
Electronic Journal of Differential Equations, Vol. 2006(2006), No. 74, pp. 1–25.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

MULTIPLE POSITIVE SOLUTIONS FOR SINGULAR
BOUNDARY-VALUE PROBLEMS WITH DERIVATIVE

DEPENDENCE ON FINITE AND INFINITE INTERVALS

BAOQIANG YAN

Abstract. In this paper, Krasnoselskii’s theorem and the fixed point the-

orem of cone expansion and compression are improved. Using the results
obtained, we establish the existence of multiple positive solutions for the sin-

gular second-order boundary-value problems with derivative dependance on

finite and infinite intervals.

1. Introduction

In [1], by an alternative method to Leray-Schauder and sequential technique,
Agarwal and O’Regan considered the singular boundary-value problem

1
p
(py′)′ + Φ(t)f(t, y, py′) = 0, t ∈ (0, 1)

αy(0)− β lim
t→0+

p(t)y′(t) = 0, y(1) = 0
(1.1)

and obtained the existence of one solution to equation (1.1) when α = 0 or β = 0.
In [23], by a generalization of the Kneser’s property (continuum) of the cross-

sections of the solutions funnel, Palamides and Galanis considered the following
problems

1
p
(py′)′ + Φ(t)f(t, y, py′) = 0, t ∈ (0,+∞)

y(0) = 0, lim
t→+∞

p(t)y′(t) = 0
(1.2)

and also obtained the existence of one positive and monotone unbounded solution.
There are some other results on the existence of at least one solution for equation

(1.1), (1.2), and we refer the reader also to [2, 3, 4, 5, 6, 7, 8, 11, 19, 20, 21, 22].
Moreover, under the condition that p ≡ 1, β = 0 and f has no singularity at
x = 0 and px′ = 0, in [15], using pairs of lower and upper solutions, Henderson
and Thompson considered the existence of three solutions for equation (1.1) and
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in [24], by reducing the equation (1.1) to a quasi-linear one, I.Yermachenko and
F.Sadyrbaev obtained the existence of multiple solutions for equation (1.1) also.

Up to now, there are fewer results on the existence of multiple positive solutions
to equation (1.1), (1.2) if f(t, x, px′) is singular at x and is related to px′. Motivated
by this, in this paper, we discuss the existence of multiple positive solutions to
equation (1.1), (1.2) when f(t, x, px′) is singular at x = 0.

There are three sections in our paper. In section 2, in order to overcome the
difficulty from px′, we improve the Krasnoselskii’s theorem and fixed point theorem
of cone expansion and compression on unbounded set in a Banach space with a
special norm. In section 3, we establish special cones, and using obtained theorems,
present the existence of multiple positive solutions to equation (1.1). In section 4,
we consider the existence of multiple positive solutions to equation (1.2).

2. The improvement of the Krasnoselskii’s theorem and fixed point
theorem of cone expansion and compression

In this section, we improve the Krasnoselskii’s theorem and fixed point theorem
of cone expansion and compression in a Banach space with a special norm.

In [12], Granas and Dugudji presented the theory of fixed point index on un-
bounded open sets which has same basic properties as those in the theory of fixed
point index on bounded open sets [14]. The degree theory on bounded open sets
and unbounded open sets can be found in [9, 12, 13, 16, 17, 25].

According to the the theory of fixed point index on unbounded open sets in
Chapter 4 of [12], it is easy to obtain following result. Let E be a real Banach
space containing a cone P .

Lemma 2.1. Assume Ω ⊆ E, θ ∈ Ω, Ω ∩ P is a relatively open set in P . Let
A : P ∩ Ω → P be continuous with relatively compact A(P ∩ Ω). Suppose that

Ax 6= µx, ∀x ∈ P ∩ ∂Ω, µ ≥ 1. (2.1)

Then i(A,P ∩ Ω, P ) = 1.

Proof. Let H(t, x) = tAx, t ∈ [0, 1] and x ∈ P ∩ ∂Ω. Then H : [0, 1]× (P ∩Ω) → P
is continuous, and the continuity of H(t, x) in t is uniform with respect to x ∈
P ∩ Ω. Moreover, H(t, P ∩ Ω) is relatively compact for every t ∈ [0, 1]. Evidently,
H(t, x) 6= x for x ∈ P ∩ ∂Ω and 0 ≤ t ≤ 1. Hence, by the homotopy invariance and
normality of fixed point index, we have

i(A,P ∩ Ω, P ) = i(θ, P ∩ Ω, P ) = 1.

