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MULTIPLE POSITIVE SOLUTIONS FOR SINGULAR
BOUNDARY-VALUE PROBLEMS WITH DERIVATIVE
DEPENDENCE ON FINITE AND INFINITE INTERVALS

BAOQIANG YAN

ABSTRACT. In this paper, Krasnoselskii’s theorem and the fixed point the-
orem of cone expansion and compression are improved. Using the results
obtained, we establish the existence of multiple positive solutions for the sin-
gular second-order boundary-value problems with derivative dependance on
finite and infinite intervals.

1. INTRODUCTION

In [I], by an alternative method to Leray-Schauder and sequential technique,
Agarwal and O’Regan considered the singular boundary-value problem

})(py/y LB f(typy) =0, te(0,1)
ay(0) = 6 lim p(t)y'(t) =0, y(1) =0

and obtained the existence of one solution to equation when o =0 or 8 = 0.

In [23], by a generalization of the Kneser’s property (continuum) of the cross-
sections of the solutions funnel, Palamides and Galanis considered the following
problems

(1.1)

}J@y’)’ (1) f(typy) =0, € (0,+00)
y(0) =0, lim p(t)y'(t) =0

and also obtained the existence of one positive and monotone unbounded solution.

There are some other results on the existence of at least one solution for equation
(L.1), (1.2), and we refer the reader also to [2, 3, 4, 5l 6 [7, 8, 1T, (19} 20, 21}, 22].
Moreover, under the condition that p = 1, § = 0 and f has no singularity at
x = 0 and pz’ = 0, in [I5], using pairs of lower and upper solutions, Henderson
and Thompson considered the existence of three solutions for equation and

(1.2)
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in [24], by reducing the equation to a quasi-linear one, I.Yermachenko and
F.Sadyrbaev obtained the existence of multiple solutions for equation also.

Up to now, there are fewer results on the existence of multiple positive solutions
to equation (L)), if f(t,x,pa’) is singular at x and is related to pz’. Motivated
by this, in this paper, we discuss the existence of multiple positive solutions to
equation (L.1)), when f(t,z,pz’) is singular at = = 0.

There are three sections in our paper. In section 2, in order to overcome the
difficulty from px’, we improve the Krasnoselskii’s theorem and fixed point theorem
of cone expansion and compression on unbounded set in a Banach space with a
special norm. In section 3, we establish special cones, and using obtained theorems,
present the existence of multiple positive solutions to equation . In section 4,
we consider the existence of multiple positive solutions to equation (|1.2)).

2. THE IMPROVEMENT OF THE KRASNOSELSKII'S THEOREM AND FIXED POINT
THEOREM OF CONE EXPANSION AND COMPRESSION

In this section, we improve the Krasnoselskii’s theorem and fixed point theorem
of cone expansion and compression in a Banach space with a special norm.

In [12], Granas and Dugudji presented the theory of fixed point index on un-
bounded open sets which has same basic properties as those in the theory of fixed
point index on bounded open sets [I4]. The degree theory on bounded open sets
and unbounded open sets can be found in [9] 12} 13| [T6], [T7, 25].

According to the the theory of fixed point index on unbounded open sets in
Chapter 4 of [12], it is easy to obtain following result. Let E be a real Banach
space containing a cone P.

Lemma 2.1. Assume Q C E, 0 € Q, QN P is a relatively open set in P. Let
A: PNQ — P be continuous with relatively compact A(P N Q). Suppose that

Ax # px, Vere PNOQ, u>1. (2.1)
Then i(A,PNQ,P)=1.
Proof. Let H(t,x) =tAz,t €[0,1] and z € PNON. Then H : [0,1] x (PNQ) — P
is continuous, and the continuity of H(¢,z) in ¢ is uniform with respect to = €
P N Q. Moreover, H(t, P NQ) is relatively compact for every ¢ € [0,1]. Evidently,
H(t,z) # x for x € PNON and 0 < ¢ < 1. Hence, by the homotopy invariance and
normality of fixed point index, we have

(A, PNQ,P)=1i(0,PNQ,P)=1.

The proof is complete. O

Now we consider a real Banach space in a special case. Assume that F is a linear
space and it satisfies three conditions:

(1) There is a norm x — ||z||; on x € E and under || - |1, E is a normed linear
space (not complete)
(2) There is another semi-norm || - |2

(3) Under ||z|| = max{||z|1, |z|l2}, E is a Banach space.
For example, for z € C1(]0, 1], R), under ||z|j; = maxyeo,1 |2(t)], C1([0,1], R) is an
incomplete normed linear space. Let [|x[|2 = max;c[o,q) [2'()]. Obviously, | - |2 is
a semi-norm of C1([0,1], R). If we define ||z| = max{||z|]1, ||z|2}, C*([0,1], R) is a
Banach space.
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Assume that P is a cone of ' and Q C E is a open set with sup g [|z][1 < +oo.
Since sup, g [|z][1 < sup,gq |||, it is possible that Q is unbounded in E. We have
the following lemma(the ideas coming from [14]).

Lemma 2.2. With E and P as above, assume that Q@ C E is an open set with
sup, g |lzlli < +oo. Let A: PNQ — P be continuous with relatively compact

A(PNQ) and B : PN QY — P be continuous with relatively compact B(P N OY).
Suppose that

(a) inf,c proa HBCEHl > 0;
(b) * — Ax #tBx, for allx € PN O, t > 0.
Then, we have
i(A,PNQ,P)=0. (2.2)
Proof. Suppose that the E; is a Banach space completion of F under norm ||z||;. By

the extension theorem of Dugundji [I0], we can extend B to a continuous operator
from PN into P such that

B(PNQ) Ca@B(PNaQ)) C (@B(P NI, (2.3)

where (COB(P NIN)); is the closure of B(P N IN) under the norm || - ||; and the
followings are similar. Let F' = B(PNN), then (coB(PNIN)); = (coF ), = (M),
where

M:{y:Z)\iyiZyiEF,)\iZO,Z)\Z‘:1;’17,:1,2,...}.
i=1 i=1
We first prove

inf |ly[ly > 0. (2.4)

y€(M)1
Denote by Ey the subspace of F spanned by F under norm || - ||;. Since B(PNdN)
is relatively compact in E under norm || - ||, we know that B(P N 09Q) is relatively

compact in Ey under norm |[|-||;. Therefore, Fy is separable. Evidently, Py = PN Ejy
is a cone of Ey and F C Py. By property of the cone [14, Theorem 1.4.1], there
exists fo € E{ such that fo(y) > 0 for any y € Py with y # 6. We claim that

inf fofy) = o > 0. (2.5)

In fact, if o = 0, then there exists {yx} C F such that fo(yx) — 0. By the
relative compactness of F' in FE, there is a subsequence {yx,} of {yr} such that
Yk, — Yo € P and yo € Ey. Then yo € Py, and so fo(yk;) — fo(yo) = 0. Hence,
yo = 6 and ||yx, |1 — 0, which contradicts hypothesis (a). Thus, holds.

