
Electronic Journal of Differential Equations, Vol. 2006(2006), No. 73, pp. 1–12.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS OF A BOUNDARY-VALUE PROBLEM
FOR A DIFFERENTIAL EQUATION WITH DAMPING AND

ACTIVELY BOUNDED DELAYED FORCING TERM

GEORGE L. KARAKOSTAS

Abstract. Sufficient conditions are given for the existence of positive solu-
tions of a boundary-value problem concerning a second-order delay differential

equation with damping and forcing term whose the delayed part is an ac-

tively bounded function, a meaning which is introduced in this paper. The
Krasnoselskii fixed point theorem on cones in Banach spaces is used.

1. Introduction

We deal with the existence of positive solutions of a boundary-value problem
concerning a second order delay differential equation of the form

x′′(t) + p(t)x′(t) + q(t)x(t) + f(t, xt) = 0, t ∈ I := [0, 1], (1.1)

where the delayed part f(t, xt) of the forcing term is an actively bounded function,
a meaning which is introduced in this paper. Also, it is assumed that the coefficient
p(t) of the damping term can be written as the sum of two (suitable) functions,
p1(t) + p2(t). Such a split depends on the coefficient q(t) of the instantaneous part
of the forcing term and it affects our conditions.

As it is noted elsewhere (see, e.g. [9, 15]), boundary-value problems associated
with delay differential equations are generated from topics of physics and variational
problems of control theory, as well as from applied mathematics appeared early in
the literature. The literature contains a relatively great number of works dealing
with the existence of solutions of boundary-value problems which are associated not
necessary with ordinary differential equations. For example, in the book [1] one can
find such problems for difference and integral equations, in [6] for equations whose
the solutions depend on the past and on the future, in [12] for equations with
deviating arguments, etc. Moreover a great deal can be met in the literature for
the case of delay differential equations. We refer, for instance to [2, 4, 8, 10, 11, 13,
16, 17, 18, 19, 20, 21, 24, 25, 26] and to the references therein. Significant results
are also given in [3, 7, 23, 27].

Most of the works mentioned above apply the fixed point of Krasnoselskii [22],
which states as follows:
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Theorem 1.1. Let B be a Banach space and let K be a cone in B. Assume that
Ω1 and Ω2 are open subsets of B, with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2,

or
‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \ Ω1).

Recall that an operator A : X → Y is completely continuous if it is continuous
and maps bounded sets into precompact sets.

We notice that when the (Fixed Point) Theorem 1.1 is applied to boundary-
value problems for functional diferential equations the most crucial point is to
provide such conditions on the forcing term (which depends on the history of the
solution) which (conditions) guarantee the fact that the corresponding integral
operator satisfies the two alternatives of Krasnoselskii’s fixed point theorem. In this
article, in order to cover the autonomous and nonautonomous cases, the continuous
and discrete delay, as well as the atomic and the nonatomic response, we give an
improvement of these conditions by introducing the meaning of what we call actively
bounded function. Before we explain it, some notation is needed.

Let R be the real line (−∞,+∞) and let R+ be the set of nonnegative reals.
We shall denote by C0(I) the space of all continuous functions x : I → R, with
x(0) = 0. This is a Banach space, when it is furnished with the usual sup-norm
‖ · ‖I . We set

C+
0 (I) := {x ∈ C0(I) : x(t) ≥ 0, t ∈ I}.

Fix any r ≥ 0, set J := [−r, 0] and consider the Banach space C(J) of all
continuous functions ψ : J → R furnished with the sup-norm ‖ · ‖J . Let C+(J) be
the set of all ψ ∈ C(J) such that ψ(s) ≥ 0, for all s ∈ J . Also let C+

0 (J) be the
subset of C+(J) whose elements vanish at 0.

2. The class of Actively Bounded Functions

Here we introduce the meaning of the actively bounded functions and give some
examples.

Definition 2.1. We call a function f(·, ·) : I × C+(J) → R+ actively bounded, if
there are two measurable real nonnegative functions L0(t,m,M) and ω(t,m,M),
t ∈ I and 0 < m < M < +∞, as well as for each t ∈ I a nonempty closed set
Θt ⊆ J such that

ω(t,m,M) ≤ f(t, ψ) ≤ L0(t,m,M),

for all t ∈ I and ψ ∈ P (t,m,M), where

P (t,m,M) := {ψ ∈ C+(J) : m ≤ inf
s∈Θt

ψ(s), ‖ψ‖J ≤M}.