The proof is complete. �

Now we consider a real Banach space in a special case. Assume that E is a linear
space and it satisfies three conditions:

(1) There is a norm x→ ‖x‖1 on x ∈ E and under ‖ · ‖1, E is a normed linear
space (not complete)

(2) There is another semi-norm ‖ · ‖2
(3) Under ‖x‖ = max{‖x‖1, ‖x‖2}, E is a Banach space.

For example, for x ∈ C1([0, 1], R), under ‖x‖1 = maxt∈[0,1] |x(t)|, C1([0, 1], R) is an
incomplete normed linear space. Let ‖x‖2 = maxt∈[0,1] |x′(t)|. Obviously, ‖ · ‖2 is
a semi-norm of C1([0, 1], R). If we define ‖x‖ = max{‖x‖1, ‖x‖2}, C1([0, 1], R) is a
Banach space.
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Assume that P is a cone of E and Ω ⊂ E is a open set with supx∈Ω ‖x‖1 < +∞.
Since supx∈Ω ‖x‖1 ≤ supx∈Ω ‖x‖, it is possible that Ω is unbounded in E. We have
the following lemma(the ideas coming from [14]).

Lemma 2.2. With E and P as above, assume that Ω ⊆ E is an open set with
supx∈Ω ‖x‖1 < +∞. Let A : P ∩ Ω → P be continuous with relatively compact
A(P ∩ Ω) and B : P ∩ ∂Ω → P be continuous with relatively compact B(P ∩ ∂Ω).
Suppose that

(a) infx∈P∩∂Ω ‖Bx‖1 > 0;
(b) x−Ax 6= tBx, for all x ∈ P ∩ ∂Ω, t ≥ 0.

Then, we have
i(A,P ∩ Ω, P ) = 0. (2.2)

Proof. Suppose that the E1 is a Banach space completion of E under norm ‖x‖1. By
the extension theorem of Dugundji [10], we can extend B to a continuous operator
from P ∩ Ω into P such that

B(P ∩ Ω) ⊆ coB(P ∩ ∂(Ω)) ⊆ (coB(P ∩ ∂Ω))1, (2.3)

where (coB(P ∩ ∂Ω))1 is the closure of B(P ∩ ∂Ω) under the norm ‖ · ‖1 and the
followings are similar. Let F = B(P ∩∂Ω), then (coB(P ∩∂Ω))1 = (coF )1 = (M)1,
where

M = {y =
n∑

i=1

λiyi : yi ∈ F, λi ≥ 0,
n∑

i=1

λi = 1;n = 1, 2, . . . }.

We first prove
inf

y∈(M)1

‖y‖1 > 0. (2.4)

Denote by E0 the subspace of E spanned by F under norm ‖ · ‖1. Since B(P ∩ ∂Ω)
is relatively compact in E under norm ‖ · ‖, we know that B(P ∩ ∂Ω) is relatively
compact in E1 under norm ‖·‖1. Therefore, E0 is separable. Evidently, P0 = P∩E0

is a cone of E0 and F ⊆ P0. By property of the cone [14, Theorem 1.4.1], there
exists f0 ∈ E∗0 such that f0(y) > 0 for any y ∈ P0 with y 6= θ. We claim that

inf
y∈F

f0(y) = σ > 0. (2.5)

In fact, if σ = 0, then there exists {yk} ⊆ F such that f0(yk) → 0. By the
relative compactness of F in E, there is a subsequence {yki

} of {yk} such that
yki → y0 ∈ P and y0 ∈ E0. Then y0 ∈ P0, and so f0(yki) → f0(y0) = 0. Hence,
y0 = θ and ‖yki‖1 → 0, which contradicts hypothesis (a). Thus, (2.5) holds.