For any y = > 1", \iy; € M, where y; € F, \; > 0 and Y. ; \; = 1, we have

foly) = Nifolyi) 2D Ao =,
i=1 i=1

and therefore

foly) 2 o, Vy € (M) (2.6)

Since (M), = (¢0F )1 is compact, there exists a zp € (M); such that
inf lylly = llzol1- (2.7)
y€(M):
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By (2.6)), fo(z0) > o, and this implies that zg # 6. It follows therefore from (2.7))

that (2.4) holds. By (2.3) and (2.4), we get

inf _||Bz|y =0 >0. (2.8)
Q

reEPN
Now, it is easy to show that (2.2) holds. In fact, if i(A, P N, P) # 0, then by the
hypothesis (b) and the homotopy invariance property of fixed point index, we have
1(A+tB,PNQ,P)=14i(A,PNQ,P)#£0,Vt>0.

a+tc
o

In particular, choosing ¢y >
we have

, where a = sup, . [|2[|1 and ¢ = sup_ prg [|Az1,

i(A+tB,PNQ,P)#0,
and so, by the solution property of fixed point index, there exists an zyp € P N
such that Axy + toBxzg = xo. Hence

lxo — Azo||1 < a+c

to = <
| Bzo|1 o’

which is a contradiction. The proof is complete. ([l

Corollary 2.3. Assume that Q0 is an open set with sup, g ||z[|1 < +oo. Let A :

PNQ — P be continuous with relatively compact A(P N Q). If there exists ug > 0
such that

x — Az # tug,Vx € PN OQ,t >0, (2.9)
then (2.2) holds.
Proof. Since || - ||1 is a norm, ug > @ implies that |lug|ly > 0. Hence, the corollary
follows directly from Lemma [2.2] by putting Bx = ug for any = € P N o€Q. O

Corollary 2.4. Assume that § is an open set with sup, g ||z[1 < +oo. Let A :
PN Q — P be continuous with relatively compact A(PNQ). If

Az L x, Yz e PNos, (2.10)
then holds.

Proof. Choose an ug > 6. Then,
x — Ax # tug,Vr € PNoQ, t > 0.

By Corollary 2.3 (2.2)) holds. O

Lemma 2.5. Assume that Q is an open set with sup g ||z|1 < +oo. Let A :
PNQ— P be continuous with relatively compact A(P N Q). Suppose that

(i) inwaPﬂ@Q HA.’E”l > 0; and

(il) Az # px,Vx € PNON,0 < u < 1.
Then holds.

Proof. Taking B = A in Lemma [2.2] we see that condition (a) of Lemma is
the same as condition (i) of Lemma Also, condition (b) of Lemma [2.2]is true.
In fact, if there exist xg € PN IQ and ¢y > 0 such that xg — Axg = tgAxg, then
Ay = pmwg, where g = (1 +to)~!. Evidently 0 < uo < 1, which contradicts the
condition (#¢). Thus, follows from Lemma [2.2] O

Lemma 2.6. Assume that Q is an open set with sup, g ||z|[1 < +o0o. Let A :
PNQ — P be continuous with relatively compact A(P N Q). Suppose that
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(i) Az # px,Vx € PNON,0< u<1, and
(ii") the set {||Ax|;* Az|z € PN OQY is relatively compact.

Then (2.2) holds.

Proof. Let A1z = af||Az||;) 1t Az for z € PNOSY, where a = sup,c proq ||Az|)1 > 0.
Then, by hypotheses, A7 : P N0 — P is continuous with relatively compact
A1 (PNON). By the extension theorem, A; can be extended to a continuous operator
from PNQ into P with relatively compact A3 (PNS). We now prove that A; satisfies
the condition (i) and (ii) of Lemma In fact, first we have

inf |4 =0 >0.
ngll’WaQ” 1$||1 7

Secondly, if there exists xg € PN 9ON and 0 < pg < 1 such that Ajzg = poxo,
then Awg = Ao, where \g = poa™t||Azo|;. Evidently, 0 < \g < po < 1, which
contradicts hypothesis (i’). Hence, by Lemma we have

(A, PNQ,P)=0. (2.11)
Now, we prove
(1-t)Az +tAjx #2, Ve € PNON,0<t <1 (2.12)

If there is an 1 € PN and a 0 < ¢; < 1 such that (1—¢;)Az;+t; A121 = 21, then
Azmy = iz, where py = [1 + t1(a/||Azq]ls — 1)]7%, 0 < g1 < 1, in contradiction
with hypothesis (i’). Hence, by @ , and the homotopy invariance of fixed
point index, we get

i(A,PNQ,P)=1i(A,PNQ,P)=0.
The proof is complete. U

Theorem 2.7. Let Q1 and Qs be two open in E such that 8 € Q1 and Q1 C Qs
with sup, g, |zll1 < +oo. Let A: PN (Q2 — Q1) — P be continuous with relatively

compact A(P N (Qa — Q1)). Suppose that one of the two conditions

(H1) Az # x, Vo € PN Oy and Az £ x, Yo € PN Oy,
(H2) Az Lz, Vx € PN O and Az % x, Vo € PN OQ,y

is satisfied. Then A has at least one fived point in PN (Qy — Q).
Proof. By the extension theorem (Dugundji [I0]), A has a completely continuous

extension (also noted by A) from P N Qs from PN Qy to P. First we assume that
(H1) is satisfied, i.e., it is the case of cone expansion. It is easy to see that

Az # px, Yre PNoQy, p>1, (2.13)

since, otherwise, there exists o € PN 9 and pg > 1 such that Azg = pozg > xo,
in contradiction with (H1). Now, from (2.1) and Lemma we obtain

(A, PNQy,P) = 1. (2.14)
On the other hand, by Corollary we have
i(A, PN Qy, P) = 0. (2.15)

It follows therefore from (2.14) and (2.15) and additivity property of fixed point
index that

i(A, PN (Qy— ), P) =i(A, PN Qs P) —i(A, PNQ,P)=—1£0. (2.16)
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Hence, by the solution property of fixed point index, A has at least one fixed point
in PN (QQ 761)

Similarly, when (H2) is satisfied, instead of , , we have i(A, P N
Ny, P)=1,and i(4,PN(Q2 — 1), P) = 1. As a result we also can assert that A
has at least one fixed point in P N (25 — Q). The proof is complete. O

We remark that this theorem improves [I4] theorem 2.3.3] because the condition
that 0y and 5 are bounded is not necessary.

