Electronic Journal of Differential Equations, Vol. 2006(2006), No. 74, pp. 1-25. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

MULTIPLE POSITIVE SOLUTIONS FOR SINGULAR BOUNDARY-VALUE PROBLEMS WITH DERIVATIVE DEPENDENCE ON FINITE AND INFINITE INTERVALS

BAOQIANG YAN

Abstract

In this paper, Krasnoselskii's theorem and the fixed point theorem of cone expansion and compression are improved. Using the results obtained, we establish the existence of multiple positive solutions for the singular second-order boundary-value problems with derivative dependance on finite and infinite intervals.

1. Introduction

In [1], by an alternative method to Leray-Schauder and sequential technique, Agarwal and O'Regan considered the singular boundary-value problem

$$
\begin{align*}
\frac{1}{p}\left(p y^{\prime}\right)^{\prime}+\Phi(t) f\left(t, y, p y^{\prime}\right) & =0, & & t \in(0,1) \tag{1.1}\\
\alpha y(0)-\beta \lim _{t \rightarrow 0^{+}} p(t) y^{\prime}(t) & =0, & & y(1)=0
\end{align*}
$$

and obtained the existence of one solution to equation when $\alpha=0$ or $\beta=0$.
In [23], by a generalization of the Kneser's property (continuum) of the crosssections of the solutions funnel, Palamides and Galanis considered the following problems

$$
\begin{gather*}
\frac{1}{p}\left(p y^{\prime}\right)^{\prime}+\Phi(t) f\left(t, y, p y^{\prime}\right)=0, \quad t \in(0,+\infty) \tag{1.2}\\
y(0)=0, \quad \lim _{t \rightarrow+\infty} p(t) y^{\prime}(t)=0
\end{gather*}
$$

and also obtained the existence of one positive and monotone unbounded solution.
There are some other results on the existence of at least one solution for equation (1.1), (1.2), and we refer the reader also to [2, 3, ,4, 5, 6, 7, 8, 11, 19, 20, 21, 22). Moreover, under the condition that $p \equiv 1, \beta=0$ and f has no singularity at $x=0$ and $p x^{\prime}=0$, in [15, using pairs of lower and upper solutions, Henderson and Thompson considered the existence of three solutions for equation (1.1) and

[^0]in [24], by reducing the equation (1.1) to a quasi-linear one, I.Yermachenko and F.Sadyrbaev obtained the existence of multiple solutions for equation 1.1) also.

Up to now, there are fewer results on the existence of multiple positive solutions to equation (1.1, 1.2) if $f\left(t, x, p x^{\prime}\right)$ is singular at x and is related to $p x^{\prime}$. Motivated by this, in this paper, we discuss the existence of multiple positive solutions to equation (1.1), (1.2) when $f\left(t, x, p x^{\prime}\right)$ is singular at $x=0$.

There are three sections in our paper. In section 2 , in order to overcome the difficulty from $p x^{\prime}$, we improve the Krasnoselskii's theorem and fixed point theorem of cone expansion and compression on unbounded set in a Banach space with a special norm. In section 3, we establish special cones, and using obtained theorems, present the existence of multiple positive solutions to equation (1.1). In section 4, we consider the existence of multiple positive solutions to equation 1.2 .

2. The improvement of the Krasnoselskil's theorem and fixed point THEOREM OF CONE EXPANSION AND COMPRESSION

In this section, we improve the Krasnoselskii's theorem and fixed point theorem of cone expansion and compression in a Banach space with a special norm.

In [12], Granas and Dugudji presented the theory of fixed point index on unbounded open sets which has same basic properties as those in the theory of fixed point index on bounded open sets [14]. The degree theory on bounded open sets and unbounded open sets can be found in [9, 12, 13, 16, 17, 25,

According to the the theory of fixed point index on unbounded open sets in Chapter 4 of [12], it is easy to obtain following result. Let E be a real Banach space containing a cone P.

Lemma 2.1. Assume $\Omega \subseteq E, \theta \in \Omega, \Omega \cap P$ is a relatively open set in P. Let $A: P \cap \bar{\Omega} \rightarrow P$ be continuous with relatively compact $A(P \cap \bar{\Omega})$. Suppose that

$$
\begin{equation*}
A x \neq \mu x, \quad \forall x \in P \cap \partial \Omega, \mu \geq 1 \tag{2.1}
\end{equation*}
$$

Then $i(A, P \cap \Omega, P)=1$.
Proof. Let $H(t, x)=t A x, t \in[0,1]$ and $x \in P \cap \partial \Omega$. Then $H:[0,1] \times(P \cap \bar{\Omega}) \rightarrow P$ is continuous, and the continuity of $H(t, x)$ in t is uniform with respect to $x \in$ $P \cap \bar{\Omega}$. Moreover, $H(t, P \cap \bar{\Omega})$ is relatively compact for every $t \in[0,1]$. Evidently, $H(t, x) \neq x$ for $x \in P \cap \partial \Omega$ and $0 \leq t \leq 1$. Hence, by the homotopy invariance and normality of fixed point index, we have

$$
i(A, P \cap \Omega, P)=i(\theta, P \cap \Omega, P)=1
$$

The proof is complete.
Now we consider a real Banach space in a special case. Assume that E is a linear space and it satisfies three conditions:
(1) There is a norm $x \rightarrow\|x\|_{1}$ on $x \in E$ and under $\|\cdot\|_{1}, E$ is a normed linear space (not complete)
(2) There is another semi-norm $\|\cdot\|_{2}$
(3) Under $\|x\|=\max \left\{\|x\|_{1},\|x\|_{2}\right\}, E$ is a Banach space.

For example, for $x \in C^{1}([0,1], R)$, under $\|x\|_{1}=\max _{t \in[0,1]}|x(t)|, C^{1}([0,1], R)$ is an incomplete normed linear space. Let $\|x\|_{2}=\max _{t \in[0,1]}\left|x^{\prime}(t)\right|$. Obviously, $\|\cdot\|_{2}$ is a semi-norm of $C^{1}([0,1], R)$. If we define $\|x\|=\max \left\{\|x\|_{1},\|x\|_{2}\right\}, C^{1}([0,1], R)$ is a Banach space.

Assume that P is a cone of E and $\Omega \subset E$ is a open set with $\sup _{x \in \bar{\Omega}}\|x\|_{1}<+\infty$. Since $\sup _{x \in \bar{\Omega}}\|x\|_{1} \leq \sup _{x \in \bar{\Omega}}\|x\|$, it is possible that Ω is unbounded in E. We have the following lemma(the ideas coming from [14]).

Lemma 2.2. With E and P as above, assume that $\Omega \subseteq E$ is an open set with $\sup _{x \in \bar{\Omega}}\|x\|_{1}<+\infty$. Let $A: P \cap \bar{\Omega} \rightarrow P$ be continuous with relatively compact $A(P \cap \bar{\Omega})$ and $B: P \cap \partial \Omega \rightarrow P$ be continuous with relatively compact $B(P \cap \partial \Omega)$. Suppose that
(a) $\inf _{x \in P \cap \partial \Omega}\|B x\|_{1}>0$;
(b) $x-A x \neq t B x$, for all $x \in P \cap \partial \Omega, t \geq 0$.

Then, we have

$$
\begin{equation*}
i(A, P \cap \Omega, P)=0 \tag{2.2}
\end{equation*}
$$

Proof. Suppose that the E_{1} is a Banach space completion of E under norm $\|x\|_{1}$. By the extension theorem of Dugundji [10, we can extend B to a continuous operator from $P \cap \bar{\Omega}$ into P such that

$$
\begin{equation*}
B(P \cap \bar{\Omega}) \subseteq \overline{\operatorname{co}} B(P \cap \partial(\Omega)) \subseteq(\overline{\operatorname{co}} B(P \cap \partial \Omega))_{1} \tag{2.3}
\end{equation*}
$$

where $(\overline{\operatorname{co}} B(P \cap \partial \Omega))_{1}$ is the closure of $B(P \cap \partial \Omega)$ under the norm $\|\cdot\|_{1}$ and the followings are similar. Let $F=B(P \cap \partial \Omega)$, then $(\overline{\operatorname{co}} B(P \cap \partial \Omega))_{1}=(\overline{\operatorname{co}} F)_{1}=(\bar{M})_{1}$, where

$$
M=\left\{y=\sum_{i=1}^{n} \lambda_{i} y_{i}: y_{i} \in F, \lambda_{i} \geq 0, \sum_{i=1}^{n} \lambda_{i}=1 ; n=1,2, \ldots\right\}
$$

We first prove

$$
\begin{equation*}
\inf _{y \in(\bar{M})_{1}}\|y\|_{1}>0 \tag{2.4}
\end{equation*}
$$

Denote by E_{0} the subspace of E spanned by F under norm $\|\cdot\|_{1}$. Since $B(P \cap \partial \Omega)$ is relatively compact in E under norm $\|\cdot\|$, we know that $B(P \cap \partial \Omega)$ is relatively compact in E_{1} under norm $\|\cdot\|_{1}$. Therefore, E_{0} is separable. Evidently, $P_{0}=P \cap E_{0}$ is a cone of E_{0} and $F \subseteq P_{0}$. By property of the cone [14, Theorem 1.4.1], there exists $f_{0} \in E_{0}^{*}$ such that $f_{0}(y)>0$ for any $y \in P_{0}$ with $y \neq \theta$. We claim that

$$
\begin{equation*}
\inf _{y \in F} f_{0}(y)=\sigma>0 \tag{2.5}
\end{equation*}
$$

In fact, if $\sigma=0$, then there exists $\left\{y_{k}\right\} \subseteq F$ such that $f_{0}\left(y_{k}\right) \rightarrow 0$. By the relative compactness of F in E, there is a subsequence $\left\{y_{k_{i}}\right\}$ of $\left\{y_{k}\right\}$ such that $y_{k_{i}} \rightarrow y_{0} \in P$ and $y_{0} \in E_{0}$. Then $y_{0} \in P_{0}$, and so $f_{0}\left(y_{k_{i}}\right) \rightarrow f_{0}\left(y_{0}\right)=0$. Hence, $y_{0}=\theta$ and $\left\|y_{k_{i}}\right\|_{1} \rightarrow 0$, which contradicts hypothesis (a). Thus, 2.5 holds.

For any $y=\sum_{i=1}^{n} \lambda_{i} y_{i} \in M$, where $y_{i} \in F, \lambda_{i} \geq 0$ and $\sum_{i=1}^{n} \lambda_{i}=1$, we have

$$
f_{0}(y)=\sum_{i=1}^{n} \lambda_{i} f_{0}\left(y_{i}\right) \geq \sum_{i=1}^{n} \lambda_{i} \sigma=\sigma
$$

and therefore

$$
\begin{equation*}
f_{0}(y) \geq \sigma, \forall y \in(\bar{M})_{1} \tag{2.6}
\end{equation*}
$$

Since $(\bar{M})_{1}=(\overline{c o} F)_{1}$ is compact, there exists a $z_{0} \in(\bar{M})_{1}$ such that

$$
\begin{equation*}
\inf _{y \in(\bar{M})_{1}}\|y\|_{1}=\left\|z_{0}\right\|_{1} \tag{2.7}
\end{equation*}
$$

By (2.6), $f_{0}\left(z_{0}\right) \geq \sigma$, and this implies that $z_{0} \neq \theta$. It follows therefore from 2.7 that (2.4) holds. By 2.3) and 2.4, we get

$$
\begin{equation*}
\inf _{x \in P \cap \bar{\Omega}}\|B x\|_{1}=\sigma>0 \tag{2.8}
\end{equation*}
$$

Now, it is easy to show that 2.2 holds. In fact, if $i(A, P \cap \Omega, P) \neq 0$, then by the hypothesis (b) and the homotopy invariance property of fixed point index, we have

$$
i(A+t B, P \cap \Omega, P)=i(A, P \cap \Omega, P) \neq 0, \forall t>0
$$

In particular, choosing $t_{0}>\frac{a+c}{\sigma}$, where $a=\sup _{x \in \bar{\Omega}}\|x\|_{1}$ and $c=\sup _{x \in P \cap \bar{\Omega}}\|A x\|_{1}$, we have

$$
i\left(A+t_{0} B, P \cap \Omega, P\right) \neq 0
$$

and so, by the solution property of fixed point index, there exists an $x_{0} \in P \cap \Omega$ such that $A x_{0}+t_{0} B x_{0}=x_{0}$. Hence

$$
t_{0}=\frac{\left\|x_{0}-A x_{0}\right\|_{1}}{\left\|B x_{0}\right\|_{1}} \leq \frac{a+c}{\sigma}
$$

which is a contradiction. The proof is complete.
Corollary 2.3. Assume that Ω is an open set with $\sup _{x \in \bar{\Omega}}\|x\|_{1}<+\infty$. Let A : $P \cap \bar{\Omega} \rightarrow P$ be continuous with relatively compact $A(P \cap \bar{\Omega})$. If there exists $u_{0}>\theta$ such that

$$
\begin{equation*}
x-A x \neq t u_{0}, \forall x \in P \cap \partial \Omega, t \geq 0 \tag{2.9}
\end{equation*}
$$

then (2.2) holds.
Proof. Since $\|\cdot\|_{1}$ is a norm, $u_{0}>\theta$ implies that $\left\|u_{0}\right\|_{1}>0$. Hence, the corollary follows directly from Lemma 2.2 by putting $B x=u_{0}$ for any $x \in P \cap \partial \Omega$.

Corollary 2.4. Assume that Ω is an open set with $\sup _{x \in \bar{\Omega}}\|x\|_{1}<+\infty$. Let A : $P \cap \bar{\Omega} \rightarrow P$ be continuous with relatively compact $A(P \cap \bar{\Omega})$. If

$$
\begin{equation*}
A x \not \leq x, \quad \forall x \in P \cap \partial \Omega \tag{2.10}
\end{equation*}
$$

then (2.2) holds.
Proof. Choose an $u_{0}>\theta$. Then,

$$
x-A x \neq t u_{0}, \forall x \in P \cap \partial \Omega, t \geq 0
$$

By Corollary 2.3, 2.2 holds.
Lemma 2.5. Assume that Ω is an open set with $\sup _{x \in \bar{\Omega}}\|x\|_{1}<+\infty$. Let A : $P \cap \bar{\Omega} \rightarrow P$ be continuous with relatively compact $A(P \cap \bar{\Omega})$. Suppose that
(i) $\inf _{x \in P \cap \partial \Omega}\|A x\|_{1}>0$; and
(ii) $A x \neq \mu x, \forall x \in P \cap \partial \Omega, 0<\mu<1$.

