Finally, since the functionals Wc,ω and F are invariants under rotations and

translations, Gλ contains any rotations and translation of ~ψ, if it contains ~ψ, and
hence statement (iii) follows immediately from statement (ii). This completes the
Corollary. �

In the following we establish some remarks and some sets which will be used for
the problem of stability. If we define the minimization problem

Mc(ω) = inf
(h,g)∈XC

Wc,ω(h, g)
[F(h, g)]2/3

, (2.7)

it is easy to see that for a, b ∈ R− {0} and a2 = b2, we have
Wc,ω(ah, bg)
[F(ah, bg)]2/3

=
Wc,ω(h, g)
[F(h, g)]2/3

. (2.8)

Moreover,
Mc(ω) = inf

(h,g)∈XC
Wc,ω(h, g) : F(h, g) = 1}. (2.9)

so, if (h, g) ∈ XC and satisfies Wc,ω(h, g) = Mc(ω) and F(h, g) = 1, then from
Theorems 2.3 and 2.4 we obtain that there are θ ∈ R, a positive function f and
K > 0, such that h = eiθeicx/2f and (φ, ψ) = (± K√

2αβ
f,− K

α g) is a solution of
(1.4). Hence, Mc(ω) = Wc,ω(h, g) = V (f, g) and F (f, g) = 1, and so (2.9) can be
written as

Mc(ω) = inf
(f,g)∈XR

{V (f, g) : F (f, g) = 1} = I1. (2.10)

Next, for α = 2β, ω > c2/4 and c > 0, we define our main set in the study of
stability,

Sc,ω = {(eiθeicx/2φ, ψ) : (φ, ψ) ∈ XR, F (φ, ψ) = − 1
3β
V (φ, ψ) = − 1

27β3
[Mc(ω)]3}.

(2.11)
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Hence, for (eiθeicx/2φ, ψ) ∈ Sc,ω we have that (φ, ψ) satisfies (1.4) with α = 2β. In
fact, let F (φ, ψ) = λ, then since Wc,ω(eiθeicx/2φ, ψ) = V (φ, ψ) it follows from (2.8)
that

Wc,ω(eiθeicx/2
1

λ1/3
φ,

1
λ1/3

ψ) =
Wc,ω(eicx/2φ, ψ)

[F(φ, ψ)]2/3
=

V (φ, ψ)
[F (φ, ψ)]2/3

= Mc(ω),

thus (eicx/2 1
λ1/3φ,

1
λ1/3ψ) ∈ G1 and therefore there is K0 ∈ R such that

−φ′′ + (ω − c2

4
)φ =

K0

λ1/3
ψφ

−γHψ′ + cψ =
K0

2λ1/3
φ2.

Hence V (φ, ψ) = 3K0
2λ1/3F (φ, ψ) and so it follows that −β = K0

2λ1/3 . This shows the
claim.

Now we are going to give our definition of stability used here.

Definition 2.6. Let (X, ‖ · ‖X) be a Hilbert space and Y a subspace of X. A set
S ⊂ X is X-stable with respect to (1.1) (or to (1.2)) if for all ε > 0, there is δ > 0
such that for all (u0, v0) ∈ Y with

inf
(Φ,Ψ)∈S

‖(u0, v0)− (Φ,Ψ)‖X < δ

the solution (u(t), v(t)) of (1.1) (or (1.2)) with (u(0), v(0)) = (u0, v0) can be ex-
tended to a global solution in C([0,∞);Y ) and

sup
0≤t<∞

inf
(Φ,Ψ)∈S

‖(u(t), v(t))− (Φ,Ψ)‖X < ε.

Otherwise S is called X-unstable.

We shall show here that the set Sc,ω defined in (2.11) is XC-stable (Theo-
rem 2.12 below). In order to prove it we need several lemmas. Initially, for
(Φc,ω(ξ),Ψc,ω(ξ)) = (eicξ/2φc,ω(ξ), ψc,ω(ξ)) ∈ Sc,ω we define the following func-
tional

d(c, ω) = E1(Φc,ω,Ψc,ω) + ωH(Φc,ω) + c G1(Φc,ω,Ψc,ω), (2.12)
where E1, H, and G1 are defined in (1.14) and (1.16). Also, we define the following
function a one parameter ω,

dc(ω) ≡ d(c, ω) (2.13)

where c > 0 is fixed and ω ∈ ( c
2

4 ,∞). So, we have the following two basic features
of the function dc, namely, dc(·) is constant on Sc,ω and dc(·) is strictly increasing.
In fact, from (2.1), (2.2), (2.11) and (2.12) we get that for any (Φc,ω,Ψc,ω) ∈ Sc,ω

dc(ω) = Wc,ω(eicξ/2φc,ω, ψc,ω) + αF(eicξ/2φc,ω, ψc,ω)