Theorem 2.8. Let O = {z € El|z|1 < r} and Q2 = {z € El||z[li < R} be two
open in E withr < R. Let A: PN (Q2 — Q1) — P be continuous with relatively
compact A(P N (Qy —§y)). Suppose that one of the two conditions

(H3) ||Az| < ||z||, for all x € PN OQy and |Az||x > ||z||1, for all x € P NN,
(H4) ||Az|l1 = ||z|l1, for all z € PN OQy and || Ax| < ||z||, for all z € PN 0O,

is satisfied. Then A has at least one fived point in PN (Qy — Q).

Proof. We only need to prove this theorem under condition (H3), since the proof
is similar when (H4) is satisfied. By the extension theorem, A can be extended to
a continuous operator from P Ny into P with relatively compact A(P Ny). We
may assume that A has no fixed points on P N 92y and P N JNQ,. It is easy to see

that (2.13]) holds, since otherwise, there exist zyp € P N 9Oy and po > 1 such that
Az = poxo and hence ||Azol| = pol|zoll > ||zol|, in contradiction with (H3). Thus,

by , Lemma holds.

On the other hand, it is also easy to verify
Ax # px,Vr € PN o, 0 < u < 1. (2.17)
In fact, if there are 1 € PN 0Qs and 0 < pg < 1 such that Az; = pyxq, then
[Az1lr = pallzafl <l
in contradiction with (H3). In addition, by (H3) we have

inf A > inf 0. 2.18
e, IAelh > int ot > (2.18)

It follows from (2.17)), (2.18)) and Lemmathat (2.15)) holds. As before, (2.14) and
(2.15) imply (2.16)), and therefore A has at least one fixed point in PN(Q22—Q4). O

We remark that this theorem improves the the Krasnoselskii’s theorem in [I4]
because the condition that €1 and €2 are bounded is not necessary.

3. THE EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS TO EQUATION (I.1])

In this section, we consider and suppose that f € C([0,1]xRf xR, R*),p €
C([0,1], R) N C((0,1), Ry) N CL((0,1), R) with [ ~Lsdr < 400, & € C((0,1), BY)
and a > 0, 3 > 0 (not equal to 0 at the same time); here Rt = [0,+00), R =
(0, +00), R = (—00,400). Let

1
1
2 _
p —ﬂ+oz/0 p(r)dr (p>0),

dr, v1(t)=%(ﬂ+0< / ﬁdm,
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vi(t)ur(s)p(s), 0<t<s<1

Gl(t,s):{ 1(t)or (S)PES) 0<s<t<l1

Assume that C}[0,1] = {x : [0,1] — R| x(t) is continuous on [0, 1] and p(t)z'(t) is
continuous on [0, 1] also with max;cjo 1 p(t)|z'(t)| < +o0} (see [21]). For z € C, let
[#]ly = maxieqo,1) [2(t)], lz]l2 = maxiepo1) p(t)]2’ ()] and |lz]| = max{|[z[|1, [|=[|2}.
It is easy to see that C} satisfies the conditions (1), (2) and (3) of the Banach space
FE in section 2.

Obviously, z(t) € C} is a solution to equation if and only if () is a solution
of the following integral equation

1
= | Gt 1(s.a(e)ps)a (). € .1
Let P = {x € Cplz(t) > y(t)||lxll1}, where v (t) = ul(t)vl(t)m for all
€ [0,1].

Lemma 3.1. Assume that | € LY[0,1] with I(t) > 0 for all t € (0,1) and q(t) =
fol G1(t,9)l(s)ds, t € [0,1]. Then

t) > t .
ﬂ)fvd)éﬁﬁd@

Proof. Suppose q(tp) = max,c[o,1] ¢(s). Then

%%%%%%,ogtgsgmg1
Gilt,s) | aatullll o<ty <s<t<l1
Gilto,s) | 2l o<t tg<s<1
L 0<s <t ity <1
uy(t)v ()1(to)m 0<t<s<ty=<l
Ju®n 2 rmm 0<to<s<t<l1
B “NWM”mummw 0<ttp<s<l
up ()1 () ———m= ul(to)v1(t)’ 0<s<tty<l1
u ()01 () sy, 0St<s<to<1
- ul(t)vl(t)ul((m1 0L 0<ty<s<t<l1
T ur (v () s ul(O)vl(l)’ 0<ttg<s<l1
ul(t)vl(t)ul( oy 0Ss<tito<1
=m(t)

As a consequence,

1 1
Gi(t,s
q(t):/ Gi(t, s)l(s)ds:/o Gll((tms))Gl(to,s)l(s)ds
>t / Gi(to, s)l(s)ds = 71 (t) max q(s).
s€(0,1]
The proof is complete. U

Now we will list some conditions for convenience:
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(H1) There exists a k € C([0,1], Rf), a g € C(R{, RY) and a decreasing contin-
uous function h € C(RF, R}) such that

ft,z,2) <k(t)g(z), Vo€ R{,z€R,tel0,1],

where hE g is an increasing function and fo $)®(s)k(s)h(cy1(s))ds < +00

for each ¢ > 0;
(H2)
ch( )

sup >1
cerg ur(0)v1(1) fy p(s)®(s)k(s)h(cy(s))dsg(c)

(H3) There exists a kl € C’([O 1],R8r) and a g1 € C(R§, R}) with f(t,x,2) >
k1(t)g1(z), for all (¢, z,2) € [0,1] x R+ X (—00,+00) such that

lim M = 400,
Tr— 400 X

where fol p(s)P(s)k1(s)ds < +00;
(H4) For any ¢ > 0, there exists a 1. € C([0,1], RJ) such that f(t,x,z) > 1.(t)
for all (¢,z,z) € [0,1] x (0,c] x (=00, +00) with fol p(8)P(8)e(s)ds < +00.
For given n € {1,2,...}, let fu(t, 2, 2) = f(t,max{%, z},2) and for « € P, define

1
(An)(t) = / G (1, $)B(5) (s, 2(5), ()’ (s))ds, n € {1,2,...}, te 0,1,
(3.1)

Lemma 3.2. Assume the condition (H1) holds. Then, for every n € {1,2,...},
A, : P — P is continuous and for any v > 0 and B, = {x € C}l|z, < r},
A, (PN B,) is relatively compact.