Then 2.2 holds.
Proof. Taking $B=A$ in Lemma 2.2, we see that condition (a) of Lemma 2.2 is the same as condition (i) of Lemma 2.5 . Also, condition (b) of Lemma 2.2 is true. In fact, if there exist $x_{0} \in P \cap \partial \Omega$ and $t_{0} \geq 0$ such that $x_{0}-A x_{0}=t_{0} A x_{0}$, then $A x_{0}=\mu x_{0}$, where $\mu_{0}=\left(1+t_{0}\right)^{-1}$. Evidently $0<\mu_{0} \leq 1$, which contradicts the condition (ii). Thus, (2.2) follows from Lemma 2.2 ,

Lemma 2.6. Assume that Ω is an open set with $\sup _{x \in \bar{\Omega}}\|x\|_{1}<+\infty$. Let A : $P \cap \bar{\Omega} \rightarrow P$ be continuous with relatively compact $A(P \cap \bar{\Omega})$. Suppose that
(i') $A x \neq \mu x, \forall x \in P \cap \partial \Omega, 0 \leq \mu \leq 1$, and
(ii') the set $\left\{\|A x\|_{1}^{-1} A x \mid x \in P \cap \partial \Omega\right\}$ is relatively compact.
Then 2.2 holds.
Proof. Let $A_{1} x=\alpha\left(\|A x\|_{1}\right)^{-1} A x$ for $x \in P \cap \partial \Omega$, where $\alpha=\sup _{x \in P \cap \partial \Omega}\|A x\|_{1}>0$. Then, by hypotheses, $A_{1}: P \cap \partial \Omega \rightarrow P$ is continuous with relatively compact $A_{1}(P \cap \partial \Omega)$. By the extension theorem, A_{1} can be extended to a continuous operator from $P \cap \bar{\Omega}$ into P with relatively compact $A_{1}(P \cap \Omega)$. We now prove that A_{1} satisfies the condition (i) and (ii) of Lemma 2.5. In fact, first we have

$$
\inf _{x \in P \cap \partial \Omega}\left\|A_{1} x\right\|_{1}=\sigma>0
$$

Secondly, if there exists $x_{0} \in P \cap \partial \Omega$ and $0<\mu_{0} \leq 1$ such that $A_{1} x_{0}=\mu_{0} x_{0}$, then $A x_{0}=\lambda_{0} x_{0}$, where $\lambda_{0}=\mu_{0} \alpha^{-1}\left\|A x_{0}\right\|_{1}$. Evidently, $0<\lambda_{0} \leq \mu_{0} \leq 1$, which contradicts hypothesis (i'). Hence, by Lemma 2.5. we have

$$
\begin{equation*}
i\left(A_{1}, P \cap \Omega, P\right)=0 . \tag{2.11}
\end{equation*}
$$

Now, we prove

$$
\begin{equation*}
(1-t) A x+t A_{1} x \neq x, \forall x \in P \cap \partial \Omega, 0 \leq t \leq 1 \tag{2.12}
\end{equation*}
$$

If there is an $x_{1} \in P \cap \partial \Omega$ and a $0 \leq t_{1} \leq 1$ such that $\left(1-t_{1}\right) A x_{1}+t_{1} A_{1} x_{1}=x_{1}$, then $A x_{1}=\mu_{1} x_{1}$, where $\mu_{1}=\left[1+t_{1}\left(\alpha /\left\|A x_{1}\right\|_{1}-1\right)\right]^{-1}, 0 \leq \mu_{1} \leq 1$, in contradiction with hypothesis (i'). Hence, by (2.11), 2.12, and the homotopy invariance of fixed point index, we get

$$
i(A, P \cap \Omega, P)=i\left(A_{1}, P \cap \Omega, P\right)=0
$$

The proof is complete.
Theorem 2.7. Let Ω_{1} and Ω_{2} be two open in E such that $\theta \in \Omega_{1}$ and $\bar{\Omega}_{1} \subseteq \Omega_{2}$ with $\sup _{t \in \bar{\Omega}_{2}}\|x\|_{1}<+\infty$. Let $A: P \cap\left(\bar{\Omega}_{2}-\Omega_{1}\right) \rightarrow P$ be continuous with relatively compact $A\left(P \cap\left(\bar{\Omega}_{2}-\Omega_{1}\right)\right)$. Suppose that one of the two conditions
(H1) $A x \not \geqq x, \forall x \in P \cap \partial \Omega_{1}$ and $A x \not \leq x, \forall x \in P \cap \partial \Omega_{2}$,
(H2) $A x \not \leq x, \forall x \in P \cap \partial \Omega_{1}$ and $A x \nsupseteq x, \forall x \in P \cap \partial \Omega_{2}$
is satisfied. Then A has at least one fixed point in $P \cap\left(\Omega_{2}-\bar{\Omega}_{1}\right)$.
Proof. By the extension theorem (Dugundji [10]), A has a completely continuous extension (also noted by A) from $P \cap \bar{\Omega}_{2}$ from $P \cap \bar{\Omega}_{2}$ to P. First we assume that (H1) is satisfied, i.e., it is the case of cone expansion. It is easy to see that

$$
\begin{equation*}
A x \neq \mu x, \quad \forall x \in P \cap \partial \Omega_{1}, \mu \geq 1 \tag{2.13}
\end{equation*}
$$

since, otherwise, there exists $x_{0} \in P \cap \partial \Omega_{1}$ and $\mu_{0} \geq 1$ such that $A x_{0}=\mu_{0} x_{0} \geq x_{0}$, in contradiction with (H1). Now, from (2.1) and Lemma 2.1. we obtain

$$
\begin{equation*}
i\left(A, P \cap \Omega_{1}, P\right)=1 \tag{2.14}
\end{equation*}
$$

On the other hand, by Corollary 2.4, we have

$$
\begin{equation*}
i\left(A, P \cap \Omega_{2}, P\right)=0 . \tag{2.15}
\end{equation*}
$$

It follows therefore from $(2.14$ and 2.15 and additivity property of fixed point index that

$$
\begin{equation*}
i\left(A, P \cap\left(\Omega_{2}-\bar{\Omega}_{1}\right), P\right)=i\left(A, P \cap \Omega_{2}, P\right)-i\left(A, P \cap \Omega_{1}, P\right)=-1 \neq 0 \tag{2.16}
\end{equation*}
$$

Hence, by the solution property of fixed point index, A has at least one fixed point in $P \cap\left(\Omega_{2}-\bar{\Omega}_{1}\right)$.

Similarly, when (H2) is satisfied, instead of 2.14, 2.15, we have $i(A, P \cap$ $\left.\Omega_{2}, P\right)=1$, and $i\left(A, P \cap\left(\Omega_{2}-\bar{\Omega}_{1}\right), P\right)=1$. As a result we also can assert that A has at least one fixed point in $P \cap\left(\Omega_{2}-\bar{\Omega}_{1}\right)$. The proof is complete.

We remark that this theorem improves [14, theorem 2.3.3] because the condition that Ω_{1} and Ω_{2} are bounded is not necessary.

Theorem 2.8. Let $\Omega_{1}=\left\{x \in E \mid\|x\|_{1}<r\right\}$ and $\Omega_{2}=\left\{x \in E \mid\|x\|_{1}<R\right\}$ be two open in E with $r<R$. Let $A: P \cap\left(\bar{\Omega}_{2}-\Omega_{1}\right) \rightarrow P$ be continuous with relatively compact $A\left(P \cap\left(\bar{\Omega}_{2}-\Omega_{1}\right)\right)$. Suppose that one of the two conditions
(H3) $\|A x\| \leq\|x\|$, for all $x \in P \cap \partial \Omega_{1}$ and $\|A x\|_{1} \geq\|x\|_{1}$, for all $x \in P \cap \partial \Omega_{2}$,
(H4) $\|A x\|_{1} \geq\|x\|_{1}$, for all $x \in P \cap \partial \Omega_{1}$ and $\|A x\| \leq\|x\|$, for all $x \in P \cap \partial \Omega_{2}$ is satisfied. Then A has at least one fixed point in $P \cap\left(\Omega_{2}-\bar{\Omega}_{1}\right)$.

Proof. We only need to prove this theorem under condition (H3), since the proof is similar when (H4) is satisfied. By the extension theorem, A can be extended to a continuous operator from $P \cap \bar{\Omega}_{2}$ into P with relatively compact $A\left(P \cap \bar{\Omega}_{2}\right)$. We may assume that A has no fixed points on $P \cap \partial \Omega_{1}$ and $P \cap \partial \Omega_{2}$. It is easy to see that 2.13 holds, since otherwise, there exist $x_{0} \in P \cap \partial \Omega_{1}$ and $\mu_{0}>1$ such that $A x_{0}=\mu_{0} x_{0}$ and hence $\left\|A x_{0}\right\|=\mu_{0}\left\|x_{0}\right\|>\left\|x_{0}\right\|$, in contradiction with (H3). Thus, by (2.13), Lemma 2.1, (2.14) holds.

On the other hand, it is also easy to verify

$$
\begin{equation*}
A x \neq \mu x, \forall x \in P \cap \partial \Omega_{2}, 0<\mu<1 \tag{2.17}
\end{equation*}
$$

In fact, if there are $x_{1} \in P \cap \partial \Omega_{2}$ and $0<\mu_{1}<1$ such that $A x_{1}=\mu_{1} x_{1}$, then

$$
\left\|A x_{1}\right\|_{1}=\mu_{1}\left\|x_{1}\right\|_{1}<\left\|x_{1}\right\|_{1}
$$

in contradiction with (H3). In addition, by (H3) we have

$$
\begin{equation*}
\inf _{x \in P \cap \partial \Omega_{2}}\|A x\|_{1} \geq \inf _{x \in \partial \Omega_{2}}\|x\|_{1}>0 \tag{2.18}
\end{equation*}
$$

It follows from (2.17), (2.18) and Lemma 2.5 that 2.15 holds. As before, 2.14 and (2.15) imply (2.16), and therefore A has at least one fixed point in $P \cap\left(\Omega_{2}-\bar{\Omega}_{1}\right)$.

We remark that this theorem improves the the Krasnoselskii's theorem in [14] because the condition that Ω_{1} and Ω_{2} are bounded is not necessary.

3. The existence of multiple positive solutions to equation 1.1)

In this section, we consider (1.1) and suppose that $f \in C\left([0,1] \times R_{0}^{+} \times R, R^{+}\right), p \in$ $C([0,1], R) \cap C\left((0,1), R_{0}^{+}\right) \cap C^{1}((0,1), R)$ with $\int_{0}^{1} \frac{1}{p(r)} d r<+\infty, \Phi \in C\left((0,1), R_{0}^{+}\right)$ and $\alpha \geq 0, \beta \geq 0$ (not equal to 0 at the same time); here $R^{+}=[0,+\infty), R_{0}^{+}=$ $(0,+\infty), R=(-\infty,+\infty)$. Let

$$
\begin{gathered}
\rho^{2}=\beta+\alpha \int_{0}^{1} \frac{1}{p(r)} d r \quad(\rho>0) \\
u_{1}(t)=\frac{1}{\rho} \int_{t}^{1} \frac{1}{p(r)} d r, \quad v_{1}(t)=\frac{1}{\rho}\left(\beta+\alpha \int_{0}^{t} \frac{1}{p(r)} d r\right),
\end{gathered}
$$

$$
G_{1}(t, s)= \begin{cases}u_{1}(t) v_{1}(s) p(s), & 0 \leq s \leq t \leq 1 \\ v_{1}(t) u_{1}(s) p(s), & 0 \leq t \leq s \leq 1\end{cases}
$$

Assume that $C_{p}^{1}[0,1]=\left\{x:[0,1] \rightarrow R \mid x(t)\right.$ is continuous on $[0,1]$ and $p(t) x^{\prime}(t)$ is continuous on $[0,1]$ also with $\left.\max _{t \in[0,1]} p(t)\left|x^{\prime}(t)\right|<+\infty\right\}$ (see [21]). For $x \in C_{p}^{1}$, let $\|x\|_{1}=\max _{t \in[0,1]}|x(t)|,\|x\|_{2}=\max _{t \in[0,1]} p(t)\left|x^{\prime}(t)\right|$ and $\|x\|=\max \left\{\|x\|_{1},\|x\|_{2}\right\}$. It is easy to see that C_{p}^{1} satisfies the conditions (1), (2) and (3) of the Banach space E in section 2.

Obviously, $x(t) \in C_{p}^{1}$ is a solution to equation (1.1) if and only if $x(t)$ is a solution of the following integral equation

$$
x(t)=\int_{0}^{1} G_{1}(t, s) \Phi(s) f\left(s, x(s), p(s) x^{\prime}(s)\right) d s, \quad t \in[0,1] .
$$

Let $P=\left\{x \in C_{p}^{1} \mid x(t) \geq \gamma_{1}(t)\|x\|_{1}\right\}$, where $\gamma_{1}(t)=u_{1}(t) v_{1}(t) \frac{1}{u_{1}(0) v_{1}(1)}$ for all $t \in[0,1]$.