= V (φc,ω, ψc,ω) + αF (φc,ω, ψc,ω) =
1
3
V (φc,ω, ψc,ω)

= −βF (φc,ω, ψc,ω) = −βF(Φc,ω,Ψc,ω)

=
1

27β2
[Mc(ω)]3.

(2.14)

Now, let ω < ω1 and let (h, g) be a minimizer for Mc(ω1), then it follows that

Mc(ω) ≤ Wc,ω(h, g)
[F(h, g)]2/3

= Mc(ω1) + (ω − ω1)

∫
R |h|

2dx

[F(h, g)]2/3
< Mc(ω1), (2.15)
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and so from (2.14) we obtain that dc(ω) is strictly increasing.

Remark 2.7. (i) For a fixed c > 0 , it is easy to show that Mc(ω) is a continuous
function on ( c

2

4 ,∞). In fact, from the relations

0 ≤Mc(ω1)−Mc(ω) ≤ ω1 − ω

ω − (c2/4)
Mc(ω) for ω1 > ω

0 ≤Mc(ω)−Mc(ω1) ≤
ω − ω1

ω1 − (c2/4)
Mc(ω) for ω1 < ω,

it follows the continuity.
(ii) If we consider

αc(ω) = inf
{∫

R
|Φc,ω(x)|2dx : (Φc,ω,Ψc,ω) ∈ Sc,ω

}
βc(ω) = sup

{∫
R
|Φc,ω(x)|2dx : (Φc,ω,Ψc,ω) ∈ Sc,ω

}
,

then we get from (2.15) and (2.11) that for ω < ω1,

9β2αc(ω1)
[Mc(ω1)]2

≤ Mc(ω1)−Mc(ω)
ω1 − ω

≤ 9β2βc(ω)
[Mc(ω)]2

. (2.16)

Hence from (2.16) it is possible to show that Mc is differentiable at ω1 if and only
if αc(ω1) = βc(ω1) (see [10, Lemma 4.3]). Therefore from the last affirmation and
from (2.14) we can conclude that dc(·) is differentiable at all but countably many
points of ( c

2

4 ,∞).

From item (ii) we can assume, without losing of generality, that Mc is differen-
tiable. We now state without proof a lemma due to Shatah [16] related to strictly
convex functions.

Lemma 2.8. Let h be any function which is strictly convex in an interval I about
ω. Then given ε > 0, there exists N(ε) > 0 such that for ω1 ∈ I and |ω1 − ω| ≥ ε
we have

(1) For ω1 < ω < ω0, |ω0 − ω| < ε/2, ω0 ∈ I, then

h(ω1)− h(ω0)
ω1 − ω0

≤ h(ω)− h(ω0)
ω − ω0

− 1
N(ε)

.

(2) For ω0 < ω < ω1, |ω0 − ω| < ε/2, ω0 ∈ I, then

h(ω1)− h(ω0)
ω1 − ω0

≥ h(ω)− h(ω0)
ω − ω0

+
1

N(ε)
.

It follows from Lemma 2.8 and from the inequalities in (2.16) the following result
for the function dc(·).

Lemma 2.9. Suppose that dc(·) is strictly convex in an interval I around ω. Then
given ε > 0, there exists N(ε) > 0 such that for ω1 ∈ I and |ω1 − ω| ≥ ε we have

dc(ω1) ≥ dc(ω) + βc(ω)(ω1 − ω) +
1

N(ε)
(ω − ω1) for ω1 < ω,

dc(ω1) ≥ dc(ω) + αc(ω)(ω1 − ω) +
1

N(ε)
(ω1 − ω) for ω1 > ω.
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For ε > 0 define the following ε-neighborhood of set Sc,ω,

Uc,ω,ε = {(u, v) ∈ XC : inf
(Φ,Ψ)∈Sc,ω

‖(u, v)− (Φ,Ψ)‖
1× 1

2
< ε},

then we have the following Lemma.