For any y =
∑n

i=1 λiyi ∈M , where yi ∈ F , λi ≥ 0 and
∑n

i=1 λi = 1, we have

f0(y) =
n∑

i=1

λif0(yi) ≥
n∑

i=1

λiσ = σ,

and therefore
f0(y) ≥ σ,∀y ∈ (M)1. (2.6)

Since (M)1 = (coF )1 is compact, there exists a z0 ∈ (M)1 such that

inf
y∈(M)1

‖y‖1 = ‖z0‖1. (2.7)
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By (2.6), f0(z0) ≥ σ, and this implies that z0 6= θ. It follows therefore from (2.7)
that (2.4) holds. By (2.3) and (2.4), we get

inf
x∈P∩Ω

‖Bx‖1 = σ > 0. (2.8)

Now, it is easy to show that (2.2) holds. In fact, if i(A,P ∩Ω, P ) 6= 0, then by the
hypothesis (b) and the homotopy invariance property of fixed point index, we have

i(A+ tB, P ∩ Ω, P ) = i(A,P ∩ Ω, P ) 6= 0,∀t > 0.

In particular, choosing t0 > a+c
σ , where a = supx∈Ω ‖x‖1 and c = supx∈P∩Ω ‖Ax‖1,

we have
i(A+ t0B,P ∩ Ω, P ) 6= 0,

and so, by the solution property of fixed point index, there exists an x0 ∈ P ∩ Ω
such that Ax0 + t0Bx0 = x0. Hence

t0 =
‖x0 −Ax0‖1
‖Bx0‖1

≤ a+ c

σ
,

which is a contradiction. The proof is complete. �

Corollary 2.3. Assume that Ω is an open set with supx∈Ω ‖x‖1 < +∞. Let A :
P ∩ Ω → P be continuous with relatively compact A(P ∩ Ω). If there exists u0 > θ
such that

x−Ax 6= tu0,∀x ∈ P ∩ ∂Ω, t ≥ 0, (2.9)
then (2.2) holds.

Proof. Since ‖ · ‖1 is a norm, u0 > θ implies that ‖u0‖1 > 0. Hence, the corollary
follows directly from Lemma 2.2 by putting Bx = u0 for any x ∈ P ∩ ∂Ω. �

Corollary 2.4. Assume that Ω is an open set with supx∈Ω ‖x‖1 < +∞. Let A :
P ∩ Ω → P be continuous with relatively compact A(P ∩ Ω). If

Ax 6≤ x, ∀x ∈ P ∩ ∂Ω, (2.10)

then (2.2) holds.

Proof. Choose an u0 > θ. Then,

x−Ax 6= tu0,∀x ∈ P ∩ ∂Ω, t ≥ 0.

By Corollary 2.3, (2.2) holds. �

Lemma 2.5. Assume that Ω is an open set with supx∈Ω ‖x‖1 < +∞. Let A :
P ∩ Ω → P be continuous with relatively compact A(P ∩ Ω). Suppose that

(i) infx∈P∩∂Ω ‖Ax‖1 > 0; and
(ii) Ax 6= µx,∀x ∈ P ∩ ∂Ω, 0 < µ < 1.

Then (2.2) holds.

Proof. Taking B = A in Lemma 2.2, we see that condition (a) of Lemma 2.2 is
the same as condition (i) of Lemma 2.5. Also, condition (b) of Lemma 2.2 is true.
In fact, if there exist x0 ∈ P ∩ ∂Ω and t0 ≥ 0 such that x0 − Ax0 = t0Ax0, then
Ax0 = µx0, where µ0 = (1 + t0)−1. Evidently 0 < µ0 ≤ 1, which contradicts the
condition (ii). Thus, (2.2) follows from Lemma 2.2. �

Lemma 2.6. Assume that Ω is an open set with supx∈Ω ‖x‖1 < +∞. Let A :
P ∩ Ω → P be continuous with relatively compact A(P ∩ Ω). Suppose that
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(i’) Ax 6= µx,∀x ∈ P ∩ ∂Ω, 0 ≤ µ ≤ 1, and
(ii’) the set {‖Ax‖−1

1 Ax|x ∈ P ∩ ∂Ω} is relatively compact.
Then (2.2) holds.

Proof. Let A1x = α(‖Ax‖1)−1Ax for x ∈ P∩∂Ω, where α = supx∈P∩∂Ω ‖Ax‖1 > 0.
Then, by hypotheses, A1 : P ∩ ∂Ω → P is continuous with relatively compact
A1(P∩∂Ω). By the extension theorem, A1 can be extended to a continuous operator
from P∩Ω into P with relatively compact A1(P∩Ω). We now prove that A1 satisfies
the condition (i) and (ii) of Lemma 2.5. In fact, first we have

inf
x∈P∩∂Ω

‖A1x‖1 = σ > 0.