Proof. First, for a given n € {1,2,...}, we show that 4,P C P. For any = € P,
we have

(Anz)(0)] = | / G (8, 5)(5) f (s 2(5). p(s)a’ () ds|
< / G (1, 5)(s) (s, manc{ - x(s)), pls)e’(5))ds
0
< / Gl(t,s)@(s)k‘(s)g(max{%,x(s)})ds
0
1 1 g(max{L, z(s)})
g/ Gl(t,s)@(s)k‘(s)h(max{ﬁ,x(s)})h(max{%’x(s)})

| g(max{L,[lz]1})
/ Cr(t ) R(R()dsh() e L, )

ds

< +00

and

p()(Ana) ()] = | - % / 01(8)p(5)®(5) fu (5, 2(5), p(5)’ (5))ds

4 / w1 (5)p(5)®(5) fu (5, 2(5), p(5)2'(5))ds|

P
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(s, max{* (s)},p(s)2’(s))ds

1 g(max{L, z(s)})
(max{ﬁ, 1'(5)}) h(max{%, .7)(8)})
1. g(max{L,|z[:})

< ? i p(S)‘I’( Jk(s)ds h(n)h(max{%,\lxlh})
< 400,

ds

SIRC
/ (max{%,ac(s)})ds
/

where K = max{au(0),v1(1)} and the following is same as before. Then, A, is
well defined. Moreover, from Lemma [3.1] for any = € P, we have

(Anz)(t) = (1) Jnax, [(Anz)(s)| = ()| Anz1, vt € [0,1].

Consequently, A, P C P.

Second, we show A, : P — P is continuous. Assume that lim,, 4o Zm; =
xo, which means there exists an M > 1/n such that |z,,|| < M, for all m €
{0,1,2,...}. Then

Fult, 2 (8),P()2' (1)) < Kt g(ma{ (1))

Since
Fults 2 (£, PO (£) = fult, z0(t), p(1)Th(1)), a3 m — +oo,
from (3.2)), the Lesbegue Dominated Convergence Theorem guarantees

lim max [(Apxm)(t) — (Apzo)(t)]

m—+00 te[0,1]

= lim max |/ G1(t, 8)P(8) fu(s, xm(s), p(s)xl,(s))ds

m——+00 t€[0,1]

/ G (t, 8)B(5) fu(s, 20(s), p(s)2h(5))ds|

< lm_max /0 Gr(t, 3)B(5)| £ (5, 2 (5), p(5) (5))

m—+o00 te(0,1

~ Fals.o(s).p(s) (5)) | ds

< lim ul(O)vl(l)/O p(s)P(s)

(s, 2m(s), p(s)a0,(5))

m——+o0

- fn(s,mo(S),p(s)xg(s))’ds =0
and

lim max [p(t)(Anzm)'(t) — p(t)(Anzo)'(2)]

m—+00 te0,1]
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= lim max ‘_%/0 U1(S)p(8)q’(3)[fn(5,xm(s)ap(s)xin(s))

m—+00 te(0,1]
— fu(s,m0(s), p(s)z4(s))]ds + % [ w1 (8)p(8)D(8) [ fn (5, T (8), P(8)20y ()
— fals,20(s), p(S)xg(s))]ds‘

. K[!
< lim —/0 p(s)®(s)

m——+o0 p
= O,

(8, 2m(s), p(8)27,(5)) = fu(s, 20 (5), p(s) 7o (s))|ds

which mean that
hm Az — Anxol| = 0.

m*)
Finally, we show A,, (B, N P) is relatively compact. Obviously, B, is an unbounded
set in C’;. Without loss of generality, we suppose r > 1/n. Then, for any « € B, NP,
we have

/
ma (4,2 \ftren[ﬁl/ G1(t, 5)(5) fu (5, 2(5), p(3)2'(5))ds|

= max / G1(t, 8)®(s) fn(s,z(s),p(s)x'(s))ds

te[0,1]
g(max{;, (s)})

h(max{L, z(s)}) ds

< ma [ arttom <>k(s>h<max{%,z<s>}>

te[0,1]

Jotr)

1
§maX/G1ts dh(ﬁ hr

te[0,1]
sm(o)m(l)/o p(s)®(s)k(s )ds’l(%
and

max |p(t)(Anz) (t)] = max |- - / 01 (8)p(8)B(8) fu (5, 2(5), p(s)a’ () )ds

tel0,1] t€[0,1] P Jo

/ s) fu(s,z(s),p(s)z’(s))ds

g(max{3, z(s)})

1
/ hlmax{ o)) (L, 2(5)))

g(r)
g?/ n)hm

which means that A, (B, N P) is bounded. Assume that ¢,#' € [0,1]. Then, for
r € B, N P, we have

|(An)(t) — (Anz)( |—|/ G (1, 8)B(5) s, 2(5). ()2’ ())ds

/ G (¥, )B(5) fu (5, 2(5), p(3)2 (5))ds]
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< [ 161(0:9) = Gt 9)/(5) fuls,2(5). p(s)a(5))ds
0
1 / 1y9()
< [M16109) = Gt s @ k(s)ash) F
and
p(1)(An) (1) — Pt (Ana) (1)
1

- E/O 01(8)p(8)®(5) fu (5. 2(s), p(s)a’ (s))ds

1 /
+ ;/0 v1(8)p(s)®(s) fn(s,z(s),p(s)x’(s))ds
+ % ‘/t ul(S)p(s)@(s)fn(s7 x(s)ap(s)x/(s))ds

a 1
_ ;/t/ U1($>p(5)(p(5)fn(5,z(s),p(s)x/(s))ds|

§2%| p(5)D(8) fuls, 2(5), p(s)2’ (5))]ds

t

K " 1 g(r)
<271 [ pR(ok(dsin) L.

Then, for any € > 0, we can choose § > 0 small enough such that
[(Anz)(t) = (Anz)(t)] <&, |p(t)(Anz)'(t) — p(t')(An2) ()] <,
forallz € B, NP, |t—t| <9, tt €]0,1]. Consequently, {(A,(B, N P))(t)} and
{p(t)(An(Br N P))'(t)} is equicontinuous on [0, 1].
Consequently, from Arzela-Ascoli theorem, A, (B, N P) is relatively compact.
The proof is complete. O

Theorem 3.3. Assume that (H1)-(H/4) hold. Then (1.1) has at least two positive
solutions.