Let Θt(f) be the smallest set of the form Θt. We denote by FAB the class of all
actively bounded functions.



EJDE-2006/73 POSITIVE SOLUTIONS 3

Remark 2.2. It is easy to see that for two elements f, g of FAB it holds

Θt(f + g) = Θt(fg) = Θt(f) ∪Θt(g).

Thus the sum and the product of two elements f, g of FAB is again an element of
FAB .

The class of actively bounded functions is wide. In the next paragraph we give
some examples of classes of general forms of actively bounded functions, which, by
using Remark 2.2, may produce new forms of such functions. A specific example of
an actively bounded function is presented in the last section.

Example 2.3. Consider points r = s1 > s2 > · · · > sk ≥ 0 and a function of the
form

f(t, ψ) := f̂(t, ψ(−s1), ψ(−s2), . . . , ψ(−sk)), ψ ∈ C+(J),

where J := [−r, 0], f̂ : I × (R+)k → R+ is continuous. This is an element of the
class FAB with

Θt(f) := {−s1,−s2, . . . ,−sk},

ω(t,m,M) := min{f̂(t, ξ1, ξ2, . . . , ξk) : m ≤ ξj ≤M, j = 1, 2, . . . , k},

L0(t,m,M) := max{f̂(t, ξ1, ξ2, . . . , ξk) : m ≤ ξj ≤M, j = 1, 2, . . . , k},

Example 2.4. Consider the continuous functions τj : I → (−∞, 1], j = 1, 2, . . . , k
such that for some r > 0 it holds −r ≤ τj(t) − t ≤ 0, for all t ∈ I and j ∈
{1, 2, . . . , k}. Let the function

f(t, ψ) := f̂(t, ψ(τ1(t)− t), ψ(τ2(t)− t), . . . , ψ(τk(t)− t)), ψ ∈ C+(J),

where J := [−r, 0] and the function f̂ : I × (R+)k → R+ is continuous. Then f is
an actively bounded function, with

Θt(f) := {τ1(t)− t, τ2(t)− t, . . . , τk(t)− t}

and ω, L0 as in Example 2.3.

Example 2.5. Let r > r′ > 0 and consider a function

f(t, ψ) :=
∫ −r′

−r
K(t, s, ψ(s))ds, ψ ∈ C+(J),

where K : I × [−r,−r′] ×R+ → R+ is continuous and such that for some closed
nonempty Θ ⊆ J := [−r, 0] it satisfies

∫
Θ
K(t, s, ξ)ds > 0, for all t ∈ I and ξ ≥ 0.

This is an actively bounded function, with Θt(f) being the intersection of all such
Θ, for all t ∈ I.

Example 2.6. Assume that f1 : I × C+(J) → R+ and f2 : C+(J) → (0,+∞) are
two actively bounded functions and consider the function

f(t, ψ) :=
f1(t, ψ)
f2(ψ)

: I × C+(J) → R+.

It is not hard to see that this is an actively bounded function with Θt(f) := Θt(f1)∪
Θt(f2).
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3. On the Formulation of the BVP

The basic theory of delay differential equations is exhibited in several places of
the literature. Especially we refer to the (already) classical books [9, 14, 15], which
are basic sources on the subject.

For any continuous function y defined on the interval [−r, 1] and any t ∈ [0, 1] =:
I, the symbol yt is used to denote the element of C(J) defined by

yt(s) = y(t+ s), s ∈ J.

The initial condition which associates (1.1) is of the form

x0 = φ, (3.1)

and the boundary condition is

ax(1) + bx′(1) = 0. (3.2)

Here φ is an element of C+
0 (J) and a, b are nonnegative real numbers, with

a+ b > 0.

The latter is motivated mainly by the works [16, 20, 21].
Our purpose is to establish sufficient conditions for the existence of positive

solutions of the boundary-value problem (BVP) (1.1), (3.1), (3.2).
Here we want to make clear what makes the difference between the ordinary and