Secondly, if there exists x0 ∈ P ∩ ∂Ω and 0 < µ0 ≤ 1 such that A1x0 = µ0x0,
then Ax0 = λ0x0, where λ0 = µ0α

−1‖Ax0‖1. Evidently, 0 < λ0 ≤ µ0 ≤ 1, which
contradicts hypothesis (i’). Hence, by Lemma 2.5, we have

i(A1, P ∩ Ω, P ) = 0. (2.11)

Now, we prove

(1− t)Ax+ tA1x 6= x,∀x ∈ P ∩ ∂Ω, 0 ≤ t ≤ 1. (2.12)

If there is an x1 ∈ P∩∂Ω and a 0 ≤ t1 ≤ 1 such that (1−t1)Ax1+t1A1x1 = x1, then
Ax1 = µ1x1, where µ1 = [1 + t1(α/‖Ax1‖1 − 1)]−1, 0 ≤ µ1 ≤ 1, in contradiction
with hypothesis (i’). Hence, by (2.11), (2.12) and the homotopy invariance of fixed
point index, we get

i(A,P ∩ Ω, P ) = i(A1, P ∩ Ω, P ) = 0.

The proof is complete. �

Theorem 2.7. Let Ω1 and Ω2 be two open in E such that θ ∈ Ω1 and Ω1 ⊆ Ω2

with supt∈Ω2
‖x‖1 < +∞. Let A : P ∩ (Ω2 −Ω1) → P be continuous with relatively

compact A(P ∩ (Ω2 − Ω1)). Suppose that one of the two conditions
(H1) Ax 6≥ x, ∀x ∈ P ∩ ∂Ω1 and Ax 6≤ x, ∀x ∈ P ∩ ∂Ω2,
(H2) Ax 6≤ x, ∀x ∈ P ∩ ∂Ω1 and Ax 6≥ x, ∀x ∈ P ∩ ∂Ω2

is satisfied. Then A has at least one fixed point in P ∩ (Ω2 − Ω1).

Proof. By the extension theorem (Dugundji [10]), A has a completely continuous
extension (also noted by A) from P ∩ Ω2 from P ∩ Ω2 to P . First we assume that
(H1) is satisfied, i.e., it is the case of cone expansion. It is easy to see that

Ax 6= µx, ∀x ∈ P ∩ ∂Ω1, µ ≥ 1, (2.13)

since, otherwise, there exists x0 ∈ P ∩ ∂Ω1 and µ0 ≥ 1 such that Ax0 = µ0x0 ≥ x0,
in contradiction with (H1). Now, from (2.1) and Lemma 2.1, we obtain

i(A,P ∩ Ω1, P ) = 1. (2.14)

On the other hand, by Corollary 2.4, we have

i(A,P ∩ Ω2, P ) = 0. (2.15)

It follows therefore from (2.14) and (2.15) and additivity property of fixed point
index that

i(A,P ∩ (Ω2 − Ω1), P ) = i(A,P ∩ Ω2, P )− i(A,P ∩ Ω1, P ) = −1 6= 0. (2.16)
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Hence, by the solution property of fixed point index, A has at least one fixed point
in P ∩ (Ω2 − Ω1).

Similarly, when (H2) is satisfied, instead of (2.14), (2.15), we have i(A,P ∩
Ω2, P ) = 1, and i(A,P ∩ (Ω2 − Ω1), P ) = 1. As a result we also can assert that A
has at least one fixed point in P ∩ (Ω2 − Ω1). The proof is complete. �

We remark that this theorem improves [14, theorem 2.3.3] because the condition
that Ω1 and Ω2 are bounded is not necessary.

Theorem 2.8. Let Ω1 = {x ∈ E|‖x‖1 < r} and Ω2 = {x ∈ E|‖x‖1 < R} be two
open in E with r < R. Let A : P ∩ (Ω2 − Ω1) → P be continuous with relatively
compact A(P ∩ (Ω2 − Ω1)). Suppose that one of the two conditions

(H3) ‖Ax‖ ≤ ‖x‖, for all x ∈ P ∩ ∂Ω1 and ‖Ax‖1 ≥ ‖x‖1, for all x ∈ P ∩ ∂Ω2,
(H4) ‖Ax‖1 ≥ ‖x‖1, for all x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖, for all x ∈ P ∩ ∂Ω2

is satisfied. Then A has at least one fixed point in P ∩ (Ω2 − Ω1).