Lemma 3.1. Assume that $l \in L^{1}[0,1]$ with $l(t)>0$ for all $t \in(0,1)$ and $q(t)=$ $\int_{0}^{1} G_{1}(t, s) l(s) d s, t \in[0,1]$. Then

$$
q(t) \geq \gamma_{1}(t) \max _{s \in[0,1]} q(s)
$$

Proof. Suppose $q\left(t_{0}\right)=\max _{s \in[0,1]} q(s)$. Then

$$
\begin{aligned}
\frac{G_{1}(t, s)}{G_{1}\left(t_{0}, s\right)} & = \begin{cases}\frac{v_{1}(t) u_{1}(s) p(s)}{u_{1}\left(t_{0}\right) v_{1}(s) p(s)}, & 0 \leq t \leq s \leq t_{0} \leq 1 \\
\frac{u_{1}(t) v_{1}(s) p(s)}{v_{1}\left(t_{0}\right) u_{1}(s) p(s)}, & 0 \leq t_{0} \leq s \leq t \leq 1 \\
\frac{\left.v_{1}(t)\right)\left(s u_{1}(s) p(s)\right.}{v_{1}\left(t_{0}\right) u_{1}(s) p(s)}, & 0 \leq t, t_{0} \leq s \leq 1 \\
\frac{u_{1}(t) v_{1}(s) p(s)}{u_{1}\left(t_{0}\right) v_{1}(s) p(s)}, & 0 \leq s \leq t, t_{0} \leq 1\end{cases} \\
& = \begin{cases}u_{1}(t) v_{1}(t) \frac{u_{1}(s)}{u_{1}\left(t_{0}\right)} \frac{1}{v_{1}(s) u_{1}(t)}, & 0 \leq t \leq s \leq t_{0} \leq 1 \\
u_{1}(t) v_{1}(t) \frac{v_{1}(s)}{v_{1}\left(t_{0}\right)} \frac{1}{u_{1}(s) v_{1}(t)}, & 0 \leq t_{0} \leq s \leq t \leq 1 \\
u_{1}(t) v_{1}(t) \frac{1}{u_{1}(t) v_{1}\left(t_{0}\right)}, & 0 \leq t, t_{0} \leq s \leq 1 \\
u_{1}(t) v_{1}(t) \frac{1}{u_{1}\left(t_{0}\right) v_{1}(t)}, & 0 \leq s \leq t, t_{0} \leq 1\end{cases} \\
& \geq \begin{cases}u_{1}(t) v_{1}(t) \frac{1}{v_{1}(1) u_{1}(0)}, & 0 \leq t \leq s \leq t_{0} \leq 1 \\
u_{1}(t) v_{1}(t) \frac{1}{u_{1}(0) v_{1}(1)}, & 0 \leq t_{0} \leq s \leq t \leq 1 \\
u_{1}(t) v_{1}(t) \frac{1}{u_{1}(0) v_{1}(1)}, & 0 \leq t, t_{0} \leq s \leq 1 \\
u_{1}(t) v_{1}(t) \frac{1}{u_{1}(0) v_{1}(1)}, & 0 \leq s \leq t, t_{0} \leq 1\end{cases} \\
& =\gamma_{1}(t) .
\end{aligned}
$$

As a consequence,

$$
\begin{aligned}
q(t) & =\int_{0}^{1} G_{1}(t, s) l(s) d s=\int_{0}^{1} \frac{G_{1}(t, s)}{G_{1}\left(t_{0}, s\right)} G_{1}\left(t_{0}, s\right) l(s) d s \\
& \geq \gamma_{1}(t) \int_{0}^{1} G_{1}\left(t_{0}, s\right) l(s) d s=\gamma_{1}(t) \max _{s \in[0,1]} q(s) .
\end{aligned}
$$

The proof is complete.
Now we will list some conditions for convenience:
(H1) There exists a $k \in C\left([0,1], R_{0}^{+}\right)$, a $g \in C\left(R_{0}^{+}, R_{0}^{+}\right)$and a decreasing continuous function $h \in C\left(R_{0}^{+}, R_{0}^{+}\right)$such that

$$
f(t, x, z) \leq k(t) g(x), \quad \forall x \in R_{0}^{+}, z \in R, t \in[0,1]
$$

where $\frac{g(x)}{h(x)}$ is an increasing function and $\int_{0}^{1} p(s) \Phi(s) k(s) h\left(c \gamma_{1}(s)\right) d s<+\infty$ for each $c>0$;
(H2)

$$
\sup _{c \in R_{0}^{+}} \frac{c h(c)}{u_{1}(0) v_{1}(1) \int_{0}^{1} p(s) \Phi(s) k(s) h\left(c \gamma_{1}(s)\right) d s g(c)}>1
$$

(H3) There exists a $k_{1} \in C\left([0,1], R_{0}^{+}\right)$and a $g_{1} \in C\left(R_{0}^{+}, R_{0}^{+}\right)$with $f(t, x, z) \geq$ $k_{1}(t) g_{1}(x)$, for all $(t, x, z) \in[0,1] \times R_{0}^{+} \times(-\infty,+\infty)$ such that

$$
\lim _{x \rightarrow+\infty} \frac{g_{1}(x)}{x}=+\infty
$$

where $\int_{0}^{1} p(s) \Phi(s) k_{1}(s) d s<+\infty$;
(H4) For any $c>0$, there exists a $\psi_{c} \in C\left([0,1], R_{0}^{+}\right)$such that $f(t, x, z) \geq \psi_{c}(t)$ for all $(t, x, z) \in[0,1] \times(0, c] \times(-\infty,+\infty)$ with $\int_{0}^{1} p(s) \Phi(s) \psi_{c}(s) d s<+\infty$.
For given $n \in\{1,2, \ldots\}$, let $f_{n}(t, x, z)=f\left(t, \max \left\{\frac{1}{n}, x\right\}, z\right)$ and for $x \in P$, define

$$
\begin{equation*}
\left(A_{n} x\right)(t)=\int_{0}^{1} G_{1}(t, s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s, \quad n \in\{1,2, \ldots\}, t \in[0,1] \tag{3.1}
\end{equation*}
$$

Lemma 3.2. Assume the condition (H1) holds. Then, for every $n \in\{1,2, \ldots\}$, $A_{n}: P \rightarrow P$ is continuous and for any $r>0$ and $B_{r}=\left\{x \in C_{p}^{1} \mid\|x\|_{1} \leq r\right\}$, $A_{n}\left(P \cap B_{r}\right)$ is relatively compact.

Proof. First, for a given $n \in\{1,2, \ldots\}$, we show that $A_{n} P \subseteq P$. For any $x \in P$, we have

$$
\begin{aligned}
\left|\left(A_{n} x\right)(t)\right| & =\left|\int_{0}^{1} G_{1}(t, s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s\right| \\
& \leq \int_{0}^{1} G_{1}(t, s) \Phi(s) f\left(s, \max \left\{\frac{1}{n}, x(s)\right\}, p(s) x^{\prime}(s)\right) d s \\
& \leq \int_{0}^{1} G_{1}(t, s) \Phi(s) k(s) g\left(\max \left\{\frac{1}{n}, x(s)\right\}\right) d s \\
& \leq \int_{0}^{1} G_{1}(t, s) \Phi(s) k(s) h\left(\max \left\{\frac{1}{n}, x(s)\right\}\right) \frac{g\left(\max \left\{\frac{1}{n}, x(s)\right\}\right)}{h\left(\max \left\{\frac{1}{n}, x(s)\right\}\right)} d s \\
& \leq \int_{0}^{1} G_{1}(t, s) \Phi(s) k(s) d s h\left(\frac{1}{n}\right) \frac{g\left(\max \left\{\frac{1}{n},\|x\|_{1}\right\}\right)}{h\left(\max \left\{\frac{1}{n},\|x\|_{1}\right\}\right)} \\
& <+\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\left|p(t)\left(A_{n} x\right)^{\prime}(t)\right|= & \left\lvert\,-\frac{1}{\rho} \int_{0}^{t} v_{1}(s) p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s\right. \\
& \left.+\frac{\alpha}{\rho} \int_{t}^{1} u_{1}(s) p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{K}{\rho} \int_{0}^{1} p(s) \Phi(s) f\left(s, \max \left\{\frac{1}{n}, x(s)\right\}, p(s) x^{\prime}(s)\right) d s \\
& \leq \frac{K}{\rho} \int_{0}^{1} p(s) \Phi(s) k(s) g\left(\max \left\{\frac{1}{n}, x(s)\right\}\right) d s \\
& \leq \frac{K}{\rho} \int_{0}^{1} p(s) \Phi(s) k(s) h\left(\max \left\{\frac{1}{n}, x(s)\right\}\right) \frac{g\left(\max \left\{\frac{1}{n}, x(s)\right\}\right)}{h\left(\max \left\{\frac{1}{n}, x(s)\right\}\right)} d s \\
& \leq \frac{K}{\rho} \int_{0}^{1} p(s) \Phi(s) k(s) d s h\left(\frac{1}{n}\right) \frac{g\left(\max \left\{\frac{1}{n},\|x\|_{1}\right\}\right)}{h\left(\max \left\{\frac{1}{n},\|x\|_{1}\right\}\right)} \\
& <+\infty
\end{aligned}
$$

where $K=\max \left\{\alpha u_{1}(0), v_{1}(1)\right\}$ and the following is same as before. Then, A_{n} is well defined. Moreover, from Lemma 3.1, for any $x \in P$, we have

$$
\left(A_{n} x\right)(t) \geq \gamma_{1}(t) \max _{s \in[0,1]}\left|\left(A_{n} x\right)(s)\right|=\gamma_{1}(t)\left\|A_{n} x\right\|_{1}, \quad \forall t \in[0,1]
$$

Consequently, $A_{n} P \subseteq P$.
Second, we show $A_{n}: P \rightarrow P$ is continuous. Assume that $\lim _{m \rightarrow+\infty} x_{m}=$ x_{0}, which means there exists an $M>1 / n$ such that $\left\|x_{m}\right\| \leq M$, for all $m \in$ $\{0,1,2, \ldots\}$. Then

$$
\begin{align*}
f_{n}\left(t, x_{m}(t), p(t) x^{\prime}{ }_{m}(t)\right) & \leq k(t) g\left(\max \left\{\frac{1}{n}, x_{m}(t)\right\}\right) \\
& =k(t) h\left(\max \left\{\frac{1}{n}, x_{m}(t)\right\}\right) \frac{g\left(\max \left\{\frac{1}{n}, x_{m}(t)\right\}\right)}{h\left(\max \left\{\frac{1}{n}, x_{m}(t)\right\}\right)} \tag{3.2}\\
& \leq k(t) h\left(\frac{1}{n}\right) \frac{g(M)}{h(M)}, \quad m \in\{1,2, \ldots\}
\end{align*}
$$

Since

$$
f_{n}\left(t, x_{m}(t), p(t) x_{m}^{\prime}(t)\right) \rightarrow f_{n}\left(t, x_{0}(t), p(t) x_{0}^{\prime}(t)\right), \quad \text { as } m \rightarrow+\infty
$$

from (3.2), the Lesbegue Dominated Convergence Theorem guarantees

$$
\begin{aligned}
& \lim _{m \rightarrow+\infty} \max _{t \in[0,1]}\left|\left(A_{n} x_{m}\right)(t)-\left(A_{n} x_{0}\right)(t)\right| \\
= & \lim _{m \rightarrow+\infty} \max _{t \in[0,1]} \mid \int_{0}^{1} G_{1}(t, s) \Phi(s) f_{n}\left(s, x_{m}(s), p(s) x_{m}^{\prime}(s)\right) d s \\
& -\int_{0}^{1} G_{1}(t, s) \Phi(s) f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right) d s \mid \\
\leq & \lim _{m \rightarrow+\infty} \max _{t \in[0,1]} \int_{0}^{1} G_{1}(t, s) \Phi(s) \mid f_{n}\left(s, x_{m}(s), p(s) x_{m}^{\prime}(s)\right) \\
& -f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right) \mid d s \\
\leq & \lim _{m \rightarrow+\infty} u_{1}(0) v_{1}(1) \int_{0}^{1} p(s) \Phi(s) \mid f_{n}\left(s, x_{m}(s), p(s) x_{m}^{\prime}(s)\right) \\
& -f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right) \mid d s=0
\end{aligned}
$$

and

$$
\lim _{m \rightarrow+\infty} \max _{t \in[0,1]}\left|p(t)\left(A_{n} x_{m}\right)^{\prime}(t)-p(t)\left(A_{n} x_{0}\right)^{\prime}(t)\right|
$$

$$
\begin{aligned}
= & \lim _{m \rightarrow+\infty} \max _{t \in[0,1]} \left\lvert\,-\frac{1}{\rho} \int_{0}^{t} v_{1}(s) p(s) \Phi(s)\left[f_{n}\left(s, x_{m}(s), p(s) x_{m}^{\prime}(s)\right)\right.\right. \\
& \left.-f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right)\right] d s+\frac{\alpha}{\rho} \int_{t}^{1} u_{1}(s) p(s) \Phi(s)\left[f_{n}\left(s, x_{m}(s), p(s) x_{m}^{\prime}(s)\right)\right. \\
& \left.-f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right)\right] d s \\
\leq & \lim _{m \rightarrow+\infty} \frac{K}{\rho} \int_{0}^{1} p(s) \Phi(s)\left|f_{n}\left(s, x_{m}(s), p(s) x_{m}^{\prime}(s)\right)-f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right)\right| d s \\
= & 0
\end{aligned}
$$

which mean that

$$
\lim _{m \rightarrow+\infty}\left\|A_{n} x_{m}-A_{n} x_{0}\right\|=0
$$

Finally, we show $A_{n}\left(B_{r} \cap P\right)$ is relatively compact. Obviously, B_{r} is an unbounded set in C_{p}^{1}. Without loss of generality, we suppose $r>1 / n$. Then, for any $x \in B_{r} \cap P$, we have