the delay case and, in particular, what is going to be proved for the delay boundary-
value problem. It is well known that in the ordinary case, namely, when r = 0,
(thus J = {0} and (1.1) is an ordinary differential equation), we are called to give
conditions which guarantee the validity of the following fact: There is a solution x
of the (ordinary differential equation) (1.1) with x(0) = 0 and satisfying condition
(3.2). It follows that uniqueness of such a solution means that there is exactly one
function with these properties. On the other hand in the (nontrivial) delay case
the problem is quite different. Indeed, here we are called to give our response to
the following challenge: Determine a class S of initial functions with the property
that for each φ ∈ S there is a solution x of (1.1) satisfying (3.2) and having initial
value equal to φ, i.e. satisfying condition (3.1). (Notice that some authors use to
extend the situation from the ordinary case by simply assuming that φ(s) = 0, for
all s ∈ J , see, e.g. [5].) Therefore uniqueness of solutions of the BVP (1.1), (3.1),
(3.2) presupposes that there is only one solution with initial value the fixed initial
function φ. Any new initial function from the class S implies new solution of the
boundary-value problem (1.1), (3.1), (3.2). As we shall see later, in this paper the
set S will be a closed ball in the family C+

0 (J).

4. Reformulation of the problem and the main conditions

We shall reformulate the problem (1.1), (3.1), (3.2) by transforming it into a
fixed point problem. The solution of the latter is guaranteed by Theorem 1.1.

Fix a φ ∈ C+
0 (J). For each function x ∈ C0(I) we shall denote by T (·, x;φ) the

function defined on [−r, 1] by T (s, x;φ) := x(s), if s > 0 and = φ(s), if s ≤ 0. It is
easy to see that it holds

‖Tt(·, x1;φ)− Tt(·, x2;φ)‖J ≤ ‖x1 − x2‖I , (4.1)



EJDE-2006/73 POSITIVE SOLUTIONS 5

for all t ∈ I and x1, x2 ∈ C0(I). (Recall that for each t ∈ I the symbol Tt(·, x;φ)
denotes the element of C(J) defined by Tt(s, x;φ) := T (t+ s, x;φ), s ∈ J.) Thus
the function

x→ Tt(·, x;φ) : C0(I) → C(J)
is continuous (uniformly with respect to t).

By a solution of the boundary-value problem (1.1), (3.1), (3.2) we mean a func-
tion x ∈ C0(I) satisfying (3.1), x satisfies condition (3.2) and moreover its second
derivative x′′(t) exists for all t ∈ I and the relation

x′′(t) + p(t)x′(t) + q(t)x(t) + f(t, Tt(·, x;φ)) = 0 (4.2)

is true for all t ∈ I.
Our basic conditions of the problem are stated as follows:
(H1) The functions p, q : I → R are continuous and such that p can be written

in the form
p = p1 + p2,

where p1 continuous, p2 positive and differentiable and moreover they sat-
isfy the inequality

q(t) ≥ p′2(t) + p1(t)p2(t),

for all t ∈ I.
The presence of the instantaneous factor q(t) of the forcing term in (1.1) is quite

technical. One can see that condition (H1) is satisfied even in case p = q = 0.
Indeed, take any c > 0 and put

p2 = c = −p1.

This fact will be used in the example in the last section.
It is, also, assumed that the functions p1 and p2 presented in (H1) are related to

the coefficients a and b appeared in condition (3.2) as follows:
(H2) It holds bp2(1) > a and

b > (bp2(1)− a)
∫ 1

0

e
R 1

s
(p1(v)−p2(v))dvds.

To proceed, we set y(t) := x′(t) and write equation (4.2) in the form

y′(t) + p1(t)y(t) + p2(t)x′(t) + q(t)x(t) + f(t, Tt(·, x;φ)) = 0.

Integrating from t (t ≥ 0) to 1 we obtain

y(t) = y(1)e
R 1

t
p1(s)ds

+
∫ 1

t

[p2(u)x′(u) + q(u)x(u) + f(u, Tu(·, x;φ))]e
R u

t
p1(s)dsdu.

This leads to

x′(t) + p2(t)x(t)

= [x′(1) + p2(1)x(1)]
R 1

t
p1(s)ds +

∫ 1

t

F (u, Tu(·, x;φ))e
R u

t
p1(s)dsdu,

where we have put, for u ∈ I,

F (u, Tu(·, x;φ)) := f(u, Tu(·, x;φ)) +
[
q(t)− p1(u)p2(u)− p′2(u)

]
x(u).
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Also, for simplicity, we set

V (u, s, t) := e
R s

u
p1(u)du−

R t
u
p2(u)du,

E(t) :=
∫ t

0

V (u, 1, t)du.

Thus the solution x satisfies

x(t) = [x′(1) + p2(1)x(1)]E(t) +
∫ t

0

∫ 1

u

V (u, s, t)F (s, Ts(·, x;φ))ds du, t ∈ I.