Proof. We only need to prove this theorem under condition (H3), since the proof
is similar when (H4) is satisfied. By the extension theorem, A can be extended to
a continuous operator from P ∩Ω2 into P with relatively compact A(P ∩Ω2). We
may assume that A has no fixed points on P ∩ ∂Ω1 and P ∩ ∂Ω2. It is easy to see
that (2.13) holds, since otherwise, there exist x0 ∈ P ∩ ∂Ω1 and µ0 > 1 such that
Ax0 = µ0x0 and hence ‖Ax0‖ = µ0‖x0‖ > ‖x0‖, in contradiction with (H3). Thus,
by (2.13), Lemma 2.1, (2.14) holds.

On the other hand, it is also easy to verify

Ax 6= µx,∀x ∈ P ∩ ∂Ω2, 0 < µ < 1. (2.17)

In fact, if there are x1 ∈ P ∩ ∂Ω2 and 0 < µ1 < 1 such that Ax1 = µ1x1, then

‖Ax1‖1 = µ1‖x1‖1 < ‖x1‖1,

in contradiction with (H3). In addition, by (H3) we have

inf
x∈P∩∂Ω2

‖Ax‖1 ≥ inf
x∈∂Ω2

‖x‖1 > 0. (2.18)

It follows from (2.17), (2.18) and Lemma 2.5 that (2.15) holds. As before, (2.14) and
(2.15) imply (2.16), and therefore A has at least one fixed point in P∩(Ω2−Ω1). �

We remark that this theorem improves the the Krasnoselskii’s theorem in [14]
because the condition that Ω1 and Ω2 are bounded is not necessary.

3. The existence of multiple positive solutions to equation (1.1)

In this section, we consider (1.1) and suppose that f ∈ C([0, 1]×R+
0 ×R,R+), p ∈

C([0, 1], R) ∩ C((0, 1), R+
0 ) ∩ C1((0, 1), R) with

∫ 1

0
1

p(r)dr < +∞, Φ ∈ C((0, 1), R+
0 )

and α ≥ 0, β ≥ 0 (not equal to 0 at the same time); here R+ = [0,+∞), R+
0 =

(0,+∞), R = (−∞,+∞). Let

ρ2 = β + α

∫ 1

0

1
p(r)

dr (ρ > 0),

u1(t) =
1
ρ

∫ 1

t

1
p(r)

dr, v1(t) =
1
ρ
(β + α

∫ t

0

1
p(r)

dr),
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G1(t, s) =

{
u1(t)v1(s)p(s), 0 ≤ s ≤ t ≤ 1
v1(t)u1(s)p(s), 0 ≤ t ≤ s ≤ 1.

Assume that C1
p [0, 1] = {x : [0, 1] → R| x(t) is continuous on [0, 1] and p(t)x′(t) is

continuous on [0, 1] also with maxt∈[0,1] p(t)|x′(t)| < +∞} (see [21]). For x ∈ C1
p , let

‖x‖1 = maxt∈[0,1] |x(t)|, ‖x‖2 = maxt∈[0,1] p(t)|x′(t)| and ‖x‖ = max{‖x‖1, ‖x‖2}.
It is easy to see that C1

p satisfies the conditions (1), (2) and (3) of the Banach space
E in section 2.

Obviously, x(t) ∈ C1
p is a solution to equation (1.1) if and only if x(t) is a solution

of the following integral equation

x(t) =
∫ 1

0

G1(t, s)Φ(s)f(s, x(s), p(s)x′(s))ds, t ∈ [0, 1].

Let P = {x ∈ C1
p |x(t) ≥ γ1(t)‖x‖1}, where γ1(t) = u1(t)v1(t) 1

u1(0)v1(1)
for all

t ∈ [0, 1].

Lemma 3.1. Assume that l ∈ L1[0, 1] with l(t) > 0 for all t ∈ (0, 1) and q(t) =∫ 1

0
G1(t, s)l(s)ds, t ∈ [0, 1]. Then

q(t) ≥ γ1(t) max
s∈[0,1]

q(s).