$$
\begin{aligned}
\max _{t \in[0,1]}\left|\left(A_{n} x\right)(t)\right| & =\max _{t \in[0,1]}\left|\int_{0}^{1} G_{1}(t, s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s\right| \\
& =\max _{t \in[0,1]} \int_{0}^{1} G_{1}(t, s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \\
& \leq \max _{t \in[0,1]} \int_{0}^{1} G_{1}(t, s) \Phi(s) k(s) h\left(\max \left\{\frac{1}{n}, x(s)\right\}\right) \frac{g\left(\max \left\{\frac{1}{n}, x(s)\right\}\right)}{h\left(\max \left\{\frac{1}{n}, x(s)\right\}\right)} d s \\
& \leq \max _{t \in[0,1]} \int_{0}^{1} G_{1}(t, s) \Phi(s) k(s) d s h\left(\frac{1}{n}\right) \frac{g(r)}{h(r)} \\
& \leq u_{1}(0) v_{1}(1) \int_{0}^{1} p(s) \Phi(s) k(s) d \operatorname{sh}\left(\frac{1}{n}\right) \frac{g(r)}{h(r)}
\end{aligned}
$$

and

$$
\begin{aligned}
\max _{t \in[0,1]}\left|p(t)\left(A_{n} x\right)^{\prime}(t)\right|= & \max _{t \in[0,1]} \left\lvert\,-\frac{1}{\rho} \int_{0}^{t} v_{1}(s) p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s\right. \\
& \left.+\frac{\alpha}{\rho} \int_{t}^{1} u_{1}(s) p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \right\rvert\, \\
\leq & \frac{K}{\rho} \int_{0}^{1} p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \\
\leq & \frac{K}{\rho} \int_{0}^{1} p(s) \Phi(s) k(s) h\left(\max \left\{\frac{1}{n}, x(s)\right\}\right) \frac{g\left(\max \left\{\frac{1}{n}, x(s)\right\}\right)}{h\left(\max \left\{\frac{1}{n}, x(s)\right\}\right)} d s \\
\leq & \frac{K}{\rho} \int_{0}^{1} p(s) \Phi(s) k(s) d s h\left(\frac{1}{n}\right) \frac{g(r)}{h(r)}
\end{aligned}
$$

which means that $A_{n}\left(B_{r} \cap P\right)$ is bounded. Assume that $t, t^{\prime} \in[0,1]$. Then, for $x \in B_{r} \cap P$, we have

$$
\begin{aligned}
\left|\left(A_{n} x\right)(t)-\left(A_{n} x\right)\left(t^{\prime}\right)\right|= & \mid \int_{0}^{1} G_{1}(t, s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \\
& -\int_{0}^{1} G_{1}\left(t^{\prime}, s\right) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \mid
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{0}^{1}\left|G_{1}(t, s)-G_{1}\left(t^{\prime}, s\right)\right| \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \\
& \leq \int_{0}^{1}\left|G_{1}(t, s)-G_{1}\left(t^{\prime}, s\right)\right| \Phi(s) k(s) d s h\left(\frac{1}{n}\right) \frac{g(r)}{h(r)}
\end{aligned}
$$

and

$$
\begin{aligned}
\mid p(t) & \left(A_{n} x\right)^{\prime}(t)-p\left(t^{\prime}\right)\left(A_{n} x\right)^{\prime}\left(t^{\prime}\right) \mid \\
= & \left\lvert\,-\frac{1}{\rho} \int_{0}^{t} v_{1}(s) p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s\right. \\
& +\frac{1}{\rho} \int_{0}^{t^{\prime}} v_{1}(s) p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \\
& +\frac{\alpha}{\rho} \int_{t}^{1} u_{1}(s) p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \\
& \left.-\frac{\alpha}{\rho} \int_{t^{\prime}}^{1} u_{1}(s) p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \right\rvert\, \\
\leq & 2 \frac{K}{\rho}\left|\int_{t}^{t^{\prime}} p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right)\right| d s \\
\leq & 2 \frac{K}{\rho}\left|\int_{t}^{t^{\prime}} p(s) \Phi(s) k(s) d s\right| h\left(\frac{1}{n}\right) \frac{g(r)}{h(r)}
\end{aligned}
$$

Then, for any $\varepsilon>0$, we can choose $\delta>0$ small enough such that

$$
\left|\left(A_{n} x\right)(t)-\left(A_{n} x\right)\left(t^{\prime}\right)\right|<\varepsilon, \quad\left|p(t)\left(A_{n} x\right)^{\prime}(t)-p\left(t^{\prime}\right)\left(A_{n} x\right)^{\prime}\left(t^{\prime}\right)\right|<\varepsilon
$$

for all $x \in B_{r} \cap P,\left|t-t^{\prime}\right|<\delta, t, t^{\prime} \in[0,1]$. Consequently, $\left\{\left(A_{n}\left(B_{r} \cap P\right)\right)(t)\right\}$ and $\left\{p(t)\left(A_{n}\left(B_{r} \cap P\right)\right)^{\prime}(t)\right\}$ is equicontinuous on $[0,1]$.

Consequently, from Arzela-Ascoli theorem, $A_{n}\left(B_{r} \cap P\right)$ is relatively compact. The proof is complete.

Theorem 3.3. Assume that (H1)-(H4) hold. Then 1.1) has at least two positive solutions.

Proof. From Lemma 3.2, for each $n \in\{1,2, \ldots\}, A_{n}: P \rightarrow P$ is continuous operator and for any $r>0, \overline{A_{n}}\left(B_{r} \cap P\right)$ is relatively compact. From (H2), choose $R_{0}>0$ such that

$$
\begin{equation*}
\frac{R_{0} h\left(R_{0}\right)}{u_{1}(0) v_{1}(1) \int_{0}^{1} p(s) \Phi(s) k(s) h\left(R_{0} \gamma_{1}(s)\right) d s g\left(R_{0}\right)}>1 \tag{3.3}
\end{equation*}
$$

Without loss of the generality, suppose $R_{0} \geq 1 / n, n \in\{1,2, \ldots\}$. Set

$$
\Omega_{1}=\left\{x \in C_{p}^{1} \mid\|x\|_{1}<R_{0}\right\}
$$

Then for any $x \in \partial \Omega_{1} \cap P$, one has

$$
\begin{equation*}
x \not \leq A_{n} x, \quad n \in\{1,2, \ldots\} . \tag{3.4}
\end{equation*}
$$

If there exists an $x_{0} \in \partial \Omega_{1} \cap P$ such that $x_{0} \leq A_{n} x_{0}$, obviously, $\max \left\{\frac{1}{n}, x_{0}(t)\right\} \geq$ $x_{0}(t) \geq \gamma_{1}(t) R_{0}$. Then

$$
\begin{aligned}
R_{0} & =\max _{t \in[0,1]}\left|x_{0}(t)\right| \\
& \leq \max _{t \in[0,1]} \int_{0}^{1} G_{1}(t, s) \Phi(s) f\left(s, \max \left\{\frac{1}{n}, x_{0}(s)\right\}, p(s) x^{\prime}{ }_{0}(s)\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& \leq u_{1}(0) v_{1}(1) \int_{0}^{1} p(s) \Phi(s) k(s) g\left(\max \left\{\frac{1}{n}, x_{0}(s)\right\}\right) d s \\
& \left.\leq u_{1}(0) v_{1}(1) \int_{0}^{1} p(s) \Phi(s) k(s) h\left(\max \left\{\frac{1}{n}, x_{0}(s)\right\}\right) \frac{g\left(\max \left\{\frac{1}{n}, x_{0}(s)\right\}\right)}{h\left(\max \left\{\frac{1}{n}, x_{0}(s)\right\}\right)}\right) d s \\
& \leq u_{1}(0) v_{1}(1) \int_{0}^{1} p(s) \Phi(s) k(s) h\left(R_{0} \gamma_{1}(s)\right) d s \frac{g\left(R_{0}\right)}{h\left(R_{0}\right)}
\end{aligned}
$$

which implies

$$
\frac{R_{0} h\left(R_{0}\right)}{u_{1}(0) v_{1}(1) \int_{0}^{1} \Phi(s) k(s) h\left(R_{0} \gamma_{1}(s)\right) d s g\left(R_{0}\right)} \leq 1
$$

This contradicts (3.3). Then, (3.4) is true. From the proof of Theorem 2.7 the (2.13) is true, which means

$$
\begin{equation*}
i\left(A_{n}, P \cap \Omega_{1}, P\right)=1, \quad n \in\{1,2, \ldots\} \tag{3.5}
\end{equation*}
$$

As a result, for $n \in\{1,2, \ldots\}$, there exists an $x_{n}^{(1)} \in P \cap \Omega_{1}$ with $A_{n} x_{n}^{(1)}=x_{n}^{(1)}$. Since $\left\|x_{n}^{(1)}\right\|_{1} \leq R_{0}, n \in\{1,2, \ldots\}$, it is easy to see that $\left\{x_{n}^{(1)}(t)\right\}$ and $\left\{p(t) x_{n}^{\prime(1)}(t)\right\}$ are uniformly bounded. Moreover, from Lemma 3.1, the condition (H4), there exists a $\psi_{R_{0}}(t)$ such that

$$
\begin{align*}
x_{n}^{(1)}(t) & =\int_{0}^{1} G_{1}(t, s) \Phi(s) f\left(s, \max \left\{\frac{1}{n}, x_{n}^{(1)}(s)\right\}, p(s)\left(x_{n}^{(1)}\right)^{\prime}(s)\right) d s \\
& \geq \int_{0}^{1} G_{1}(t, s) \Phi(s) \psi_{R_{0}}(s) d s \tag{3.6}\\
& \geq \gamma_{1}(t) k^{*},
\end{align*}
$$

where $k^{*}=\max _{t \in[0,1]} \int_{0}^{1} G_{1}(t, s) \Phi(s) \psi_{R_{0}}(s) d s$. Thus, for any $t^{\prime}, t^{\prime \prime} \in(0,1)$ and $n \in\{1,2, \ldots\}$,

$$
\begin{align*}
& \left|x_{n}^{(1)}\left(t^{\prime}\right)-x_{n}^{(1)}\left(t^{\prime \prime}\right)\right| \\
& \leq \int_{0}^{1}\left|G_{1}\left(t^{\prime}, s\right)-G_{1}\left(t^{\prime \prime}, s\right)\right| f_{n}\left(s, x_{n}^{(1)}(s), p(s)\left(x_{n}^{(1)}\right)^{\prime}(s)\right) d s \tag{3.7}\\
& \leq \int_{0}^{1}\left|G_{1}\left(t^{\prime}, s\right)-G_{1}\left(t^{\prime \prime}, s\right)\right| \Phi(s) k(s) h\left(\gamma_{1}(s) k^{*}\right) d s \frac{g\left(R_{0}\right)}{h\left(R_{0}\right)}
\end{align*}
$$

and

$$
\begin{align*}
& \left|p\left(t^{\prime}\right)\left(x_{n}^{(1)}\right)^{\prime}\left(t^{\prime}\right)-p\left(t^{\prime \prime}\right)\left(x_{n}^{(1)}\right)^{\prime}\left(t^{\prime \prime}\right)\right| \\
& \leq 2\left|\int_{t^{\prime}}^{t^{\prime \prime}} p(s) \Phi(s) f_{n}\left(s, x_{n}^{(1)}(s), p(s)\left(x_{n}^{(1)}\right)^{\prime}(s)\right) d s\right| \tag{3.8}\\
& \leq 2\left|\int_{t^{\prime}}^{t^{\prime \prime}} p(s) \Phi(s) k(s) h\left(\gamma_{1}(s) k^{*}\right) d s\right| \frac{g\left(R_{0}\right)}{h\left(R_{0}\right)}, \quad n \in\{1,2, \ldots\} .
\end{align*}
$$

Consequently, for any $\varepsilon>0$, we can choose a $\delta>0$ such that

$$
\left|x_{n}^{(1)}\left(t^{\prime}\right)-x_{n}^{(1)}\left(t^{\prime \prime}\right)\right|<\varepsilon, \quad\left|p\left(t^{\prime}\right)\left(x_{n}^{(1)}\right)^{\prime}\left(t^{\prime}\right)-p\left(t^{\prime \prime}\right)\left(x_{n}^{(1)}\right)^{\prime}\left(t^{\prime \prime}\right)\right|<\varepsilon,
$$

for all $n \in\{1,2, \ldots\},\left|t^{\prime}-t^{\prime \prime}\right|<\delta, t^{\prime}, t^{\prime \prime} \in[0,1]$, which implies that $\left\{x_{n}^{(1)}(t)\right\}$ and $\left\{p(t)\left(x_{n}^{(1)}\right)^{\prime}(t)\right\}$ are equi-continuous on $[0,1]$.