Proof. From Lemma foreachn € {1,2,...}, A, : P — P is continuous operator
and for any r > 0, A, (B, N P) is relatively compact. From (H2), choose Ry > 0

such that
Roh(Ryo)

ur(0)v1 (1) fy p(s)®(s)k(s)h(Roi (5))dsg( Ro) -1
Without loss of the generality, suppose Ry > 1/n, n € {1,2,...}. Set
Q1 = {z € C||z[1 < Ro}-
Then for any x € 923 N P, one has
L Apx, ne{l,2,...}. (3.4)

If there exists an zy € 991 N P such that zg < A,zo, obviously, max{%,zo(t)} >
xo(t) > 11 (t)Ro. Then

- t
Ro Jnax |z ()]

(3.3)

< max / Gl(t,s)fb(s)f(s,max{%,xo(s)},p(s)x’o(s))ds
0

~ telo,1]
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< (O)n(1) [ pls)2()k(s)h(mac{ - wo(s)))

/
1
< ur(0)on (1) / p()®(s)k(s)h(Rorya () ds LL20)

which implies
Ro (Ro) <1
fo h(Rov1(s))dsg(Ro)

This contradicts . Then, is true. From the proof of Theorem the
(2.13)) is true, Which means

(A, PNQL,P)=1, ne{l,2,...}. (3.5)
As a result, for n € {1,2,...}, there exists an x%) e PN Ql with A, :v = xﬁ,”.
Since Hx,(ll)Hl < Rp,n € {1,2,...}, it is easy to see that {m ( )} and {p( )z’ 1)( t)}

are uniformly bounded. Moreover, from Lemma the condition (H4), there exists
a PR, (t) such that

1
00 = [ G <>f<s7max{%,x$3><s>},p<s><xs>>'<s>>ds

/ Gl t S IZJRO( ) <36)

>t

where k* = max;co 1] fo G1(t,8)®(s)r,(s)ds. Thus, for any t', t/ € (0,1) and
ne{l,2,...},

D () — 2D ()]
1 ' 8) — G1(t", 8)| (s, 2D (8), p(s) (V) (s))ds
< [ 165 = Galt" s DV (D (g

S/o |G1(t, s) —Gl(t”,5)|‘I>(s)k(s)h(71(s)k*)ds}ql

and
() (@50 (') — p(t") (@) ()]

<2 [ pBE (5. (). p(s) 2D (5))ds (3.8)

+

<2 | p(S)q)(s)k(s)h(fyl(s)k*)ds|ZE?;;, nef{l2.. ).

Consequently, for any € > 0, we can choose a § > 0 such that
eV () — 2D (") <e,  p) (@) () = p") (@) ()] <,

for all m € {1,2,...}, |t/ =] < 4§, t/,¢" € [0,1], which implies that {xn (t)} and
{p(t)(x%l))/(t)} are equi-continuous on [0, 1].
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The Arzela-Ascoli theorem guarantees that there is a subsequence {:1:%1])} of
{ } with lim; 4 3353) = a:(()l) From (3.6]), we have
zo(t) > k*y1(¢), Vtel0,1].
Then, for ¢ € (0, 1), if j is big enough, we have
[y (1,20, p(0) (@) (1)) = f(t25 (1), p() () (1))
= £t 2D @), p(0) (@) (1) = F(t 25" (1), () () ()] = 0, as j — +oo
and
Fy (82D (), p(8) (22)) (1)) = f(2, maX{ — 2 ()}, p(t) () (1)
N 9(1o) (39)
< k(t)h(k* . (t oL
Then the Lesbegue Dominated Convergence Theorem guarantees that

x(()l)(t) = lim x(l)()

j—+oo
1
= lim [ Gi(t,5)2(s)f (s, max{i 28 ()}, p(s) (@) (s))ds  (3.10)
J—=T0 Jo J

— /O Gi(t,5)®(s) (s, 25" (s), p(s) (V) (s))ds.

Obviously ||x(()1)||1 < Ry. Thus (3.3) can guarantee ||xél)||1 < Rp. Let 0 < a* <
b* <1, and 0 < ¢* < mingepq+p+) 71(t). Suppose

*

-1
N* = ( min |Gt s)¢>(s)k1(s)dsc*) )
tela*,b*| Jqx

From the condition (H3), there exists an R’ > R such that

g1(z) > N*z,Vz > R'. (3.11)
Now we define

R/
Q= {z € ||z < —*}. (3.12)

We might as well suppose that - > 1, R’ > 1. Then we have
Apx £z for alle@QgﬂP, ne{l,2,...}. (3.13)
Otherwise, suppose there exists g € QNP with A, z¢ < z¢. Since z¢ € 9(Q2)NP,
/

R
teﬁgy};*]xo( )= ?11%*]71( Nzl > ¢ - (3.14)

Then, for ¢ € [a*,b*], from (3.11)) and (3.14), we have
zo(t) = (A nxo)(t)

/ G (t, 5)0(5) fu(5, 20 (5), p(s) 1} (s))ds

> [ Gl(us)<I>(8)f(87maX{%,xo(S)},p(S)xf)(S))ds
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-
> / G1(t,s)P(s)k1(s)g1 (max{%, xo(s)})ds

a*

>/* G1(t,s)P(s)k1(s)N*zo(s)ds

/

> Gl(t7s)<I>(s)k1(s)dsN*c*£*
o c

R/
>7*, Vn€{1,27}
c
which implies ||zg||1 > R'/c*. This contradicts to xg € P N 0.
From (3.4) and (3.13)), the Theorem guarantees that A, has a fixed point

2P e (Q— Q1) NP, ne{l,2,...}. It is easy to see that

e2(t) 2 nOleP ] = 1) Ro, ne{l2,...}. (3.15)

By proof similar to (3.6), (3.7), (3.8), we know that {xg)} is relatively compact
in C}. Then there exists a subsequence {xg)} of {3:;2)} with lim; 4o :cg) = 1:(()2).
And moreover, by similar proof as , we get xéZ)(t) is a positive solution to
equation with %/ > HIE)Q)Hl > Ry. Consequently, equation has at least

two different positive solution xél)(t) and xéQ)(t). The proof is complete. O

Example 3.4. Now we consider

1
"+ Efl/Q(l — )"V @V 1 2?) (1 + cos?(2)) =0, te(0,1)

o, (3.16)
Elgl+$ (t) =0=z(1).

t

Then (3.16) has at least two positive solutions.

To prove that has at least two positive solutions, we apply Theorem
with ®(t) = &t71/2(1— )74, p(t) = 1, f(t,2,2) = (z7/* + 22)(1 + cos?(z)),
k() =1, g(x) = 2 Y4+ 22), h(z) = 2=V y(t) =1 —t, ki(t) = 1, g1(x) =
o=V 422 W, (t) = ¢4 Tt is easy to verify that (H1)—(H4) hold. Hence,

has at leat two positive solutions.

Example 3.5. Now we consider

1
2"tV =)V 4 2 (4 arctana’) = 0, t e (0,1)

127 (3.17)
x2(0) =0 =xz(1).

Then (3.17) has at least two positive solutions.