Proof. Suppose q(t0) = maxs∈[0,1] q(s). Then

G1(t, s)
G1(t0, s)

=


v1(t)u1(s)p(s)
u1(t0)v1(s)p(s) , 0 ≤ t ≤ s ≤ t0 ≤ 1
u1(t)v1(s)p(s)
v1(t0)u1(s)p(s) , 0 ≤ t0 ≤ s ≤ t ≤ 1
v1(t)u1(s)p(s)
v1(t0)u1(s)p(s) , 0 ≤ t, t0 ≤ s ≤ 1
u1(t)v1(s)p(s)
u1(t0)v1(s)p(s) , 0 ≤ s ≤ t, t0 ≤ 1

=


u1(t)v1(t)

u1(s)
u1(t0)

1
v1(s)u1(t)

, 0 ≤ t ≤ s ≤ t0 ≤ 1

u1(t)v1(t)
v1(s)
v1(t0)

1
u1(s)v1(t)

, 0 ≤ t0 ≤ s ≤ t ≤ 1

u1(t)v1(t) 1
u1(t)v1(t0)

, 0 ≤ t, t0 ≤ s ≤ 1

u1(t)v1(t) 1
u1(t0)v1(t)

, 0 ≤ s ≤ t, t0 ≤ 1

≥


u1(t)v1(t) 1

v1(1)u1(0)
, 0 ≤ t ≤ s ≤ t0 ≤ 1

u1(t)v1(t) 1
u1(0)v1(1)

, 0 ≤ t0 ≤ s ≤ t ≤ 1

u1(t)v1(t) 1
u1(0)v1(1)

, 0 ≤ t, t0 ≤ s ≤ 1

u1(t)v1(t) 1
u1(0)v1(1)

, 0 ≤ s ≤ t, t0 ≤ 1

= γ1(t).

As a consequence,

q(t) =
∫ 1

0

G1(t, s)l(s)ds =
∫ 1

0

G1(t, s)
G1(t0, s)

G1(t0, s)l(s)ds

≥ γ1(t)
∫ 1

0

G1(t0, s)l(s)ds = γ1(t) max
s∈[0,1]

q(s).

The proof is complete. �

Now we will list some conditions for convenience:
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(H1) There exists a k ∈ C([0, 1], R+
0 ), a g ∈ C(R+

0 , R
+
0 ) and a decreasing contin-

uous function h ∈ C(R+
0 , R

+
0 ) such that

f(t, x, z) ≤ k(t)g(x), ∀x ∈ R+
0 , z ∈ R, t ∈ [0, 1],

where g(x)
h(x) is an increasing function and

∫ 1

0
p(s)Φ(s)k(s)h(cγ1(s))ds < +∞

for each c > 0;
(H2)

sup
c∈R+

0

ch(c)

u1(0)v1(1)
∫ 1

0
p(s)Φ(s)k(s)h(cγ1(s))dsg(c)

> 1;

(H3) There exists a k1 ∈ C([0, 1], R+
0 ) and a g1 ∈ C(R+

0 , R
+
0 ) with f(t, x, z) ≥

k1(t)g1(x), for all (t, x, z) ∈ [0, 1]×R+
0 × (−∞,+∞) such that

lim
x→+∞

g1(x)
x

= +∞,

where
∫ 1

0
p(s)Φ(s)k1(s)ds < +∞;

(H4) For any c > 0, there exists a ψc ∈ C([0, 1], R+
0 ) such that f(t, x, z) ≥ ψc(t)

for all (t, x, z) ∈ [0, 1]× (0, c]× (−∞,+∞) with
∫ 1

0
p(s)Φ(s)ψc(s)ds < +∞.

For given n ∈ {1, 2, . . . }, let fn(t, x, z) = f(t,max{ 1
n , x}, z) and for x ∈ P , define

(Anx)(t) =
∫ 1

0

G1(t, s)Φ(s)fn(s, x(s), p(s)x′(s))ds, n ∈ {1, 2, . . . }, t ∈ [0, 1].

(3.1)

Lemma 3.2. Assume the condition (H1) holds. Then, for every n ∈ {1, 2, . . . },
An : P → P is continuous and for any r > 0 and Br = {x ∈ C1

p |‖x‖1 ≤ r},
An(P ∩Br) is relatively compact.