The Arzela-Ascoli theorem guarantees that there is a subsequence $\left\{x_{n_{j}}^{(1)}\right\}$ of $\left\{x_{n}^{(1)}\right\}$ with $\lim _{j \rightarrow+\infty} x_{n_{j}}^{(1)}=x_{0}^{(1)}$. From (3.6), we have

$$
x_{0}(t) \geq k^{*} \gamma_{1}(t), \quad \forall t \in[0,1]
$$

Then, for $t \in(0,1)$, if j is big enough, we have

$$
\begin{aligned}
& \left|f_{n_{j}}\left(t, x_{n_{j}}^{(1)}(t), p(t)\left(x_{n_{j}}^{(1)}\right)^{\prime}(t)\right)-f\left(t, x_{0}^{(1)}(t), p(t)\left(x_{0}^{(1)}\right)^{\prime}(t)\right)\right| \\
& \quad=\left|f\left(t, x_{n_{j}}^{(1)}(t), p(t)\left(x_{n_{j}}^{(1)}\right)^{\prime}(t)\right)-f\left(t, x_{0}^{(1)}(t), p(t)\left(x_{0}^{(1)}\right)^{\prime}(t)\right)\right| \rightarrow 0, \quad \text { as } j \rightarrow+\infty
\end{aligned}
$$

and

$$
\begin{align*}
f_{n_{j}}\left(t, x_{n_{j}}^{(1)}(t), p(t)\left(x_{n_{j}}^{(1)}\right)^{\prime}(t)\right) & =f\left(t, \max \left\{\frac{1}{n_{j}}, x_{n_{j}}^{(1)}(t)\right\}, p(t)\left(x_{n_{j}}^{(1)}\right)^{\prime}(t)\right) \\
& \leq k(t) h\left(k^{*} \gamma_{1}(t)\right) \frac{g\left(R_{0}\right)}{h\left(R_{0}\right)} \tag{3.9}
\end{align*}
$$

Then the Lesbegue Dominated Convergence Theorem guarantees that

$$
\begin{align*}
x_{0}^{(1)}(t) & =\lim _{j \rightarrow+\infty} x_{n_{j}}^{(1)}(t) \\
& =\lim _{j \rightarrow+\infty} \int_{0}^{1} G_{1}(t, s) \Phi(s) f\left(s, \max \left\{\frac{1}{n_{j}}, x_{n_{j}}^{(1)}(s)\right\}, p(s)\left(x_{n_{j}}^{(1)}\right)^{\prime}(s)\right) d s \tag{3.10}\\
& =\int_{0}^{1} G_{1}(t, s) \Phi(s) f\left(s, x_{0}^{(1)}(s), p(s)\left(x_{0}^{(1)}\right)^{\prime}(s)\right) d s .
\end{align*}
$$

Obviously $\left\|x_{0}^{(1)}\right\|_{1} \leq R_{0}$. Thus (3.3) can guarantee $\left\|x_{0}^{(1)}\right\|_{1}<R_{0}$. Let $0<a^{*}<$ $b^{*}<1$, and $0<c^{*}<\min _{t \in\left[a^{*}, b^{*}\right]} \gamma_{1}(t)$. Suppose

$$
N^{*}=\left(\min _{t \in\left[a^{*}, b^{*}\right]} \int_{a^{*}}^{b^{*}} G_{1}(t, s) \Phi(s) k_{1}(s) d s c^{*}\right)^{-1}+1
$$

From the condition (H3), there exists an $R^{\prime}>R$ such that

$$
\begin{equation*}
g_{1}(x)>N^{*} x, \forall x \geq R^{\prime} \tag{3.11}
\end{equation*}
$$

Now we define

$$
\begin{equation*}
\Omega_{2}=\left\{x \in \left\lvert\,\|x\|_{1}<\frac{R^{\prime}}{c^{*}}\right.\right\} \tag{3.12}
\end{equation*}
$$

We might as well suppose that $\frac{R^{\prime}}{c^{*}}>1, R^{\prime}>1$. Then we have

$$
\begin{equation*}
A_{n} x \not \leq x \quad \text { for all } x \in \partial \Omega_{2} \cap P, n \in\{1,2, \ldots\} \tag{3.13}
\end{equation*}
$$

Otherwise, suppose there exists $x_{0} \in \partial \Omega_{2} \cap P$ with $A_{n} x_{0} \leq x_{0}$. Since $x_{0} \in \partial\left(\Omega_{2}\right) \cap P$,

$$
\begin{equation*}
\min _{t \in\left[a^{*}, b^{*}\right]} x_{0}(t) \geq \min _{t \in\left[a^{*}, b^{*}\right]} \gamma_{1}(t)\|x\|_{1}>c^{*} \frac{R^{\prime}}{c^{*}}=R^{\prime}>1 . \tag{3.14}
\end{equation*}
$$

Then, for $t \in\left[a^{*}, b^{*}\right]$, from (3.11) and (3.14), we have

$$
\begin{aligned}
x_{0}(t) & \geq\left(A_{n} x_{0}\right)(t) \\
& =\int_{0}^{1} G_{1}(t, s) \Phi(s) f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right) d s \\
& \geq \int_{a^{*}}^{b^{*}} G_{1}(t, s) \Phi(s) f\left(s, \max \left\{\frac{1}{n}, x_{0}(s)\right\}, p(s) x_{0}^{\prime}(s)\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& \geq \int_{a^{*}}^{b^{*}} G_{1}(t, s) \Phi(s) k_{1}(s) g_{1}\left(\max \left\{\frac{1}{n}, x_{0}(s)\right\}\right) d s \\
& >\int_{a^{*}}^{b^{*}} G_{1}(t, s) \Phi(s) k_{1}(s) N^{*} x_{0}(s) d s \\
& >\int_{a^{*}}^{b^{*}} G_{1}(t, s) \Phi(s) k_{1}(s) d s N^{*} c^{*} \frac{R^{\prime}}{c^{*}} \\
& >\frac{R^{\prime}}{c^{*}}, \quad \forall n \in\{1,2, \ldots\}
\end{aligned}
$$

which implies $\left\|x_{0}\right\|_{1}>R^{\prime} / c^{*}$. This contradicts to $x_{0} \in P \cap \partial \Omega_{2}$.
From (3.4) and (3.13), the Theorem 2.7 guarantees that A_{n} has a fixed point $x_{n}^{(2)} \in\left(\Omega_{2}-\bar{\Omega}_{1}\right) \cap P, n \in\{1,2, \ldots\}$. It is easy to see that

$$
\begin{equation*}
x_{n}^{(2)}(t) \geq \gamma_{1}(t)\left\|x_{n}^{(2)}\right\|_{1} \geq \gamma_{1}(t) R_{0}, \quad n \in\{1,2, \ldots\} \tag{3.15}
\end{equation*}
$$

By proof similar to (3.6, 3.7), 3.8, we know that $\left\{x_{n}^{(2)}\right\}$ is relatively compact in C_{p}^{1}. Then there exists a subsequence $\left\{x_{n_{i}}^{(2)}\right\}$ of $\left\{x_{n}^{(2)}\right\}$ with $\lim _{i \rightarrow+\infty} x_{n_{i}}^{(2)}=x_{0}^{(2)}$. And moreover, by similar proof as 3.10 , we get $x_{0}^{(2)}(t)$ is a positive solution to equation (1.1) with $\frac{R^{\prime}}{c^{*}}>\left\|x_{0}^{(2)}\right\|_{1}>R_{0}$. Consequently, equation (1.1) has at least two different positive solution $x_{0}^{(1)}(t)$ and $x_{0}^{(2)}(t)$. The proof is complete.

Example 3.4. Now we consider

$$
\begin{gather*}
x^{\prime \prime}+\frac{1}{16} t^{-1 / 2}(1-t)^{-1 / 4}\left(x^{-1 / 4}+x^{2}\right)\left(1+\cos ^{2}\left(x^{\prime}\right)\right)=0, \quad t \in(0,1) \tag{3.16}\\
\lim _{t \rightarrow 0+} x^{\prime}(t)=0=x(1)
\end{gather*}
$$

Then (3.16 has at least two positive solutions.
To prove that (3.16) has at least two positive solutions, we apply Theorem 3.3 with $\Phi(t)=\frac{1}{16} t^{-1 / 2}(1-t)^{-1 / 4}, p(t) \equiv 1, f(t, x, z)=\left(x^{-1 / 4}+x^{2}\right)\left(1+\cos ^{2}(z)\right)$, $k(t) \equiv 1, g(x)=2\left(x^{-1 / 4}+x^{2}\right), h(x)=x^{-1 / 4}, \gamma_{1}(t)=1-t, k_{1}(t) \equiv 1, g_{1}(x)=$ $x^{-1 / 4}+x^{2}, \Psi_{c}(t)=c^{-1 / 4}$. It is easy to verify that (H1)-(H4) hold. Hence, 3.16) has at leat two positive solutions.

Example 3.5. Now we consider

$$
\begin{gather*}
x^{\prime \prime}+\frac{1}{12 \pi} t^{-1 / 4}(1-t)^{-1 / 4}\left(x^{-1 / 4}+x^{2}\right)\left(\pi+\arctan x^{\prime}\right)=0, \quad t \in(0,1) \tag{3.17}\\
x(0)=0=x(1)
\end{gather*}
$$

Then (3.17) has at least two positive solutions.
To prove that (3.17) has at least two positive solutions, we apply Theorem 3.3 with $\Phi(t)=\frac{1}{12 \pi} t^{-1 / 4}(1-t)^{-1 / 4}, p(t) \equiv 1, f(t, x, z)=\left(x^{-1 / 4}+x^{2}\right)\left(\pi+\arctan x^{\prime}\right)$, $k(t) \equiv 1, g(x)=\frac{3 \pi}{2}\left(x^{-1 / 4}+x^{2}\right), h(x)=x^{-1 / 4}, \gamma_{1}(t)=t(1-t), k_{1}(t) \equiv 1$, $g_{1}(x)=x^{-1 / 4}+x^{2}, \Psi_{c}(t)=c^{-1 / 4}$. It is easy to verify that (H1)-(H4) hold. Hence, (3.17) has at leat two positive solutions.
4. The existence of multiple positive solutions to equation 1.2

In this section, we consider 1.2 and suppose that $f \in C\left(R^{+} \times R_{0}^{+} \times R^{+}, R^{+}\right)$, $p \in C\left(R^{+}, R\right) \cap C\left(R_{0}^{+}, R_{0}^{+}\right) \cap C^{1}\left(R_{0}^{+}, R\right)$ with $\int_{0}^{+\infty} \frac{1}{p(r)} d r=+\infty, \Phi \in C\left(R_{0}^{+}, R^{+}\right)$; here $R^{+}=[0,+\infty), R_{0}^{+}=(0,+\infty), R=(-\infty,+\infty)$. Let

$$
G_{2}(t, s)= \begin{cases}u_{2}(t) v_{2}(s) p(s), & a \leq s \leq t<+\infty \\ v_{2}(t) u_{2}(s) p(s), & 0 \leq t \leq s<+\infty\end{cases}
$$

where $u_{2}(t)=1$ and $v_{2}(t)=\int_{0}^{t} \frac{1}{p(r)} d r$ for all $t \in R^{+}$.
Let $C_{\infty}^{1}=\left\{x:[0,+\infty) \rightarrow R \mid x(t)\right.$ is continuous on R^{+}and $p(t) x^{\prime}(t)$ is continuous on R^{+}also with $\lim _{t \rightarrow+\infty} \frac{x(t)}{1+v_{2}(t)}$ exists and $\left.\sup _{t \in[0,+\infty)} p(t)\left|x^{\prime}(t)\right|<+\infty\right\}$. For $x \in C_{\infty}^{1}$, let

$$
\|x\|_{1}=\sup _{t \in[0,+\infty)} \frac{|x(t)|}{1+v_{2}(t)} \quad \text { and } \quad\|x\|_{2}=\sup _{t \in[0,+\infty)} p(t)\left|x^{\prime}(t)\right|
$$

It is easy to see that $\|\cdot\|_{1}$ is a norm of C_{∞}^{1} and $\|\cdot\|_{2}$ is a semi-norm of C_{∞}^{1}. Now Let $\|x\|=\max \left\{\|x\|_{1},\|x\|_{2}\right\}$. Obviously, C_{∞}^{1} satisfies (1), (2) and (3) of the Banach space E in section 2.

It is easy to prove that if $x(t) \in C_{\infty}^{1}$ is a solution to integral equation

$$
x(t)=\int_{0}^{\infty} G_{2}(t, s) \Phi(s) f\left(s, x(s), p(s) x^{\prime}(s)\right) d s, \quad t \in R^{+}
$$

then $x(t)$ is a solution to 1.2.
Let $P=\left\{x \in C_{\infty}^{1} \mid x(t) \geq \gamma_{2}(t)\|x\|_{1}, \forall t \in R^{+}\right\}$, where

$$
\begin{aligned}
& \gamma_{2}(t)= \begin{cases}\int_{0}^{t} \frac{1}{p(r)} d r, & t \in[0, \tau] \\
1, & t \in(\tau,+\infty)\end{cases} \\
& \widetilde{\gamma}_{2}(t)=\frac{\gamma_{2}(t)}{1+v_{2}(t)}, \quad t \in R^{+} ;
\end{aligned}
$$

here $\int_{0}^{\tau} \frac{1}{p(r)} d r=1$. Suppose that $x=\left(1+v_{2}(t)\right) y, t \in R^{+}$and $F(t, y, z)=$ $f\left(t,\left(1+v_{2}(t)\right) y, z\right)=f(t, x, z)$.

Now we will list some conditions for convenience:
(H1) There exists a $k \in C\left(R^{+}, R_{0}^{+}\right)$, a $g \in C\left(R_{0}^{+}, R_{0}^{+}\right)$and a decreasing continuous function $h \in C\left(R_{0}^{+}, R_{0}^{+}\right)$such that

$$
F(t, y, z) \leq k(t) g(y), \quad \forall(y, z) \in R_{0}^{+} \times R_{0}^{+}, t \in R^{+}
$$

where $\frac{g(y)}{h(y)}$ is an increasing function and $\int_{0}^{\infty} p(s) \Phi(s) k(s) h\left(c \tilde{\gamma}_{2}(s)\right) d s<+\infty$ for each $c>0$
(H2)

$$
\sup _{c \in R_{0}^{+}} \frac{c h(c)}{\int_{0}^{\infty} p(s) \Phi(s) k(s) h\left(c \widetilde{\gamma}_{2}(s)\right) \operatorname{ssg}(c)}>1
$$

(H3) There exists a $k_{1} \in C\left(R^{+}, R_{0}^{+}\right)$and a $g_{1} \in C\left(R_{0}^{+}, R_{0}^{+}\right)$with $F(t, y, z) \geq$ $k_{1}(t) g_{1}(y)$, for all $(t, y, z) \in[0,+\infty) \times R_{0}^{+} \times R^{+}$such that

$$
\lim _{y \rightarrow+\infty} \frac{g_{1}(y)}{y}=+\infty
$$

where $\int_{0}^{\infty} p(s) \Phi(s) k_{1}(s) d s<+\infty$
(H4) for any $c>0$, there exists a $\psi_{c} \in C\left(R^{+}, R_{0}^{+}\right)$such that $F(t, y, z) \geq \psi_{c}(t)$ for all $(t, y, z) \in R^{+} \times(0, c] \times R^{+}$with $\int_{0}^{\infty} p(s) \Phi(s) \psi_{c}(s) d s<+\infty$.
Let $C_{l}=\left\{x: R^{+} \rightarrow R \mid x(t)\right.$ is continuous on R^{+}and $\lim _{t \rightarrow+\infty} x(t)$ exists $\}$ with norm $\|x\|_{l}=\sup _{t \in[0,+\infty)}|x(t)|$. From [18], we know that C_{l} is a Banach space and following theorem is true.