(4.3)
Next keeping in mind condition (3.2) we set t = 1 in Eq. (4.3) and get a system of
two linear equations with unknowns x(1) and x′(1). Solving the system, we obtain

x(1) =
b

b+ aE(1)− bp2(1)E(1)

∫ 1

0

∫ 1

u

V (u, s, 1)F (s, Ts(·, x;φ))ds du

x′(1) =
−a

b+ aE(1)− bp2(1)E(1)

∫ 1

0

∫ 1

u

V (u, s, 1)F (s, Ts(·, x;φ))ds du.

Hence (4.3) becomes

x(t) = γE(t)
∫ 1

0

∫ 1

u

V (u, s, 1)F (s, Ts(·, x;φ))ds du

+
∫ t

0

∫ 1

u

V (u, s, t)F (s, Ts(·, x;φ))ds du, t ∈ I,
(4.4)

where

γ :=
−a+ p2(1)b

b+ aE(1)− bp2(1)E(1)
.

Because of condition (H2), the constant γ is positive.

Lemma 4.1. A function x is a solution of the boundary-value problem (1.1), (3.1),
(3.2) if and only if it satisfies the operator equation

x = Aφx, (4.5)

where Aφ is the operator defined by

(Aφx)(t) :=
∫ 1

0

G(t, s)F (s, Ts(·, x;φ))ds, x ∈ C+
0 (I). (4.6)

Here the kernel is

G(t, s) := ζ(t ∨ s)e
R 1

t
p2(v)dv

∫ t∧s

0

V (u, s, 1)du, (4.7)

where t∨ s := max{t, s}, t∧ s := min{t, s} and ζ is the increasing function defined
by

ζ(t) := γ

∫ t

0

V (u, 1, 1)du+ 1. (4.8)

Proof. Assume that x is a solution. Then it satisfies (4.4) and so we have

x(t) =
∫ 1

0

∫ 1

u

U(u, s, t)F (s, xs(·;φ))ds du, (4.9)

where
U(u, s, t) := γE(t)V (u, s, 1) + V (u, s, t)χ[0,t](u).
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Here for any set B of real numbers the symbol χB(·) stands for the characteristic
function of B, i.e. χB(u) = 1, if u ∈ B and = 0, otherwise. We apply Fubini’s
Theorem in the second part of (4.9) to obtain

x(t) =
∫ 1

0

G(t, s)F (s, Ts(·, x;φ))ds,

where G(t, s) :=
∫ s
0
U(u, s, t)du. If we assume that s ≤ t, then we obtain

G(t, s) =
∫ s

0

[
γE(t)V (u, s, 1) + V (u, s, t)

]
du

= ζ(t)e
R 1

t
p2(v)dv

∫ s

0

V (u, s, 1)du,
(4.10)

where the function ζ is defined in (4.8). If we assume that s ≥ t, then we get

G(t, s) =
∫ t

0

[
γV (u, 1, t)

∫ s

0

V (v, s, 1)dv + V (u, s, t)
]
du

= ζ(s)e
R 1

t
p2(v)dv

∫ t

0

V (u, s, 1)du.

Therefore, x satisfies the operator equation (4.5), with Aφ being given by (4.6).
To show the inverse, assume that x satisfies (4.5), with Aφ as in (4.6). Apply,

again, Fubibi’s Theorem in the second part of (4.4) and differentiate both sides to
see that x is a solution of the boundary-value problem (1.1), (3.1), (3.2). �

5. Main Results

Now we are ready to present our main results of this article.

Theorem 5.1. Suppose that f(t, φ) is an actively bounded continuous function and
let Θt(f), t ∈ I be the set-valued function in Definition 2.1. Let also L0(t,m,M)
and ω(t,m,M) be the functions defined in Section 2 and let

L(t,m,M) := [q(t)− (p′2(t) + p1(t)p2(t))]M + L0(t,m,M).