Lemma 2.10. Let α = 2β and a fixed c > 0. We consider for (Φc,ω,Ψc,ω) ∈ Sc,ω
the function

dc(ω) ≡ −βF(Φc,ω,Ψc,ω)
with ω ∈ (c2/4,∞). Then, there is a small ε and a C1-map ρ : Uc,ω,ε → (c2/4,∞),
defined by

ρ(u, v) = d−1
c (−βF(u, v)), (2.17)

such that ρ(Φc,ω,Ψc,ω) = ω for any (Φc,ω,Ψc,ω) ∈ Sc,ω.

Proof. Since dc(·) is a strictly increasing continuous mapping, Sc,ω is a bounded set
in XC and the function (h, g) → F(h, g) is uniformly continuous on bounded set, it
follows immediately the Lemma. �

Lemma 2.11. Let α = 2β and a fixed c > 0. Suppose that dc is strictly convex in
an interval I around ω. Then there exists ε > 0 such that for all ~u = (u, v) ∈ Uc,ω,ε
and any ~Φ = (Φc,ω,Ψc,ω) ∈ Sc,ω,

E1(~u)−E1(~Φ)+ρ(~u)(H(~u)−H(~Φ))+ c(G1(~u)−G1(~Φ)) ≥ 1
N(ε)

|ρ(~u)−ω|, (2.18)

where ρ(~u) is defined in (2.17) and N(ε) is given by Lemma 2.9.

Proof. Let ε be small enough such that ρ(Uc,ω,ε) ⊂ (ω − η,∞) ⊂ ( c
2

4 ,∞) for η > 0
small. Then, since

E1(~u) + ρ(~u)H(~u) + cG1(~u) = Wc,ρ(~u)(~u) + αF(~u), (2.19)

dc(ρ(~u)) = −βF(~u) and dc(ρ(~u)) = −βF(Φc,ρ(~u),Ψc,ρ(~u)) (see (2.14)), we get that
F(~u) = F(Φc,ρ(~u),Ψc,ρ(~u)). Therefore

Wc,ρ(~u)(~u) ≥ Wc,ρ(~u)(Φc,ρ(~u),Ψc,ρ(~u)). (2.20)

Then from (2.19), (2.20), the first equality in (2.14), Remark 2.7 and Lemma 2.9 it
follows

E1(~u) + ρ(~u)H(~u) + cG1(~u) ≥ Wc,ρ(~u)(Φc,ρ(~u),Ψc,ρ(~u)) + αF(Φc,ρ(~u),Ψc,ρ(~u))

= dc(ρ(~u))

≥ dc(ω) +H(~Φ)(ρ(~u)− ω) +
1

N(ε)
|ρ(~u)− ω|

= E1(~Φ) + cG1(~Φ) + ρ(~u)H(~Φ) +
1

N(ε)
|ρ(~u)− ω|.

This proves the Lemma. �

Now we are ready to prove our theorem of stability of the set of travelling waves
Sc,ω in XC.

Theorem 2.12. Let α = 2β and a fixed c > 0. Suppose that dc is strictly convex
in an interval I around ω then the set Sc,ω is XC-stable with respect to equation
(1.1).
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Proof. Assume that Sc,ω is XC-unstable and choose initial data ~uk(0) ∈ Uc,ω,1/k,
such that

sup
0≤t<∞

inf
~Φ∈Sc,ω

; ‖~uk(t)− ~Φ‖
1× 1

2
≥ δ,

where ~uk(t) = (uk(t), vk(t)) is the solution of (1.1) with initial data ~uk(0). Then,
by continuity in t, we can find tk such that

inf
~Φ∈Sc,ω

‖~uk(tk)− ~Φ‖
1× 1

2
= δ. (2.21)

By definition of Uc,ω,1/k, and since E1,H, and G1 are invariants of the equation
(1.1), we can find ~Φk ∈ Sc,ω such that

|E1(~uk(tk))− E1(~Φk)| = |E1(~uk(0))− E1(~Φk)| → 0

|H(~uk(tk))−H(~Φk)| = |H(~uk(0))−H(~Φk)| → 0

|G1(~uk(tk))−G1(~Φk)| = |G1(~uk(0))−G1(~Φk)| → 0

as k →∞. Moreover, by choosing δ small enough in Lemma 2.11 it follows that

E1(~uk(tk))− E1(~Φk) + ρ(~uk(tk))(H(~uk(tk))−H(~Φk)) + c(G1(~uk(tk))−G1(~Φk))

≥ 1
N(ε)

|ρ(~uk(tk))− ω|.