Theorem 4.1 ([18). Let $M \subseteq C_{l}\left(R^{+}, R\right)$. Then M is relatively compact in the space $C_{l}\left(R^{+}, R\right)$ if the following conditions hold:
(a) M is bounded in C_{l}
(b) the functions belonging to M are locally equi-continuous on R^{+};
(c) the functions from M are equiconvergent, that is, given $\varepsilon>0$, there corresponds $T(\varepsilon)>0$ such that $|x(t)-x(+\infty)|<\varepsilon$ for any $t \geq T(\varepsilon)$ and $x \in M$.
Theorem $4.2([22])$. Let $M \subseteq C_{\infty}^{1}\left(R^{+}, R\right)$. Then M is relatively compact in $C_{\infty}^{1}\left(R^{+}, R\right)$ if the following conditions hold:
(a) M is bounded in C_{∞}^{1};
(b) the functions belonging to $\left\{y \left\lvert\, y(t)=\frac{x(t)}{1+v_{2}(t)}\right., x \in M\right\}$ and the functions belonging to $\left\{y \mid y(t)=p(t) x^{\prime}(t), x \in M\right\}$ are locally equi-continuous on R^{+};
(c) the functions from $\left\{y \left\lvert\, y(t)=\frac{x(t)}{1+v_{2}(t)}\right., x \in M\right\}$ and the functions from $\left\{y \mid y(t)=p(t) x^{\prime}(t), x \in M\right\}$ are equi-convergent at $+\infty$.

Lemma 4.3 ([22]). Assume that $\bar{\Phi}(t) \in C\left(R_{0}^{+}, R^{+}\right)$with $\int_{0}^{+\infty} p(s) \bar{\Phi}(t) d t<+\infty$ and $F(t)=\int_{0}^{\infty} G_{2}(t, s) \bar{\Phi}(s) d s$. Then

$$
F(t) \geq \gamma_{2}(t) \frac{F(\tau)}{1+v_{2}(\tau)}, \quad \forall t \in R^{+}, \tau \in R^{+}
$$

and

$$
F(t) \geq \gamma_{2}(t)\|F\|_{1}, \quad \forall t \in R^{+}, \lim _{t \rightarrow+\infty} \frac{F(t)}{1+v_{2}(t)}=0
$$

Let $f_{n}(t, x, z)=f\left(t, \max \left\{\frac{1}{n}\left(1+v_{2}(t)\right), x\right\}, z\right), n \in\{1,2, \ldots\}$ and for $x \in P$, $n \in\{1,2, \ldots\}, t \in R^{+}$, define

$$
\begin{equation*}
\left(A_{n} x\right)(t)=\int_{0}^{\infty} G_{2}(t, s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \tag{4.1}
\end{equation*}
$$

Lemma 4.4. Assume that the condition (H1) holds. Then for each $n \in\{1,2, \ldots\}$, $A_{n}: P \rightarrow P$ is continuous and for any $r>0$ and $B_{r}=\left\{x \in C_{\infty}^{1} \mid\|x\|_{1} \leq r\right\}$, $A_{n}\left(P \cap B_{r}\right)$ is relatively compact for each $n \geq 1$.

Proof. First, we show that $A_{n} P \subseteq P$. For any $x \in P$, we have

$$
\begin{aligned}
\left|\left(A_{n} x\right)(t)\right| & =\left|\int_{0}^{\infty} G_{2}(t, s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s\right| \\
& \leq \int_{0}^{\infty} G_{2}(t, s) \Phi(s) f\left(s, \max \left\{\frac{1}{n}\left(1+v_{2}(s)\right), x(s)\right\}, p(s) x^{\prime}(s)\right) d s \\
& =\int_{0}^{\infty} G_{2}(t, s) \Phi(s) F\left(s, \max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}, p(s) x^{\prime}(s)\right) d s \\
& \leq \int_{0}^{\infty} G_{2}(t, s) \Phi(s) k(s) g\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{0}^{\infty} G_{2}(t, s) \Phi(s) k(s) h\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right) \frac{g\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right)}{h\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right)} d s \\
& \leq \int_{0}^{\infty} G_{2}(t, s) \Phi(s) k(s) d \operatorname{sh}\left(\frac{1}{n}\right) \frac{g\left(\max \left\{\frac{1}{n},\|x\|_{1}\right\}\right)}{h\left(\max \left\{\frac{1}{n},\|x\|_{1}\right\}\right)}<+\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\left|p(t)\left(A_{n} x\right)^{\prime}(t)\right| & =\left|\int_{t}^{\infty} p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s\right| \\
& \leq \int_{t}^{\infty} p(s) \Phi(s) f\left(s, \max \left\{\frac{1}{n}\left(1+v_{2}(s)\right), x(s)\right\}, p(s) x^{\prime}(s)\right) d s \\
& =\int_{t}^{\infty} p(s) \Phi(s) F\left(s, \max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}, p(s) x^{\prime}(s)\right) d s \\
& \leq \int_{t}^{\infty} p(s) \Phi(s) k(s) g\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right) d s \\
& \leq \int_{t}^{\infty} p(s) \Phi(s) k(s) h\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right) \frac{g\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right)}{h\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right)} d s \\
& \leq \int_{0}^{\infty} p(s) \Phi(s) k(s) d s h\left(\frac{1}{n}\right) \frac{g\left(\max \left\{\frac{1}{n},\|x\|_{1}\right\}\right)}{h\left(\max \left\{\frac{1}{n},\|x\|_{1}\right\}\right)} \\
& <+\infty
\end{aligned}
$$

Since $\left(A_{n} x\right)(t) \geq 0$, it is easy to see that A_{n} is well defined. Moreover, from Lemma 4.3. for any $x \in P$, we have

$$
\left(A_{n} x\right)(t) \geq \gamma_{2}(t)\left\|A_{n} x\right\|_{1}, \quad \forall t \in R^{+}
$$

Consequently, $A_{n} P \subseteq P$.
Second, we show $A_{n}: P \rightarrow P$ is continuous. Assume that $\lim _{m \rightarrow+\infty} x_{m}=$ x_{0}, which means there exists an $M>1 / n$ such that $\left\|x_{m}\right\| \leq M$, for all $m \in$ $\{0,1,2, \ldots\}$. Then

$$
\begin{align*}
f_{n}\left(t, x_{m}(t), p(t) x^{\prime}{ }_{m}(t)\right) & =F\left(t, \max \left\{\frac{1}{n}, \frac{x_{m}(t)}{1+v_{2}(t)}\right\}, p(t) x_{m}^{\prime}(t)\right) \\
& \leq k(t) g\left(\max \left\{\frac{1}{n}, \frac{x_{m}(t)}{1+v_{2}(t)}\right\}\right) \\
& \leq k(t) h\left(\max \left\{\frac{1}{n}, \frac{x_{m}(t)}{1+v_{2}(t)}\right\}\right) \frac{g\left(\max \left\{\frac{1}{n}, \frac{x_{m}(t)}{1+v_{2}(t)}\right\}\right)}{h\left(\max \left\{\frac{1}{n}, \frac{x_{m}(t)}{1+v_{2}(t)}\right\}\right)} \tag{4.2}\\
& \leq k(t) h\left(\frac{1}{n}\right) \frac{g(M)}{h(M)}, \quad m \in\{1,2, \ldots\}
\end{align*}
$$

Since

$$
f_{n}\left(t, x_{m}(t), p(t) x_{m}^{\prime}(t)\right) \rightarrow f_{n}\left(t, x_{0}(t), p(t) x_{0}^{\prime}(t)\right), \quad \text { as } m \rightarrow+\infty
$$

from (4.2), the Lesbegue Dominated Convergence Theorem guarantees that

$$
\lim _{m \rightarrow+\infty} \sup _{t \in[0,+\infty)} \frac{\left|\left(A_{n} x_{m}\right)(t)-\left(A_{n} x_{0}\right)(t)\right|}{1+v_{2}(t)}
$$

$$
\begin{aligned}
= & \lim _{m \rightarrow+\infty} \sup _{t \in[0,+\infty)} \left\lvert\, \int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s)\left(f_{n}\left(s, x_{m}(s), p(s) x_{m}^{\prime}(s)\right)\right.\right. \\
& \left.-f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right)\right) d s \mid \\
\leq & \left.\lim _{m \rightarrow+\infty} \sup _{t \in[0,+\infty)} \int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) \right\rvert\, f_{n}\left(s, x_{m}(s), p(s) x_{m}^{\prime}(s)\right) \\
& -f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right) \mid d s \\
= & \lim _{m \rightarrow+\infty} \int_{0}^{\infty} p(s) \Phi(s) \mid f_{n}\left(s, x_{m}(s), p(s) x_{m}^{\prime}(s)\right) \\
& -f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right) \mid d s=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{m \rightarrow+\infty} \sup _{t \in[0,+\infty)}\left|p(t)\left(A_{n} x_{m}\right)^{\prime}(t)-p(t)\left(A_{n} x_{0}\right)^{\prime}(t)\right| \\
= & \lim _{m \rightarrow+\infty} \sup _{t \in[0,+\infty)} \mid \int_{t}^{\infty} p(s) \Phi(s) f_{n}\left(s, x_{m}(s), p(s) x_{m}^{\prime}(s)\right) d s \\
& -\int_{t}^{\infty} p(s) \Phi(s) f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right) d s \mid \\
\leq & \lim _{m \rightarrow+\infty} \sup _{t \in[0,+\infty)} \int_{t}^{\infty} p(s) \Phi(s) \mid f_{n}\left(s, x_{m}(s), p(s) x_{m}^{\prime}(s)\right) \\
& -f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right) \mid d s \\
= & \lim _{m \rightarrow+\infty} \int_{0}^{\infty} p(s) \Phi(s)\left|f_{n}\left(s, x_{m}(s), p(s) x_{m}^{\prime}(s)\right)-f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right)\right| d s=0
\end{aligned}
$$

which implies

$$
\lim _{m \rightarrow+\infty}\left\|A_{n} x_{m}-A_{n} x_{0}\right\|=0
$$

Finally, we show $A_{n}\left(B_{r} \cap P\right)$ is relatively compact. Obviously, B_{r} is a unbounded set in C_{∞}^{1}. Without loss of generality, we suppose $r>1 / n$. Then, for any $x \in B_{r} \cap P$, we have

$$
\begin{aligned}
& \sup _{t \in[0,+\infty)} \frac{\left|\left(A_{n} x\right)(t)\right|}{1+v_{2}(t)} \\
& =\sup _{t \in[0,+\infty)}\left|\int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s\right| \\
& =\sup _{t \in[0,+\infty)} \int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \\
& \leq \sup _{t \in[0,+\infty)} \int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) k(s) h\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right) \frac{g\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right)}{h\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right)} d s \\
& \leq \sup _{t \in[0,+\infty)} \int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) k(s) d s h\left(\frac{1}{n}\right) \frac{g(r)}{h(r)} \\
& \leq \int_{0}^{\infty} p(s) \Phi(s) k(s) d s h\left(\frac{1}{n}\right) \frac{g(r)}{h(r)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sup _{t \in[0,+\infty)}\left|p(t)\left(A_{n} x\right)^{\prime}(t)\right| \\
& =\sup _{t \in[0,+\infty)}\left|\int_{t}^{\infty} p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s\right| \\
& =\sup _{t \in[0,+\infty)} \int_{t}^{\infty} p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \\
& \leq \sup _{t \in[0,+\infty)} \int_{t}^{\infty} p(s) \Phi(s) k(s) h\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right) \frac{g\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right)}{h\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right)} d s \\
& \leq \sup _{t \in[0,+\infty)} \int_{t}^{\infty} p(s) \Phi(s) k(s) d s h\left(\frac{1}{n}\right) \frac{g(r)}{h(r)} \\
& =\int_{0}^{\infty} p(s) \Phi(s) k(s) d s h\left(\frac{1}{n}\right) \frac{g(r)}{h(r)}
\end{aligned}
$$

which implies $A_{n}\left(P \cap B_{r}\right)$ is bounded. Assume that $t, t^{\prime} \in R^{+}$. Then, for $x \in B_{r} \cap P$, we have

$$
\begin{aligned}
& \left|\frac{\left(A_{n} x\right)(t)}{1+v_{2}(t)}-\frac{\left(A_{n} x\right)\left(t^{\prime}\right)}{1+v_{2}\left(t^{\prime}\right)}\right| \\
& \quad=\left\lvert\, \int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s\right. \\
& \left.\quad-\int_{0}^{\infty} \frac{G_{2}\left(t^{\prime}, s\right)}{1+v_{2}\left(t^{\prime}\right)} \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \right\rvert\, \\
& \leq \int_{0}^{\infty}\left|\frac{G_{2}(t, s)}{1+v_{2}(t)}-\frac{G_{2}\left(t^{\prime}, s\right)}{1+v_{2}\left(t^{\prime}\right)}\right| \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \\
& \leq \int_{0}^{\infty}\left|\frac{G_{2}(t, s)}{1+v_{2}(t)}-\frac{G_{2}\left(t^{\prime}, s\right)}{1+v_{2}\left(t^{\prime}\right)}\right| \Phi(s) k(s) d s h\left(\frac{1}{n}\right) \frac{g(r)}{h(r)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|p(t)\left(A_{n} x\right)^{\prime}(t)-p\left(t^{\prime}\right)\left(A_{n} x\right)^{\prime}\left(t^{\prime}\right)\right| \\
& =\left|\int_{t}^{1} p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s-\int_{t^{\prime}}^{1} p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s\right| \\
& =\left|\int_{t}^{t^{\prime}} p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s\right| \\
& \leq\left|\int_{t}^{t^{\prime}} p(s) \Phi(s) k(s) d s\right| h\left(\frac{1}{n}\right) \frac{g(r)}{h(r)} .
\end{aligned}
$$

For any $\varepsilon>0, T>0$, we can choose $\delta>0$ small enough such that

$$
\left|\frac{\left(A_{n} x\right)(t)}{1+v_{2}(t)}-\frac{\left(A_{n} x\right)\left(t^{\prime}\right)}{1+v_{2}\left(t^{\prime}\right)}\right|<\varepsilon, \quad\left|p(t)\left(A_{n} x\right)^{\prime}(t)-p\left(t^{\prime}\right)\left(A_{n} x\right)^{\prime}\left(t^{\prime}\right)\right|<\varepsilon
$$

for all $x \in B_{r} \cap P,\left|t-t^{\prime}\right|<\delta, t, t^{\prime} \in[0, T]$. Consequently, $\left\{\frac{\left(A_{n}\left(B_{r} \cap P\right)\right)(t)}{1+v_{2}(t)}\right\}$ and $\left\{p(t)\left(A_{n}\left(B_{r} \cap P\right)\right)^{\prime}(t)\right\}$ is locally equi-continuous on $[0,+\infty)$.