Also assume that there are 0 < α < β ≤ 1 and two (distinct) real numbers ρ1, ρ2

such that
1
ρ1

∫ 1

0

G(s, s)L(s,
µ

η
ρ1, ρ1)ds ≤

1
η
,

1
ρ2

sup
t∈I

∫
Σ

G(t, s)ω(s,
µ

η
ρ2, ρ1 ∨ ρ2)ds ≥ 1,

(5.1)

where

Σ := {s ∈ [0, 1] : s+ θ ∈ [α, β], θ ∈ Θs(f)}, (5.2)

µ := min
{
e−

R β
0 p2(v)dv,

∫ α
0
V (u, 1, 1)du∫ 1

0
V (u, 1, 1)du

}
, (5.3)

η := ζ(1)e
R 1
0 p2(v)dv. (5.4)

Then, for any φ ∈ C+
0 (J) with ‖φ‖ ≤ ρ1, there is a positive solution of the boundary-

value problem (1.1), (3.1), (3.2) having norm in the interval with ends the numbers
ρ1, ρ2.
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Proof. First notice that µ < η. We shall elaborate a little on the Green’s function
G defined by (4.7). Let t ≤ s. Then we have

G(t, s) = ζ(s)e−
R 1

s
p1(v)dve

R 1
t
p2(v)dv

∫ t

0

V (u, 1, 1)du,

where ζ is defined by (4.8), and therefore

G(t, s)
G(s, s)

= e
R s

t
p2(v)dv

∫ t
0
V (u, 1, 1)du∫ s

0
V (u, 1, 1)du

≤ e
R s
0 p2(v)dv. (5.5)

Assume that s ≤ t. Then

G(t, s) = ζ(t)e
R 1

t
p2(v)dv

∫ s

0

V (u, s, 1)du.

Thus we have

G(t, s)
G(s, s)

=
ζ(t) exp

( ∫ 1

t
p2(v)dv

) ∫ s
0
V (u, s, 1)du

ζ(s) exp
( ∫ 1

s
p2(v)dv

) ∫ s
0
V (u, s, 1)du

≤
ζ(1) exp

( ∫ 1

0
p2(v)dv

)
ζ(s) exp

( ∫ 1

s
p2(v)dv

) ≤ ζ(1)e
R s
0 p2(v)dv.

(5.6)

Therefore, from (5.5) and (5.6) we conclude that for all s, t in [0, 1] it holds

G(t, s) ≤ G(s, s)ζ(1)e
R 1
0 p2(v)dv = ηG(s, s). (5.7)

Next fix t ∈ [α, β]. Then for each s ∈ [0, t] we obtain

G(t, s)
G(s, s)

=
ζ(t) exp

( ∫ 1

t
p2(v)dv

)
ζ(s) exp

( ∫ 1

s
p2(v)dv

) ≥ e
R 1

t
p2(v)dv−

R 1
s
p2(v)dv

and, since p2 is nonnegative, we have

G(t, s) ≥ G(s, s)e−
R t

s
p2(v)dv ≥ G(s, s)e−

R β
0 p2(v)dv. (5.8)

Take s ∈ [t, 1]. Then we obtain

G(t, s)
G(s, s)

= e
R s

t
p2(v)dv

∫ t
0
V (u, 1, 1)du∫ s

0
V (u, 1, 1)du

≥
∫ α
0
V (u, 1, 1)du∫ 1

0
V (u, 1, 1)du

. (5.9)

From (5.8) and (5.9) we see that for all t ∈ [α, β] and s ∈ [0, 1] it holds

G(t, s) ≥ µG(s, s), (5.10)

where µ is defined in (5.3). Define the set

K := {x ∈ C+
0 (I) : x(t) ≥ µ

η
‖x‖, t ∈ [α, β]}

and observe that it is a cone in the space C0(I).
Now consider a initial function φ ∈ C+

0 (J) with ‖φ‖J ≤ ρ1, where ρ1 satisfies
the system of inequalities (5.1). Let Aφ be the corresponding operator defined by
(4.6). Because of Lemma 4.1 it is enough to show that the operator Aφ has a fixed
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point. To this end we let any x ∈ K. Then we have (Aφx)(0) = 0, because of (4.7).
Also from (5.6) we get

‖Aφx‖I = sup
t∈I

∫ 1

0

G(t, s)F (s, Ts(·, x;φ))ds ≤ η

∫ 1

0

G(s, s)F (s, Ts(·, x;φ))ds.

(5.11)
From (H1) and the definition of f , we have F (s, Ts(·, x;φ)) ≥ 0, for all s ∈ I. Also,
it is clear that (Aφx)(t) ≥ 0 for all t ∈ I.

Let t ∈ [α, β]. Then from (5.10) and (5.11) we get

(Aφx)(t) =
∫ 1

0

G(t, s)F (s, Ts(·, x;φ))ds

≥ µ

∫ 1

0

G(s, s)F (s, Ts(·, x;φ))ds

≥ µ

η
‖Aφx‖I .