Since ~uk(tk) is uniformly bounded for k, it follows from the last inequality that
ρ(~uk(tk)) → ω, as k →∞. Hence, by (2.17) and the continuity of dc we have

lim
k→∞

βF(~uk(tk)) = −dc(ω). (2.22)

On the other hand, for (2.1) and (2.14) (dc(·) is constant on Sc,ω) we have

Wc,ω(~uk(tk)) = E1(~uk(tk)) + ωH(~uk(tk)) + cG1(~uk(tk))− αF(~uk(tk))

= dc(ω) + E1(~uk(tk))− E1(~Φk) + c(G1(~uk(tk))−G(~Φk))

+ ω(H(~uk(tk))−H(~Φk))− αF(~uk(tk)),

then by (2.22) and (2.14)

lim
k→∞

Wc,ω(~uk(tk)) = dc(ω) + 2dc(ω) = 3dc(ω) =
1

9β2
[Mc(ω)]3.

Let ~wk(tk) = [F(~uk(tk))]−1/3~uk(tk), then F(~wk(tk)) = 1, and so from (2.14) and
(2.22) we conclude that

lim
k→∞

Wc,ω(~wk(tk)) = lim
k→∞

[F(~uk(tk))]−2/3Wc,ω(~uk(tk))

=
( β

dc(ω)
)2/3 1

9β2
[Mc(ω)]3 = Mc(ω).

Therefore, ~wk(tk) is a minimizing sequence for M1 and by Theorem 2.4 and Corol-
lary 2.5 there exists ~ψk ∈ G1 such that

lim
k→∞

‖~wk(tk)− ~ψk‖1× 1
2

= 0. (2.23)

Now from Theorem 2.4, ~ψk = (eicx/2fk, gk) for (fk, gk) ∈ G1, hence there exists
K > 0 such that (φk, ψk) = (−K

α fk,−
K
α gk) is a solution of (1.4). Then, since
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K = 2
3Mc(ω), it follows that ~Ψk = (eicx/2φk, ψk) ∈ Sc,ω and so from (2.23)

lim
k→∞

‖~wk(tk)− 3β[Mc(ω)]−1~Ψk‖1× 1
2

= 0. (2.24)

Therefore, from (2.24) and being Sc,ω a bounded set in XC we have

‖~uk(tk)− ~Ψk‖1× 1
2

= |F(~uk(tk))|1/3‖[F(~uk(tk))]−1/3(~uk(tk)− ~Ψk)‖1× 1
2

≤ |F(~uk(tk))|1/3
[
‖~wk(tk)− 3β[Mc(ω)]−1~Ψk‖1× 1

2

+A|[F(~uk(tk)]−1/3 + 3β[Mc(ω)]−1|

and therefore we have that ‖~uk(tk)− ~Ψk‖1× 1
2
→ 0 as k →∞. But by (2.21) we get

a contradiction. This shows the Theorem. �

Next, we show the existence of intervals close to c2/4 where the function ω →
dc(ω) is convex. In fact, for σ = ω − c2

4 > 0 define

f(x) =
σ2

1 + (
√
σx)2

, g(x) =
σ5/2

1 + (
√
σx)2

,

functions in H1
R(R) and H1/2

R (R) respectively. Then, from
∫∞
−∞[f ′(x)]2 dx = k0σ

9/2,∫∞
−∞[D1/2g(x)]2 dx = k1σ

5,
∫∞
−∞[f(x)]2 dx = k2σ

7/2,
∫∞
−∞[g(x)]2 dx = k3σ

9/2, and∫∞
−∞ g(x)f2(x) dx = k4σ

6, with ki > 0, we have that V (f, g) = k0σ
9/2+(−γk1)σ5+

k2σ
9/2 +ck3σ

9/2, where γ < 0 and c > 0. Therefore, from (2.7) and (2.10) it follows

Mc(ω) ≤ V (f, g)
[N(f, g)]2/3

≤ k5(σ1/2 + σ).