Moreover, Lemma 4.3 guarantees that

$$
\begin{aligned}
& \lim _{t \rightarrow+\infty} \sup _{x \in P \cap B_{r}}\left|\frac{(A x)(t)}{1+v_{2}(t)}\right| \\
& \leq \lim _{t \rightarrow+\infty} \int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \\
& \leq \lim _{t \rightarrow+\infty} \sup _{x \in P \cap B_{r}} \int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) k(s) g\left(\max \left\{\frac{1}{n}, \frac{x(s)}{1+v_{2}(s)}\right\}\right) d s \\
& \leq \lim _{t \rightarrow+\infty} \frac{\int_{0}^{\infty} G_{2}(t, s) \Phi(s) k(s) d s}{1+v_{2}(t)} h\left(\frac{1}{n}\right) \frac{g(r)}{h(r)}=0
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \sup _{x \in P \cap B_{r}}\left|p(t)(A x)^{\prime}(t)\right| & \leq \lim _{t \rightarrow+\infty} \int_{t}^{\infty} p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \\
& \leq \lim _{t \rightarrow+\infty} \sup _{x \in P \cap B_{r}} \int_{t}^{\infty} p(s) \Phi(s) k(s) g\left(\max \left\{\frac{1}{n}, x(s)\right\}\right) d s \\
& \leq \lim _{t \rightarrow+\infty} \int_{t}^{\infty} p(s) \Phi(s) k(s) d s h\left(\frac{1}{n}\right) \frac{g(r)}{h(r)}=0
\end{aligned}
$$

which imply that the functions belonging to $\left\{\frac{\left(A\left(P \cap B_{r}\right)\right)(t)}{1+v_{2}(t)}\right\}$ and the functions belonging to $\left\{p(t)\left(A\left(P \cap B_{r}\right)\right)^{\prime}(t)\right\}$ are equi-convergent.

As a result, from Lemma 4.3, $A_{n}\left(B_{r} \cap P\right)$ is relatively compact. The proof is complete.

Theorem 4.5. Assume that (H1)-(H4) hold. Then 1.2) has at least two positive solutions.

Proof. From Lemma 4.4, for each $n \in\{1,2, \ldots\}, A_{n}: P \rightarrow P$ is continuous operator and for any $r>0, \overline{A_{n}}\left(B_{r} \cap P\right)$ is relatively compact. From (H2), choose $R_{0}>0$ such that

$$
\begin{equation*}
\frac{R_{0} h\left(R_{0}\right)}{\int_{0}^{\infty} p(s) \Phi(s) k(s) h\left(R_{0} \tilde{\gamma}_{2}(s)\right) d s g\left(R_{0}\right)}>1 \tag{4.3}
\end{equation*}
$$

Without loss of the generality, suppose $R_{0} \geq 1 / n$. Set

$$
\begin{equation*}
\Omega_{1}=\left\{x \in C_{\infty}^{1} \mid\|x\|_{1}<R_{0}\right\} . \tag{4.4}
\end{equation*}
$$

Then for any $x \in \partial \Omega_{1} \cap P$, one has

$$
\begin{equation*}
x \not \leq A_{n} x, \quad n \in\{1,2, \ldots\} . \tag{4.5}
\end{equation*}
$$

If there exists $x_{0} \in \partial \Omega_{1} \cap P$ such that $x_{0} \leq A_{n} x_{0}$, obviously, $\max \left\{\frac{1}{n}, x_{0}(t)\right\} \geq$ $x_{0}(t) \geq \gamma_{2}(t) R_{0}$ and $\frac{\max \left\{\frac{1}{n}, x_{0}(t)\right\}}{1+v_{2}(t)} \geq \tilde{\gamma}_{2}(t) R_{0}$. Then

$$
\begin{aligned}
R_{0} & =\sup _{t \in[0,+\infty)} \frac{\left|x_{0}(t)\right|}{1+v_{2}(t)} \\
& \leq \sup _{t \in[0,+\infty)} \int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) f\left(s, \max \left\{\frac{1}{n}, x_{0}(s)\right\}, p(s) x^{\prime}{ }_{0}(s)\right) d s \\
& \leq \int_{0}^{\infty} p(s) \Phi(s) k(s) g\left(\frac{\max \left\{\frac{1}{n}, \frac{x_{0}(s)}{1+v_{2}(s)}\right\}}{1+v_{2}(s)}\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{0}^{\infty} p(s) \Phi(s) k(s) h\left(\max \left\{\frac{1}{n}, \frac{x_{0}(s)}{1+v_{2}(s)}\right\}\right) \frac{g\left(\max \left\{\frac{1}{n}, \frac{x_{0}(s)}{1+v_{2}(s)}\right\}\right)}{h\left(\max \left\{\frac{1}{n}, \frac{x_{0}(s)}{1+v_{2}(s)}\right\}\right)} d s \\
& \leq \int_{0}^{\infty} p(s) \Phi(s) k(s) h\left(R_{0} \tilde{\gamma}_{2}(s)\right) d s \frac{g\left(R_{0}\right)}{h\left(R_{0}\right)}
\end{aligned}
$$

which implies

$$
\frac{R_{0} h\left(R_{0}\right)}{\int_{0}^{+\infty} p(s) \Phi(s) k(s) h\left(R_{0} \tilde{\gamma}_{2}(s)\right) d s g\left(R_{0}\right)} \leq 1
$$

This contradicts (4.3). Then (4.5) is true. From the proof of Theorem 2.7, the (2.13) is true, which means

$$
\begin{equation*}
i\left(A_{n}, P \cap \Omega_{1}, P\right)=1, \quad n \in\{1,2, \ldots\} . \tag{4.6}
\end{equation*}
$$

So for any $n \geq 1$, there exists an $x_{n}^{(1)} \in P \cap \Omega_{1}$ with $A_{n} x_{n}^{(1)}=x_{n}^{(1)}$.
From $\left\{x_{n}^{(1)}\right\} \subseteq \Omega_{1} \cap P$, the $\left\{x_{n}^{(1)}\right\}$ is bounded. From Lemma 4.3, the condition (H4), there exists a $\psi_{R_{0}}(t)$ such that

$$
\begin{align*}
x_{n}^{(1)}(t) & =\int_{0}^{\infty} G_{2}(t, s) \Phi(s) f\left(s, \max \left\{\frac{1}{n}, x_{n}^{(1)}(s)\right\}, p(s)\left(x_{n}^{(1)}\right)^{\prime}(s)\right) d s \\
& \geq \int_{0}^{\infty} G_{2}(t, s) \Phi(s) \psi_{R_{0}}(s) d s \tag{4.7}\\
& \geq \gamma_{2}(t) k^{*},
\end{align*}
$$

where $k^{*}=\sup _{t \in[0,+\infty)} \int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) \psi_{R_{0}}(s) d s$. Then, from Lemma 4.3 one has

$$
\begin{align*}
& \lim _{t \rightarrow+\infty} \sup _{n \geq 1}\left|\frac{x_{n}^{(1)}(t)}{1+v_{2}(t)}\right| \\
& \leq \lim _{t \rightarrow+\infty} \int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \tag{4.8}\\
& \leq \lim _{t \rightarrow+\infty} \sup _{n \geq 1} \int_{0}^{\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) k(s) g\left(\max \left\{\frac{1}{n}, \frac{x_{n}^{(1)}(s)}{1+v_{2}(s)}\right\}\right) d s \\
& \leq \lim _{t \rightarrow+\infty} \frac{\int_{0}^{\infty} G_{2}(t, s) \Phi(s) k(s) h\left(k^{*} \tilde{\gamma}_{2}(s)\right) d s}{1+v_{2}(t)} \frac{g\left(R_{0}\right)}{h\left(R_{0}\right)}=0
\end{align*}
$$

and

$$
\begin{align*}
& \lim _{t \rightarrow+\infty} \sup _{n \geq 1}\left|p(t)\left(x_{n}^{(1)}\right)^{\prime}(t)\right| \\
& \leq \lim _{t \rightarrow+\infty} \sup _{n \geq 1} \int_{t}^{\infty} p(s) \Phi(s) f_{n}\left(s, x(s), p(s) x^{\prime}(s)\right) d s \\
& \leq \lim _{t \rightarrow+\infty} \sup _{n \geq 1} \int_{t}^{\infty} p(s) \Phi(s) k(s) g\left(\max \left\{\frac{1}{n}, \frac{x_{n}^{(1)}(s)}{1+v_{2}(s)}\right\}\right) d s \tag{4.9}\\
& \leq \lim _{t \rightarrow+\infty} \int_{t}^{\infty} p(s) \Phi(s) k(s) h\left(k^{*} \tilde{\gamma}_{2}(s)\right) d s \frac{g\left(R_{0}\right)}{h\left(R_{0}\right)} \\
& =0
\end{align*}
$$

which imply that the functions belonging to $\left\{\frac{x_{n}^{(1)}(t)}{1+v_{2}(t)}\right\}$ and the functions belonging to $\left\{p(t)\left(x_{n}^{(1)}\right)^{\prime}(t)\right\}$ are equi-convergent. Moreover, for any $t^{\prime}, t^{\prime \prime} \in[0,+\infty), n \in$
$\{1,2, \ldots\}$,

$$
\begin{align*}
& \left|\frac{x_{n}^{(1)}\left(t^{\prime}\right)}{1+v_{2}\left(t^{\prime}\right)}-\frac{x_{n}^{(1)}\left(t^{\prime \prime}\right)}{1+v_{2}\left(t^{\prime \prime}\right)}\right| \\
& \leq \int_{0}^{\infty}\left|\frac{G_{2}\left(t^{\prime}, s\right)}{1+v_{2}\left(t^{\prime}\right)}-\frac{G_{2}\left(t^{\prime \prime}, s\right)}{1+v_{2}\left(t^{\prime \prime}\right)}\right| f_{n}\left(s, x_{n}^{(1)}(s), p(s)\left(x_{n}^{(1)}\right)^{\prime}(s)\right) d s \tag{4.10}\\
& \leq \int_{0}^{\infty}\left|\frac{G_{2}\left(t^{\prime}, s\right)}{1+v_{2}\left(t^{\prime}\right)}-\frac{G_{2}\left(t^{\prime \prime}, s\right)}{1+v_{2}\left(t^{\prime \prime}\right)}\right| \Phi(s) k(s) h\left(\tilde{\gamma}_{2}(s) k^{*}\right) d s \frac{g\left(R_{0}\right)}{h\left(R_{0}\right)},
\end{align*}
$$

and

$$
\begin{align*}
& \left|p\left(t^{\prime}\right)\left(x_{n}^{(1)}\right)^{\prime}\left(t^{\prime}\right)-p\left(t^{\prime \prime}\right)\left(x_{n}^{(1)}\right)^{\prime}\left(t^{\prime \prime}\right)\right| \\
& \leq\left|\int_{t^{\prime}}^{t^{\prime \prime}} p(s) \Phi(s) f_{n}\left(s, x_{n}^{(1)}(s), p(s)\left(x_{n}^{(1)}\right)^{\prime}(s)\right) d s\right| \tag{4.11}\\
& \leq\left|\int_{t^{\prime}}^{t^{\prime \prime}} p(s) \Phi(s) k(s) h\left(\tilde{\gamma}_{2}(s) k^{*}\right) d s\right| \frac{g\left(R_{0}\right)}{h\left(R_{0}\right)}, \quad n \in\{1,2, \ldots\} .
\end{align*}
$$

Consequently, for any $\varepsilon>0, T>0$, we can choose a $\delta>0$ such that if $\left|t^{\prime}-t^{\prime \prime}\right|<\delta$ and $t^{\prime}, t^{\prime \prime} \in[0, T]$, then

$$
\left|\frac{x_{n}^{(1)}\left(t^{\prime}\right)}{1+v_{2}\left(t^{\prime}\right)}-\frac{x_{n}^{(1)}\left(t^{\prime \prime}\right)}{1+v_{2}\left(t^{\prime \prime}\right)}\right|<\varepsilon, \quad\left|p\left(t^{\prime}\right)\left(x_{n}^{(1)}\right)^{\prime}\left(t^{\prime}\right)-p\left(t^{\prime \prime}\right)\left(x_{n}^{(1)}\right)^{\prime}\left(t^{\prime \prime}\right)\right|<\varepsilon
$$

for all $n \in\{1,2, \ldots\}$, which implies that $\left\{\frac{x_{n}^{(1)}(t)}{1+v_{2}(t)}\right\}$ and $\left\{p(t)\left(x_{n}^{(1)}\right)^{\prime}(t)\right\}$ are locally equi-continuous on $[0,+\infty)$. Thus, Theorem 4.2 guarantees that there is a convergent subsequence $\left\{x_{n_{j}}^{(1)}\right\}$ of $\left\{x_{n}^{(1)}\right\}$ with $\lim _{j \rightarrow+\infty} x_{n_{j}}^{(1)}=x_{0}^{(1)}$. From 4.7), we have

$$
x_{0}^{(1)}(t) \geq k^{*} \gamma_{2}(t), \quad \forall t \in[0,+\infty)
$$

Then, for $t \in(0,+\infty)$, if j is big enough, we have

$$
\begin{aligned}
& \left|f_{n_{j}}\left(t, x_{n_{j}}^{(1)}(t), p(t)\left(x_{n_{j}}^{(1)}\right)^{\prime}(t)\right)-f\left(t, x_{0}^{(1)}(t), p(t)\left(x_{0}^{(1)}\right)^{\prime}(t)\right)\right| \\
& \quad=\left|f\left(t, x_{n_{j}}^{(1)}(t), p(t)\left(x_{n_{j}}^{(1)}\right)^{\prime}(t)\right)-f\left(t, x_{0}^{(1)}(t), p(t)\left(x_{0}^{(1)}\right)^{\prime}(t)\right)\right| \rightarrow 0,
\end{aligned}
$$

as $j \rightarrow+\infty$, and

$$
\begin{aligned}
f_{n_{j}}\left(t, x_{n_{j}}^{(1)}(t), p(t)\left(x_{n_{j}}^{(1)}\right)^{\prime}(t)\right) & =f\left(t, \max \left\{\frac{1}{n_{j}}\left(1+v_{2}(t)\right), x_{n_{j}}^{(1)}(t)\right\}, p(t)\left(x_{n_{j}}^{(1)}\right)^{\prime}(t)\right) \\
& \leq k(t) h\left(k^{*} \tilde{\gamma}_{2}(t)\right) \frac{g\left(R_{0}\right)}{h\left(R_{0}\right)}
\end{aligned}
$$