To prove that (3.17]) has at least two positive solutions, we apply Theorem [3.3
with ®(t) = =t~ V4(1 — )V, p(t) = 1, f(t,2,2) = (x7Y* + 22)(7 + arctan z’),
k) = 1, gla) = 5@+ a?), h(z) = a5, 3(t) = 11— 1), k(1) = 1,
gi(x) =z~ V4422 W (t) = ¢ V/4. Tt is easy to verify that (H1)-(H4) hold. Hence,
(3.17) has at leat two positive solutions.
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4. THE EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS TO EQUATION (|1.2)

In this section, we consider (T.2)) and suppose that f € C(R* x R x R, R*),
p € C(R*,R)NC(R{, Ry) NCY(RY, R) with [["™ —Lsdr = 400, & € C(R{, RY);
here RT = [0, +00), Ri = (0,+00), R = (—00,+00). Let

_ Jua(t)va(s)p(s), a<s<t< 400
Ga(t,s) = {’UQ(If)uQ(S)p(s)’ 0<t<s< +oo,

where ug(t) = 1 and vo(t fo p(lr) dr for all t € RT.

Let CL = {x: [ +oo — R| z(t) is continuous on R and p(t)z’(t) is continuous
on RT also with lim;_ 4 1++£@) exists and sup;e(o 4oy P(1)|2/(t)] < +oo}. For
€ CL, let

o= s B0 and el = s )/
It is easy to see that | - ||; is a norm of CL and | - |2 is a semi-norm of CL . Now

Let ||z|| = max{||z|1, |z|l2}. Obviously, CL satisfies (1), (2) and (3) of the Banach
space F in section 2.
It is easy to prove that if x(t) € CL is a solution to integral equation

:/OOO Galt, 5)D(s) f (5, 2(s), p(s)2/(5))ds, ¢ € R*,

then xz(t) is a solution to (1.2).
Let P = {z € CL|z(t) > y2(t)||z]]1, Vt € RT}, where

() = fo G dr, t€][0,7]
1, t € (7,4+00)
72(t)

L+ wa(t)’
here fo p 5ydr = 1. Suppose that z = (1 +va(t))y, t € RT and F(t,y,z) =
f( ( +v?()) 72) f(t,a?,z).

Now we will list some conditions for convenience:
(H1) There exists a k € C(RT,R{), a g € C(RJ, RT) and a decreasing continu-
ous function h € C(R{, R}) such that
Flt,y,2) < k(t)g(y), V(y,2) € RY x Bt € R*,

where hgyg is an increasing function and [ p(s)®(s)k(s)h(cya(s))ds < +o00

for each ¢ > 0
(H2)

Fo(t) = te RT;

ch(c)
T D) (5 k(5 a(5)) dsg ()
(H3) There exists a k; € C(R+,R(J{) and a g1 € C(R{,Ry) with F(t,y,2) >
k1 (t)g1(y), for all (¢,y,2) € [0,+00) x Rf x R* such that

lim g1(y)
y——+00 Yy

where [ p(s)®(s)k1(s)ds < +oo

= +OO7
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(H4) for any ¢ > 0, there exists a ¥, € C(R*, R}) such that F(t,y,z) > 1.(t)
for all (t,y,z) € RT x (0,¢] x RT with [~ p(s)®(s)the(s)ds < +o0.
Let C; = {z : RT — R| z(t) is continuous on R and limy_ 4 x(t) exists } with
norm ||z{; = supye(o 400y [#(t)|. From [I8], we know that C; is a Banach space and
following theorem is true.

Theorem 4.1 ([I8]). Let M C Ci(R*,R). Then M is relatively compact in the
space C;(R™, R) if the following conditions hold:
(a) M is bounded in C)
(b) the functions belonging to M are locally equi-continuous on R*;
(c) the functions from M are equiconvergent, that is, given € > 0, there cor-
responds T(g) > 0 such that |x(t) — z(+00)| < € for any t > T(e) and
ze M.

Theorem 4.2 ([22]). Let M C CL(RT,R). Then M is relatively compact in
CL (R*, R) if the following conditions hold:
(a) M is bounded in CL_;
(b) the functions belonging to {y|y(t) = #Z)(t),x € M} and the functions
belonging to {y|y(t) = p(t)a’(t),x € M} are locally equi-continuous on R ;

(¢c) the functions from {y’y(t) = 1_“52)() x € M} and the functions from

{y’y(t) =p(t)z'(t),z € M} are equi-convergent at +0o.

Lemma 4.3 ([22]). Assume that ®(t) € C(R§, R") with f0+°° p(s)®(t)dt < +oo
and F(t) = [° Ga(t,s)®(s)ds. Then
F(r)

— 7 _ VteR", 7€RT,
1—|—U2(T)

F(t) = 72(t)

and

. F(t)
> * 1+ 0a(8)
F@t) 2 »@Fll, vteRT, lim 1+ vs(t)

Let fn(t,x,2) = f(t,max{%(l + va(t)),x},2), n € {1,2,...} and for z € P,
ne{l,2,...},t € R, define

(An)(t) = / " Galt, ) (5) (s, (5), pls)a (5))ds (4.1)

Lemma 4.4. Assume that the condition (H1) holds. Then for eachn € {1,2,...},
A, : P — P is continuous and for any r > 0 and B, = {x € CL|||z|1 < r},
An (PN B,) is relatively compact for each n > 1.

Proof. First, we show that A,,P C P. For any x € P, we have
Apz)(t)| = |/ Ga(t, $)®(s) (s, z(s), p(s)2’(s))ds|
<[ Gz(t,s>¢><s)f<s,max{1<1+v2<s>>,x(s)},p<s>x'<s>>ds
o n

= /OOO Go(t, s)@(s)F (s, max{l 2(s)

T ey P ()

< /00 Gs(t, s)@(s)k(s)g(max{%, LS)})dS
0
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° 1 x(s) g(max{;, #js)})
= 0 Gg(t,s)é(s)k(s)h(max{n, 1+ va(s) })h(max{%ﬂ 1f5§23>})d
* 1 g(max{y, elh})
< ; Gg(t,s)@(s)k(s)dsh(n)h(max{n’ izl <+
and
p(t)(Anz) ()] = | OOP(S)@(S)fn(S,J«“(S)’p( ) ds|

LDy pea ()

1 z(s)
X{ n? 14+wva(s) })

h(max{}, 2205 })

< +o00.

Since (Anx)(t) > 0, it is easy to see that A, is well defined. Moreover, from Lemma
for any x € P, we have

(Anz)(t) > 2(t)|| Az, Vte RT.

Consequently, A, P C P.