Hence, (2.14) implies the inequality

0 < dc(ω) ≤ k6

(
(ω − c2

4
)3/2 + (ω − c2

4
)3

)
≡ jc2/4(ω). (2.25)

Therefore, since the function ω ∈ [c2/4,∞) → jc2/4(ω) vanishes to first order
at ω = c2/4 and is convex, we obtain from (2.25) and from the positivity and
monotonicity of dc (as function of ω), the existence of intervals of convexity close
to c2/4.

3. Existence and stability of solitary waves for the
Schrödinger-KdV equation

In this section, we give a theory of existence and stability of solitary waves
solutions for equation (1.2) based on the same ideas exposed in the second section.
Initially, we have the results of existence, which are based essentially on the works
of Lopes [14, 15] on the Concentration Compactness Principle. In fact, if we denote
the set of minimizers in YR = H1

R(R)×H1
R(R) for Jλ (defined in (1.10)) by

Pλ = {(f, g) ∈ YR : Z(f, g) = Jλ and N(f, g) = λ}, . (3.1)

We have the following existence theroem.

Theorem 3.1. Let αβ > 0, µ = −3α, σ, η > 0, c > γ, and let λ be any positive
number. Then, any minimizing sequence {(fn, gn)} for Jλ is relatively compact
in YR up to translation, i.e., there are subsequences {(fnk

, gnk
)} and {ynk

} ⊂ R
such that (fnk

(· − ynk
), gnk

(· − ynk
)) converges strongly in YR to some (f, g) which
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is a minimum of Jλ. Therefore, Pλ 6= ∅ and there are non-trivial solitary waves
solutions (φ, ψ) = (± K√

2αβ
f,−K

α g) for equation (1.5) with K > 0.

The proof of the above theorem is an immediate application of the results in
[14, 15].

Remark 3.2. ¿From the equality

ψ(x) = − 1
2
√
η(c− γ)

K ∗ (
3α
2
ψ2 + βφ2)(x), (3.2)

where K(x) = exp(−
√
c−γ√
η |x|), it follows that for α > 0, we have ψ < 0, and for

α < 0, we have ψ > 0.

Remark 3.3. Following the same techniques used in [2], we can show that if
(f, g) ∈ Pλ then (|f |, g) ∈ Pλ, and therefore φ(x) > 0 for all x, or, φ(x) < 0 for all
x. Moreover, we can show that each component of (f, g) is even and is a strictly
decreasing positive functions on (0,+∞), up to translations.

Now, in the same spirit of section 2 we consider the following minimization
problem in YC = H1

C(R)×H1
R(R) for λ > 0

Jλ = inf{Qc,ω(h, g) : (h, g) ∈ YC and N (h, g) = λ},

where

Qc,ω(h, g) =
∫

R
|h′(x)|2+η(g′(x))2+ω|h(x)|2+(c−γ)g2(x) dx+c Im

∫
R
h(x)h′(x) dx,

η > 0, ω > c2

4 , c > γ, and

N (h, g) =
∫

R
g(x)[|h(x)|2 + g2(x)] dx. (3.3)

Also, we denote the set of minimizers for Jλ by Pλ, namely,

Pλ = {(h, g) ∈ YC : Qc,ω(h, g) = Jλ and N (h, g) = λ}. (3.4)

Next, we shall show that every minimizing sequence for Jλ converges strongly
in YC, up to rotations and translations, to some element of Pλ. Initially, we have a
similar result as in Theorem 2.3. Let the following minimization problem be

JC
λ = inf{ZC(h, g) : (h, g) ∈ YC and N (h, g) = λ},

where λ > 0,

ZC(h, g) =
∫

R
[|h′(x)|2 + η(g′(x))2 + σ|h(x)|2 + (c− γ)g2(x)]dx,

and N as in (3.3), then we have the following results.

Lemma 3.4. Let αβ > 0, σ, η > 0, µ = −3α, c > γ, and let λ be any positive
number. Then, any minimizing sequence {(hn, gn)} for JC

λ is relatively compact in
YC up to translation, i.e., there are subsequences {(hnk

, gnk
)} and {ynk

} ⊂ R such
that (hnk

(· − ynk
), gnk

(· − ynk
)) converges strongly in YC to some (h, g) which is a

minimum of JC
λ . Moreover, (h, g) = (eiθf, g) where θ ∈ R and (f, g) ∈ Pλ.