(5.12)

Relation (5.12) and the comments given before it guarantee that the operator Aφ
maps the cone K into itself. Furthermore from (4.1) and the first argument in
Definition 2.1 we conclude that the function y → F (·, T·(·, y;φ)) is continuous
and it maps bounded sets into bounded sets; thus the operator Aφ is completely
continuous.

Next take x ∈ K. By definition, for any s ∈ Σ we have s+ θ ∈ [α, β] ⊆ I, for all
θ ∈ Θs. Thus we have

Ts(θ, x;φ) = x(s+ θ) ≥ µ

η
‖x‖I . (5.13)

Let x ∈ K with ‖x‖I = ρ1. Taking it into account together with the choice of ‖φ‖J ,
we have ‖Ts(·, x;φ)‖J ≤ ρ1. Thus, because of (5.7) and (5.13) for all t ∈ I we have

‖Aφx‖I = sup
t∈I

∫ 1

0

G(t, s)F (s, Ts(·, x;φ))ds

≤ η

∫ 1

0

G(s, s)F (s, Ts(·, x;φ))ds

≤ η

∫ 1

0

G(s, s)L(s,
µ

η
ρ1, ρ1)ds

≤ ρ1 = ‖x‖I .

(5.14)

Also, let x ∈ K, with ‖x‖I = ρ2. Then we have

‖Ts(·;x, φ)‖J ≤ ρ,

where ρ := ρ1 ∨ ρ2. Consequently, from (H1) and (5.13), we obtain

‖Aφx‖I = sup
t∈I

∫ 1

0

G(t, s)F (s, Ts(·, x;φ))ds

≥ sup
t∈I

∫
Σ

G(t, s)F (s, Ts(·, x;φ))ds

≥ sup
t∈I

∫
Σ

G(t, s)ω(s;
µ

η
‖x‖I , ρ)ds ≥ ‖x‖I .

(5.15)
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Finally, consider as Ω1 and Ω2 the open balls with radius ρ1 ∧ ρ2 and ρ1 ∨ ρ2

respectively. The previous arguments together with (5.14) and (5.15) permit us to
apply Theorem 1.1 to get the result. �

6. An Application

Consider the delay differential equation

x′′(t) + te−x(t−
1
2 )

√
x(
t

2
) = 0, t ∈ [0, 1], (6.1)

associated with the initial condition (3.1) and the boundary condition

x(1) + 2x′(1) = 0. (6.2)

Here we set r = 1/2, q(t) := 0 and p(t) := 0 = (−1) + (1). Note that one can write
p as p(t) := (−c) + c and then to consider c as parameter, but this job is far from
our purpose for the moment. Observe that the function

f(t, ψ) := te−ψ(− 1
2 )

√
ψ(− t

2
)

is actively bounded with

Θt(f) := {−1
2
,− t

2
},

ω(t;m,M) := te−M
√
m,

L(t,m,M) := M + te−m
√
M.

Fixing α ∈ (0, 1
2 ) and taking β := 1 we get Σ = [2α, 1]. Thus the constants µ and

η are

µ :=
e2α − 1
e2 − 1

, η :=
4e−1

3 + e−2
.

Therefore, the first condition in (5.1) is satisfied for any ρ1 > 0 with

ρ1e
2 µ

η ρ1 ≥ (7e− 24e−1 − 3e−3)2

16(18− 8e−1 + 12e−2 + 3e−3 + 2e−4)2
.

Also, the second condition in (5.1) is satisfied for any ρ2 ∈ (0, ρ1) with

ρ2 ≤
µ

η
e−2ρ1

16
(
1− eα cosh(2α) + e sin(2α)

)2

(3 + e−2)2
.

For instance, if we take

ρ1 =
(7e− 24e−1 − 3e−3)2

16(18− 8e−1 + 12e−2 + 3e−3 + 2e−4)2
≈ 0.0221868 ,

and choose α = 0.015, then we obtain that the best value of ρ2 is 0.0171286. The
conclusion is that given any continuous function φ : [− 1

2 , 0] → [0, 0.0221868] with
φ(0) = 0 there is a solution x of the problem (6.1), (6.2) having φ as initial function
and being such that x(0) = 0 ≤ x(t) for all t ∈ [0, 1] and 0.0171286 ≤ ‖x‖I ≤
0.0221868.
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