Then the Lesbegue Dominated Convergence Theorem guarantees that

$$
\begin{align*}
& x_{0}^{(1)}(t) \\
& =\lim _{j \rightarrow+\infty} x_{n_{j}}^{(1)}(t) \\
& =\lim _{j \rightarrow+\infty} \int_{0}^{\infty} G_{2}(t, s) \Phi(s) f\left(s, \max \left\{\frac{1}{n_{j}}\left(1+v_{2}(s)\right), x_{n_{j}}^{(1)}(s)\right\}, p(s)\left(x_{n_{j}}^{(1)}\right)^{\prime}(s)\right) d s \\
& =\int_{0}^{\infty} G_{2}(t, s) \Phi(s) f\left(s, x_{0}^{(1)}(s), p(s)\left(x_{0}^{(1)}\right)^{\prime}(s)\right) d s \tag{4.12}
\end{align*}
$$

which implies $x_{0}^{(1)}(t)$ is a positive solution to 1.2 . Obviously, $\left\|x_{0}^{(1)}\right\|_{1} \leq R_{0}$. Then (4.3) can guarantee $\left\|x_{0}^{(1)}\right\|_{1}<R_{0}$.

Let $\tau<a^{*}<b^{*}<+\infty$, and $0<c^{*}<\min _{t \in\left[a^{*}, b^{*}\right]} \tilde{\gamma}_{2}(t)$. Suppose

$$
N^{*}=\left(\min _{t \in\left[a^{*}, b^{*}\right]} \int_{a^{*}}^{b^{*}} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) k_{1}(s) d s c^{*}\right)^{-1}+1
$$

From condition (H2), there exists an $R^{\prime}>R$ such that

$$
\begin{equation*}
g_{1}(y)>N^{*} y, \quad \forall y \geq R^{\prime} \tag{4.13}
\end{equation*}
$$

Now we define

$$
\begin{equation*}
\Omega_{2}=\left\{x \in C_{\infty}^{1} \left\lvert\,\|x\|_{1}<\frac{R^{\prime}}{c^{*}}\right.\right\} . \tag{4.14}
\end{equation*}
$$

We might as well suppose that $\frac{R^{\prime}}{c^{*}}>1, R^{\prime}>1$. Then we have

$$
\begin{equation*}
A_{n} x \not \leq x, \quad n \in\{1,2, \ldots\} \tag{4.15}
\end{equation*}
$$

for all $x \in \partial \Omega_{2} \cap P$. Otherwise, suppose there exists $x_{0} \in \partial \Omega_{2} \cap P$ with $A_{n} x_{0} \leq x_{0}$. Since $x_{0} \in \partial\left(\Omega_{2}\right) \cap P$,

$$
\min _{t \in\left[a^{*}, b^{*}\right]} \frac{x_{0}(t)}{1+v_{2}(t)} \geq \min _{t \in\left[a^{*}, b^{*}\right]} \tilde{\gamma}_{2}(t) \sup _{t \in[0,+\infty)} \frac{|x(t)|}{1+v_{2}(t)}>c^{*} \frac{R^{\prime}}{c^{*}}=R^{\prime}>1
$$

Then for $t \in\left[a^{*}, b^{*}\right]$, from 4.13), we have

$$
\begin{aligned}
\frac{x_{0}(t)}{1+v_{2}(t)} & \geq \frac{\left(A_{n} x_{0}\right)(t)}{1+v_{2}(t)} \\
& =\int_{0}^{+\infty} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) f_{n}\left(s, x_{0}(s), p(s) x_{0}^{\prime}(s)\right) d s \\
& \geq \int_{a^{*}}^{b^{*}} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) f\left(s, \max \left\{\frac{1}{n}\left(1+v_{2}(s)\right), x_{0}(s)\right\}, p(s) x_{0}^{\prime}(s)\right) d s \\
& \geq \int_{a^{*}}^{b^{*}} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) k_{1}(s) g_{1}\left(\max \left\{\frac{1}{n}, \frac{x_{0}(s)}{1+v_{2}(s)}\right\}\right) d s \\
& >\int_{a^{*}}^{b^{*}} \frac{G_{2}(t, s)}{1+v_{2}(t)} \Phi(s) k_{1}(s) N^{*} \frac{x_{0}(s)}{1+v_{2}(s)} d s \\
& >\int_{a^{*}}^{b^{*}} G_{2}(t, s) \Phi(s) k_{1}(s) d s N^{*} c^{*} \frac{R^{\prime}}{c^{*}} \\
& >\frac{R^{\prime}}{c^{*}}
\end{aligned}
$$

which implies $\left\|x_{0}\right\|_{1}>R^{\prime} / c^{*}$. This contradicts to $x_{0} \in P \cap \partial \Omega_{2}$. Then 4.15 is true.

From 4.5 and 4.15, Theorem 2.7 guarantees that A_{n} has a fixed point $x_{n}^{(2)} \in$ $\left(\Omega_{2}-\bar{\Omega}_{1}\right) \cap P$. For the set $\left\{x_{n}^{(2)}\right\}$, since $\left\|x_{n}^{(2)}\right\|_{1}=\sup _{t \in[0,+\infty)} \frac{\left|x_{n}^{(2)}(t)\right|}{1+v_{2}(t)} \leq \frac{R^{\prime}}{c^{*}}$, (H4) guarantees that there is a $\psi_{R^{\prime} / c^{*}}(t)$ such that

$$
\begin{equation*}
f(t, x, z)=F(t, y, z) \geq \psi_{\frac{R^{\prime}}{c^{*}}}(t), \quad \forall(t, y, z) \in[0,+\infty) \times\left(0, \frac{R^{\prime}}{c^{*}}\right] \times[0,+\infty) \tag{4.16}
\end{equation*}
$$

By proof as in 4.7), 4.8, 4.9), 4.10 and 4.11, we can prove that $\left\{x_{n}^{(2)}\right\}$ is relatively compact in C_{∞}^{1}, which means that there exists a subsequence $\left\{x_{n_{i}}^{(2)}\right\}$ of
$\left\{x_{n}^{(2)}\right\}$ with $\lim _{i \rightarrow+\infty} x_{n_{i}}^{(2)}=x_{0}^{(2)}$. By proof as in 4.12 $x_{0}^{(2)}(t)$ is a positive solution to equation 1.2 with $\frac{R^{\prime}}{c^{*}}>\left\|x_{0}^{(2)}\right\|_{1}>R_{0}$.

Consequently, equation (1.2) has at least two different positive solutions $x_{0}^{(1)}(t)$ and $x_{0}^{(2)}(t)$. The proof is complete.

Example 4.6. Now we consider

$$
\begin{gather*}
x^{\prime \prime}+\frac{1}{16} e^{-t} t^{-1 / 4}\left((1+t)^{1 / 2} x^{-1 / 2}+\frac{1}{(1+t)^{3}} x^{3}\right)\left(1+\frac{{x^{\prime}}^{2}}{1+x^{\prime 2}}\right)=0, t \in(0,+\infty) \\
x(0)=0, \quad \lim _{t \rightarrow+\infty} x^{\prime}(t)=0 \tag{4.17}
\end{gather*}
$$

Then, equation 4.17 has at least two positive solutions.
To prove that 4.17 has at least two positive solutions, we apply Theorem 4.5 with $\Phi(t)=\frac{1}{16} e^{-t} t^{-1 / 4}, p(t) \equiv 1, f(t, x, z)=\left((1+t)^{1 / 2} x^{-1 / 2}+\frac{1}{(1+t)^{3}} x^{3}\right)\left(1+\frac{x^{\prime 2}}{1+x^{\prime 2}}\right)$, $k(t) \equiv 1, g(y)=2\left(y^{-1 / 2}+y^{3}\right), h(x)=y^{-1 / 2}, \gamma_{1}(t)=\left\{\begin{array}{ll}t, & t \in[0,1] \\ 1, & t \in(0,+\infty)\end{array}, \tilde{\gamma}_{2}(t)=\right.$ $\frac{\gamma_{2}(t)}{1+t}, k_{1}(t) \equiv 1, g_{1}(y)=y^{-1 / 4}+y^{3}, \Psi_{c}(t)=c^{-1 / 4}$. It is easy to verify that (H1)-(H4) hold. Hence, 4.17 has at leat two positive solutions.

Acknowledgements. The author wants to thanks Professor Temoney for his guidance, and the anonymous referee for his/her suggestions.

References

[1] R. P. Agarwal, D. O'Regan; Nonlinear superlinear singular and nonsingular second order boundary value problems, Journal of Differential Equations, 143 (1998), 60-95.
[2] R. P. Agarwal, D. O'Regan, V. Lakshmikantham, S. Leela; Existence of positive solutions for singular initial and boundary value problems via the classical upper and lower solution approach, Nonlinear Analysis, 50 (2002), 215-222.
[3] R. P. Agarwal, D. O'Regan; Singular Problems on the Infinite Interval Modelling Phenomena in Draining Flows, IMA Journal of Applied Mathematics, 66 (2001), 621-635.
[4] J. V. Baxley; Existence and uniqueness for nonlinear boundary value problems on infinite intervals, J. Math. Anal. Appl., vol. 147 (1990), 127-133.
[5] L. E. Bobisud; Existence of solutions for nonlinear singular boundary value problems, Appl. Anal., vol. 35 (1990), 43-57.
[6] L. E. Bobisud; Existence of positive solutions to some nonlinear singular boundary value problems on finite and infinite intervals, J. Math. Anal. Appl., vol. 173 (1993), 69-83.
[7] L. E. Bosbisud, D. O'Regan, W. D. Royalty; Solvability of some nonlinear boundary value problems, Nanlinear Anal., vol. 12 (1988), 855-869.
[8] Shaozhu Chen, Yong Zhang; Singular boundary value problems on a half-line, J. Math. Anal. Appl., vol. 195 (1995), 449-468.
[9] K. Deimling; Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
[10] Dugundji; An extension of Tietze's theorem, Pacific J. Math., vol. 1 (1951), 353-367.
[11] A. Granas, R. B. Guenther, J. W. Lee and D. O'Regan; Boundary value problems on infinite intervals and semiconductor devices, J. Math. Anal. Appl., vol. 116 (1986), 335-345.
[12] A. Granas, J. Dugudji, Fixed point Theory, Springer, 2003.
[13] Dajun Guo, Nonlinear Functional Analysis, Shandong Science and Technique Press, Jinan, 1985.
[14] Dajun Guo and V. Lakshmikantham; Nonlinear problems in abstract cones, Academic Press. Inc. New York, 1988.
[15] J. Henderson; H. B. Thompson Existence of multiple solutions for second order boundary value problems, Journal of Differential Equations, vol. 166 (2000), 444-454.
[16] A. G. Kartsatos, On the perturbation theorem of m-accretive operators in Banach spaces, Proceeding of American Math. Society, vol. 124 no. 6 (1996), 1811-1820.
[17] N. G. Lioyd, Degree theory, Cambridge Univ.Press, Cambridge, 1978.
[18] M. Meehan, D. O'Regan; Existence theory for nonlinear Fredholm and Volterra Integral Equations on Half-Open Intervals, Nonlinear Anal. , vol. 35 (1999), 355-387.
[19] D. O'Regan, Positive solutions for a class of boundary value problems on infinite intervals, Nonlinear Diff. Eqns. Appl., vol. 1 (1994), 203-228.
[20] D. O'Regan, Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1994.
[21] D. O'Regan, Existence theory for ordinary differential equations, Kluwer, Dordrecht, 1997.
[22] D. O'Regan, Baoqiang Yan \& R.P.Agarwal; Nonlinear boundary value problems on the semiinfinite intervals: an upper and lower solution approach, (to appear)
[23] P. K. Palamides and G. N. Galanis; Positive, unbounded and monotone solutions of the singular second Painlev equation on the half-line, Nonlinear Analysis, vol. 57 (2004), 401419.
[24] I. Yermachenko, F.Sadyrbaev; Types of solutions and multiplicity results for two-point nonlinear boundary-value problems, Nonlinear Analysis, in press.
[25] G. Zhang, C. Wang, Y. Liu; Fixed point theorems on unbounded sets, Journal of Northeast University, vol. 22 No. 2 (2001), 226-228. (in Chinese)

Baoqiang Yan
Department of Mathematics, Shandong Normal University, Ji-nan, 250014 China
and School of Mathematics, Trinity College, Dublin University, Dublin 2, Ireland
E-mail address: bqyan819@beelink.com

[^0]: 2000 Mathematics Subject Classification. 34B16, 34B18, 34B40.
 Key words and phrases. Krasnoselskii's theorem; singular boundary value problems;
 fixed point theorem of cone expansion and compression.
 (C) 2006 Texas State University - San Marcos.

 Submitted March 16, 2006. Published July 10, 2006.
 Supported by grants 10571111 from the National Natural Science and Y2005A07 from the natural science of Shandong Province.