The proof of the lemma above is similar to the proof of Theorem 2.3.
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Theorem 3.5. Let αβ > 0, µ = −3α, η > 0, c > γ, ω > c2

4 and λ > 0. Then, any
minimizing sequence {(hn, gn)} for Jλ is relatively compact in YC up to rotations
and translation, i.e., there are subsequences {(hnk

, gnk
)} and {ynk

} ⊂ R such that
(eicyk/2hnk

(· − ynk
), gnk

(· − ynk
)) converges strongly in YC to some (h, g) which is

a minimum of Jλ. Moreover, (h, g) = (eiθeicx/2f, g) where (f, g) ∈ Pλ.

The proof of the above theorem is similar to the proof in Theorem 2.4.

Corollary 3.6. Let αβ > 0, µ = −3α, η > 0, c > γ, ω > c2

4 and λ > 0. Then,
the set Pλ is nonempty. Moreover, if {(hn, gn)} is any minimizing sequence for Jλ
then

(i) There exist sequences {yn}, {θn} and an element (h, g) ∈ Pλ such that
{(eiθnhn(· + yn), gn(· + yn))} has a subsequence converging strongly in YC
to (h, g).

(ii) limn→∞ infθ,y∈R;~ψ∈Jλ
‖(eiθhn(·+ y), gn(·+ y))− ~ψ‖1×1 = 0.

(iii) limn→∞ inf ~ψ∈Jλ
‖(hn, gn)− ~ψ‖1×1 = 0.

The proof of the above corollary is similar to the proof of Corollary 2.5.
Now, defining the following minimization problem

Tc(ω) = inf
(h,g)∈YC

Qc,ω(h, g)
[N (h, g)]2/3

, (3.5)

we have that
Tc(ω) = inf

(h,g)∈YC
{Qc,ω(h, g) : N (h, g) = 1}, (3.6)

and therefore from Theorem 2.3 it follows that (3.6) can be written as

Tc(ω) = →
(f,g)∈YR

Inf { Z(f, g) : N(f, g) = 1}.

For α = 2β, µ = −3α, ω > c2

4 and c > γ, we define the set

Bc,ω = {(eiθeicx/2φ, ψ)| (φ, ψ) ∈ YR, N(φ, ψ) = − 1
3β
Z(φ, ψ) = − 1

27β3
[Tc(ω)]3}.

(3.7)
Therefore, if (eiθeicx/2φ, ψ) ∈ Bc,ω then (φ, ψ) satisfies (1.5) with α = 2β and
µ = −3α.

To establish stability for (1.2), for (Πc,ω(ξ),Θc,ω(ξ)) = (eicξ/2φc,ω(ξ), ψc,ω(ξ)) in
Bc,ω, we define the following function with a parameter ω,

d(2)
c (ω) ≡ d(2)(c, ω) (3.8)

where
d(2)(c, ω) = E2(Πc,ω,Θc,ω) + ω H(Πc,ω) + cG2(Πc,ω,Θc,ω),

with E2, H, G2 defined in (1.14) and (1.18), c > γ and ω ∈ ( c
2

4 ,∞). Therefore,
as in section 2, we get that d(2)

c is constant on Bc,ω and is strictly increasing as a
function of ω. Moreover, for any (Πc,ω,Θc,ω) ∈ Bc,ω we have

d(2)
c (ω) = −βN (Πc,ω,Θc,ω) =

1
27β2

[Tc(ω)]3. (3.9)

So, we have the following result of nonlinear stability of the set Bc,ω. Its proof
follows the same lines of the proof of Theorem 2.12.
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Theorem 3.7. Let α = 2β, µ = −3α, η > 0, ω > c2

4 and c > γ. Suppose that for c
fixed, d2

c is strictly convex in an interval I around ω, then the set Bc,ω is YC-stable
with respect to (1.2).