Second, we show A, : P — P is continuous. Assume that lim,,— e Tm =
xo, which means there exists an M > 1/n such that |z,,|| < M, for all m €
{0,1,2,...}. Then

Falts 00,502 (0) = Fltmax (2 220y )2, 0)
< hoglmax( - 220 )
< k(t)h(max{ L, —2m ) glmax(2, £y (42)
n o) n(max{y, D)
<k(t)h(1);]%, mef{l,2,. .}

Since
Fu(t 2 (£), p(D)27,(£)) = f(t, 20 (1), p(D)2 (1)), as m — +o0,
from (4.2), the Lesbegue Dominated Convergence Theorem guarantees that

b ()0 = (o) 0)
m—+00 1[0, +00) 1+ va(t)
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< Ga(t, s)
1+ va(t)

lim sup |/
M=+ tc(0,400) JO

= uls,0(s),p(s)26(5)))ds|

li S /OO GQ(ta S)
im up
m—=+00 (0, +00) Jo 1+ v2(t)

- fn(sa .130(8),p(8).136(8))|d8

oo

<

= lim
m——+oo

— fu(s,20(5), p(s)xy(s))|ds = 0

and

lim sup
m—=400 ¢£(0,+00)

lim sup
Mm—+00 1210, +00)

- / T p()B(8) fu (s, 20 (s), pls)ah (5))ds

A

i swp [ (5B fulsions)
M—+00 t2(0,+00) Jt

= fn(s,0(s), p(s)x(5))|ds

oo

P(8)2(5)| fu(s, 2 (s), p(s)7,,

lim
m——+o0

which implies

m—+

P

(I)(S) |fn(57 xm(s), p(s)x;n

P(8)®(8)| fn (s, 2m (), p(8) 2,

/t " p()B(3) fuls, 2m(s), 052,

EJDE-2006/74

(8)(fn(s, 2m(s), p(5)27,,(5))
(s))

(s))

Ip(t) (Anam)'(t) — p(t) (Anzo)' (1)

(s))ds

m(s)

,p(s)z

() = fu(s, 20(s), p(s)7((5)) |ds = 0,

lim ||Apzm — Anxol| = 0.

Finally, we show A, (B,NP) is relatively compact. Obviously, B, is a unbounded set
in C1 . Without loss of generality, we suppose r > 1/n. Then, for any z € B, N P,

we have
el Ow ﬁf;‘ft)) D(s) fa (s, 2(5), p(s) (5))ds|
" telorioo) OOO 1G+2(§;f2>@<S>fn<8»x<s>,p<s>x'<s>>ds
e
< [ e
< [T e 8
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and

o 1 x(s) g(max{, 1fv2 =) H

t n’ 1+ U2(5) h(max{w 1f5§(5) })

ds

< sup

which implies A, (PNB,) is bounded. Assume that t,# € RT. Then, for z € B,.NP,
we have

(An%‘)(t) (Anz)(t) |
1+ ’Ug ) 1+ ’U2( )

GQ t S ’
|/ T+ 0ot (8) fn(s,z(s),p(s)z'(s))ds

/o GQ(t/) B(5) fu (s 2(s), p(s)'(5))ds|

1 -‘r’Ug(t/)
00 G2 t,s) Ga(t',s) /
/ Th o) 15 oy DM n(s2(5), ps)a’(s))ds
) G“S Gt 5 g
/ 1+ 2)2 B 1+ vy ( )|<I)(S)k(8)d5h(ﬁ)%

and

p(t)(Anz)'(t) — p(t') (Anz)' ()]

|/ s) fn(s,2(s),p(s )1"(3))d8|

§|/tp(8) d|hnh8

For any € > 0, T' > 0, we can choose § > 0 small enough such that

(Anz)(t)  (Anz)(t')
L+vg(t) 14 w(t)

| | <&, |p(t)(An2)'(t) — p(t') (Anz) ()] <,

forall z € B, NP, [t —t| <4, t,t' €[0,T]. Consequently, {%} and
{p(t)(An (B, N P))(t)} is locally equi-continuous on [0, +00).
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Moreover, Lemma [£.3] guarantees that

(Ax)(t)
S, 15 0(0)!
< tim [ G289 gioyr (s a(s), pls) (s))ds

T tmtoo Jo o 1+ wa(t)

< Galt, s) 1 x(s)
S5 e, [, T ey MO
T Ga(t, s)@(s)k(s)ds 1 g(r)
L e (e T R
and
Jim i [p(t)(4=) ()] < Jim / ) fa(s,(5), p(s)2 (5))ds

max{%, 2(s)})ds

< lim sup /t p(s)P(s)k(s)g

t—=+00 zcPNB,

< lim P — =
< i [ PRS0
which imply that the functions belonging to { 7(‘4(5& f( ) 25)} and the functions be-

longing to {p(t)(A(P N B;))'(t)} are equi-convergent.
As a result, from Lemma A, (B, N P) is relatively compact. The proof is
complete. ([

Theorem 4.5. Assume that (H1)-(H4) hold. Then (1.2) has at least two positive
solutions.

Proof. From Lemma foreachn € {1,2,...}, A, : P — P is continuous operator
and for any r > 0, A, (B, N P) is relatively compact. From (H2), choose Ry > 0
such that

Roh(R
TR )
Without loss of the generality, suppose Ry > 1/n. Set
Q1 = {z € CL||lz[ly < Ro}. (4.4)
Then for any x € 94 N P, one has
z LAz, ne{l,2,. ...} (4.5)

If there exists 29 € 09 N P such that zg < A,xo, obviously, max{X, zo(t)} >

2o(t) > 72(t)Ry and %@“} > 35(t)Ro. Then

e wpy l0)
t€[0,400) 1+ v2(2)

sup /Oo M(E(S)Jf(s,max{l7xo(s)}’p(s)xlo(s))ds

tef0,400) Jo 1+ wa(t)

/0 " () (s)k(s)a

IA

max{ o 1-T-’U2 s) } )

1—|—U2( )

IN
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= max ,%
< p<8>¢<s>k<s>h<max{ivﬂ%})ii i o )ids
max{;, 17o.(5)
< /O p (s)h(RO%(s))dsZE}R;Z))’
which implies
Roh(Ry)

o p(s)®(5)k(s)h(Roa (s))dsg(Ro)
This contradicts (4.3)). Then (4.5 is true. From the proof of Theorem the
(2.13)) is true, which means

(A, PNQ1,P)=1, ne{l,2,...} (4.6)

So for any n > 1, there exists an x%) e PNy with A x;) = xg)

From {xn } C QN P, the {:USL )} is bounded. From Lemma the condition
(H4), there exists a ¢g, (t) such that