Finally, we note that is possible to show the existence of intervals around of c2/4
where the function ω → d

(2)
c (ω) is convex. In fact, for σ = ω − c2

4 > 0 define

f(x) = e−
√
σ|x| sinσ3/2|x|,

g(x) = e−
√
σ|x| sinσ2|x|

functions in H1
R(R). Then from the relations∫ ∞

−∞
[f ′(x)]2 dx =

σ5/2

2
,

∫ ∞

−∞
[g′(x)]2 dx =

σ7/2

2
,∫ ∞

−∞
[f(x)]2 dx =

σ3/2

2(1 + σ2)
,

∫ ∞

−∞
[g(x)]2 dx =

σ5/2

2(1 + σ3)
,∫ ∞

−∞
g(x)f2(x) dx = − 4σ3(σ3 − 27− 4σ2)

σ3(σ3 − 27− 4σ2)2 + (9σ3 − 27− 12σ2)2
,∫ ∞

−∞
g3(x) dx =

4σ4

3(1 + σ3)(9 + σ3)
,

we have

Z(f, g) ≤ [1 + (c− γ)]σ5/2 + σ7/2

N(f, g) ≥ 4σ3

σ3(σ3 − 27− 4σ2)2 + (9σ3 − 27− 12σ2)2
,

where in the last inequality we choose σ such that 27 + 4σ2 − σ3 ≥ 1, for example
σ < 1. Therefore, from (3.5),

Tc(ω) ≤ k0

σ2
([1 + (c− γ)]σ5/2 + σ7/2)(σ2 + 1)

≤ k0([1 + (c− γ)]σ5/2 + σ7/2 + σ3/2 + [1 + (c− γ)]σ1/2).

Hence, (3.9) implies

d(2)
c (ω) ≤ k1

(
[1 + (c− γ)]3[(ω − c2

4
)15/2 + (ω − c2

4
)3/2]

+ (ω − c2

4
)21/2 + (ω − c2

4
)9/2

)
≡ hc2/4(ω).

(3.10)

Therefore, since the function ω ∈ [c2/4,∞) 7→ hc2/4(ω) vanishes to first order
at ω = c2/4 and is convex, we obtain from (3.10) and from the positivity and
monotonicity of d(2)

c (as function of ω), the existence of intervals of convexity close
to c2/4.

Acknowledgments. The author is grateful to the referee for his/her helpful com-
ments which led to the improvement of this paper.



18 J. ANGULO EJDE-2006/72

References

[1] J. Albert and J. Angulo; Existence and stability of ground-state solutions of a Schrödinger-
KdV system, Proc. Roy. Soc. Edinburgh, Sect. A, Vol. 133 (2003), no. 5, 987-1029.

[2] J. Angulo and J. F. Montenegro; Existence and evenness of solitary-wave solutions for an

equation of short and long dispersive waves, Nonlinearity, Vol. 13 (2000), no. 5, 1595-1611.
[3] D. Bekiranov, T. Ogawa and G. Ponce; Interaction equation for short and long dispersive

waves, J. Funct. Anal., Vol. 158 (1998), 357-388.

[4] D. Bekiranov, T. Ogawa and G. Ponce; Weak solvability and well-posedness of a coupled
Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Proc. Amer.

Math. Soc., Vol. 125 (1997), no. 10, 2907–2919.
[5] T. Cazenave and P.-L. Lions; Orbital stability of standing waves for some nonlinear

Schrödinger equations, Comm. Math. Phys., Vol. 85 (1982), 549–561

[6] A. Fernandez and F. Linares; Well-posedness for the Schrödinger-Korteweg-de Vries equation
Preprint (2004).

[7] M. Funakoshi and M. Oikawa; The resonant interaction between a long internal gravity wave

and a surface gravity wave packet, J. Phys. Soc. Japan , Vol. 52 (1983), 1982–1995.
[8] M. Grillakis, J. Shatah, and W. Strauss; Stability theory of solitary waves in the presence of

symmetry II, J. Funct. Anal., Vol.94 (1990), 308–348.

[9] T. Kawahara, N. Sugimoto and T. Kakutani; Nonlinear interaction between short and long
capillary-gravity waves, J. Phys. Soc. Japan , Vol. 39 (1975), 11379–1386.

[10] S. Levandosky; Stability and instability of fourth-order solitary waves, J. Dynam. Diff. Eqs.,

Vol. 10 (1998), 151-188.
[11] C. Lin; Orbital stability of solitary waves of the nonlinear Schrödinger-KDV equation, J.

Partial Diff. Eqs. , Vol. 12 (1999), 11–25.
[12] P. L. Lions; The concentration-compactness principle in the calculus of variations. The locally

compact case, part 1, Ann. Inst. H. Poincaré, Anal. Non linéare , Vol. 1 (1984), 109–145.
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