2l (t) = /OO Ga(t, 5)@(s)f (s, max{l 2 (s)}, p(s) () () ds

/ G(t, 5)B(s) b, (5)ds (47)
>72 )
where k* = sup;c(o 4+ o) foo vaz ‘;))CI> (8)YR, (s)ds. Then, from Lemma one has
2 (1)
LN L ol
< im0 509,500 ()
% Gyt s) 1 2P(s) (48)
AN n
< tilﬁoffi}i ; m@(s)k(s)g(ma}({ﬁ7m})d5
- Jo Ga(t,s)@(s)k(s)h(k*F2(s))ds g(Re)
= tl}g-noc : 1+ va(t) h(Ry) 0
and
lim sup [p(t) (=)' (1)]
t—+00 p>q
< tl}gl@fg;/ p(s)®(s) fu(s, 2(s), p(s)7'(s))ds
00 (1)
< tim_sup [ p(R(k(s gt s (49)
< i [ PR Tl s

z(D (1)
1+v

to {p(t)(zV)(t)} are equi-convergent. Moreover, for any t',t" € [0,400), n €

which imply that the functions belonging to

} and the functions belonging
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{17 27 A }7
| :C%l)(t/) ajg)(t") |
1+ vy (t/) 14+ vy (t”)

o GQ(t’,s) G2( ) ) 1)/
S/o 7 Fu(t) 14 uy (t//)|fn( L2 (s),p(s)(x() (s))ds (4.10)

< Golths) _ Galt',s) g, 9(Eo)
< |~ TRk (ia( o)k ds

and

| N

| /\

/ 8)fu(s, 250 (5), p(s) (@) (5))ds] (4.11)
/ h(Ro)’

Consequently, for any € > 0, T' > 0, we can choose a § > 0 such that if [t/ —¢"| < §
and t/, ¢’ € [0,T], then

xgll) ) 1,?(11) ")
1 —+ Vo (t/) 1 —+ 9 (t//)

Ip(t')(x (1))( t') —p(t") (@D) ()]
h(%(s)k*)ds|g(RO) nef{l,2,...}.

| | <e Ip)(P) (1) = p(") (@) (") <,

for all n € {1,2,...}, which implies that {1+v () } and {p(t )( ) (t)} are locally

equi-continuous on [0,400). Thus, Theorem - guarantees that there is a con-
vergent subsequence {J:SJ)} of {xg)} with lim;_ 4 x(l) (()1). From (4.7), we
have
a:(()l)(t) > k*ya(t), Vit e [0,+00).

Then, for ¢ € (0, +00), if j is big enough, we have

[, (153 (0),(0) 2 (1)) = (125 (0),008) (25" (1)

1 1
= £t 28D (0. p(0) (5 (0) = £(t,26” (1), p(8) ) (1)) = 0.

as j — 400, and

Fry (823 (0, () () (1)) = f(¢, max{n (14 va(8)), 2 (O}, p(8) (@) (1)
J
g(Ro)
h(Ro)
Then the Lesbegue Dominated Convergence Theorem guarantees that
O

= 1 D) (¢
jJrJPoox 7 ( )

< k()h(k 72(1))

o0

= lim Gt S)‘P(S)f(samax{i(l+vz(5)), i) ()} p(s) (@) (s))ds

j—+oo ’I’LJ

/ Ga(t,5)®(s) f (5,25 (), p(s) (") (5))ds,
(4.12)
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which implies z(gl)(t) is a positive solution to (1.2)). Obviously, Hxél) i < Rp. Then
(4.3) can guarantee ||x((Jl)||1 < Ry.
Let 7 < a* <b* < 400, and 0 < ¢* < mingg[e+ p=] Y2(t). Suppose
b
, Ga(t,s) -1
N*z( min ——P(s)k sdsc*) + 1.
tefa*,b*] J o 1+’U2(t) ( ) 1( )
From condition (H2), there exists an R’ > R such that

g1(y) > N'y, Vy>R. (4.13)
Now we define
R/
Qo ={z e CL]|z|: < c—*}. (4.14)

We might as well suppose that lci,: > 1, R' > 1. Then we have
Apz Lz, ne{l,2,...} (4.15)
for all x € 9025 N P. Otherwise, suppose there exists xg € 922 NP with A,zq < xo.
Since zg € 0(22) N P,
|z(t)] R

.’I}O(t) . ~ * /
in ——~— > min t) su ——>c"— =R >1.
tefa*,b*] 1 + ’UQ(t) T t€la*,b¥] 72( )tE[O,-&I-)oo) 14+ ’l)g(t) c*
Then for t € [a*,b*], from (4.13), we have
no(t) _ (Awwo)()
1+ ’Ug(t) - 1+ Ug(t)

[T Galt,s) )
o A= CLCECRRR RIS

b* Gg(t,S) 1 /
> /a m@(s)f(&max{ﬁ(l—|—vg(s)),xo(S)},p(S)ﬂﬁo(S))dS

"Gyt ) L wo(s)
2 [ T POk a1 s
b Gg(t,s) * ‘TO(S)
>L*meg@m@Nl+M$%
5ﬁcmw@@M@wW6Z
R/

which implies ||zo|l1 > R'/c*. This contradicts to g € P N 9Qs. Then (4.15) is
true.

From (4.5 and (4.15), Theorem guarantees that A, has a fixed point 2P e
\zf)(t)\ < R’ (H4)

Q9 — Q1) N P. For the set {:cg)}, since ||x%2)||1 = SUDi[0,400) T102() = o

guarantees that there is a 1/ /.« (t) such that

/

Fltw,2) = F(t,9,2) > Y (1), ¥(1,9,2) € [0,400) x (0, 0] x [0, 400). (416)

By proof as in ([£7), [&8), [@9), [@10) and (E11), we can prove that {z\’} is

relatively compact in Cl , which means that there exists a subsequence {xg)} of
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{wg)} with lim;_, 4 xg) = xéQ). By proof as in ((4.12)) xég)(t) is a positive solution
to equation (|1.2) with %, > ||$((Jz)||1 > Ry.
Consequently, equation (|1.2) has at least two different positive solutions xél)(t)

and z((f) (t). The proof is complete. O
Example 4.6. Now we consider
1 1 '
m L gmty=1/4 (] L\ 212 3)(1 — 0.t
_ : 1) —
z(0) =0, 75_1}+mooav (t)=0.

(4.17)
Then, equation (4.17) has at least two positive solutions.

To prove that (4.17)) has at least two positive solutions, we apply Theorem
72
with ®(t) = fge ="t~V p(t) = 1, f(t, 2, 2) = (1+6) 2072+ g5 2®) 1+ ),

(14¢)3
t, telo,1] .
k(t) = 1, =2y Y2+ 93), hz) =y 2, y(t) =4 ’ , Falt) =
(t) 9(y) = 2(y y’), h(z) =y 71(t) 1 te (0, +00) Fa(t)

"Yfft), Ei(t) =1, gi(y) = y~ Y4 + 42, U.(t) = ¢ V/4 Tt is easy to verify that

(H1)—(H4) hold. Hence, (4.17) has at leat two positive solutions.
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