Proof. First, for a given n ∈ {1, 2, . . . }, we show that AnP ⊆ P . For any x ∈ P ,
we have

|(Anx)(t)| =
∣∣ ∫ 1

0

G1(t, s)Φ(s)fn(s, x(s), p(s)x′(s))ds
∣∣

≤
∫ 1

0

G1(t, s)Φ(s)f(s,max{ 1
n
, x(s)}, p(s)x′(s))ds

≤
∫ 1

0

G1(t, s)Φ(s)k(s)g(max{ 1
n
, x(s)})ds

≤
∫ 1

0

G1(t, s)Φ(s)k(s)h(max{ 1
n
, x(s)})

g(max{ 1
n , x(s)})

h(max{ 1
n , x(s)})

ds

≤
∫ 1

0

G1(t, s)Φ(s)k(s)dsh(
1
n

)
g(max{ 1

n , ‖x‖1})
h(max{ 1

n , ‖x‖1})
< +∞

and

|p(t)(Anx)′(t)| = | − 1
ρ

∫ t

0

v1(s)p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds

+
α

ρ

∫ 1

t

u1(s)p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds|
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≤ K

ρ

∫ 1

0

p(s)Φ(s)f(s,max{ 1
n
, x(s)}, p(s)x′(s))ds

≤ K

ρ

∫ 1

0

p(s)Φ(s)k(s)g(max{ 1
n
, x(s)})ds

≤ K

ρ

∫ 1

0

p(s)Φ(s)k(s)h(max{ 1
n
, x(s)})

g(max{ 1
n , x(s)})

h(max{ 1
n , x(s)})

ds

≤ K

ρ

∫ 1

0

p(s)Φ(s)k(s)dsh(
1
n

)
g(max{ 1

n , ‖x‖1})
h(max{ 1

n , ‖x‖1})
< +∞,

where K = max{αu1(0), v1(1)} and the following is same as before. Then, An is
well defined. Moreover, from Lemma 3.1, for any x ∈ P , we have

(Anx)(t) ≥ γ1(t) max
s∈[0,1]

|(Anx)(s)| = γ1(t)‖Anx‖1, ∀t ∈ [0, 1].

Consequently, AnP ⊆ P .
Second, we show An : P → P is continuous. Assume that limm→+∞ xm =

x0, which means there exists an M > 1/n such that ‖xm‖ ≤ M , for all m ∈
{0, 1, 2, . . . }. Then

fn(t, xm(t), p(t)x′m(t)) ≤ k(t)g(max{ 1
n
, xm(t)})

= k(t)h(max{ 1
n
, xm(t)})

g(max{ 1
n , xm(t)})

h(max{ 1
n , xm(t)})

≤ k(t)h(
1
n

)
g(M)
h(M)

, m ∈ {1, 2, . . . }.

(3.2)

Since
fn(t, xm(t), p(t)x′m(t)) → fn(t, x0(t), p(t)x′0(t)), as m→ +∞,

from (3.2), the Lesbegue Dominated Convergence Theorem guarantees

lim
m→+∞

max
t∈[0,1]

|(Anxm)(t)− (Anx0)(t)|

= lim
m→+∞

max
t∈[0,1]

|
∫ 1

0

G1(t, s)Φ(s)fn(s, xm(s), p(s)x′m(s))ds

−
∫ 1

0

G1(t, s)Φ(s)fn(s, x0(s), p(s)x′0(s))ds|

≤ lim
m→+∞

max
t∈[0,1]

∫ 1

0

G1(t, s)Φ(s)
∣∣∣fn(s, xm(s), p(s)x′m(s))

− fn(s, x0(s), p(s)x′0(s))
∣∣∣ds

≤ lim
m→+∞

u1(0)v1(1)
∫ 1

0

p(s)Φ(s)
∣∣∣fn(s, xm(s), p(s)x′m(s))

− fn(s, x0(s), p(s)x′0(s))
∣∣∣ds = 0

and

lim
m→+∞

max
t∈[0,1]

|p(t)(Anxm)′(t)− p(t)(Anx0)′(t)|
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= lim
m→+∞

max
t∈[0,1]

∣∣∣− 1
ρ

∫ t

0

v1(s)p(s)Φ(s)[fn(s, xm(s), p(s)x′m(s))

− fn(s, x0(s), p(s)x′0(s))]ds+
α

ρ

∫ 1

t

u1(s)p(s)Φ(s)[fn(s, xm(s), p(s)x′m(s))

− fn(s, x0(s), p(s)x′0(s))]ds
∣∣∣

≤ lim
m→+∞

K

ρ

∫ 1

0

p(s)Φ(s)
∣∣∣fn(s, xm(s), p(s)x′m(s))− fn(s, x0(s), p(s)x′0(s))

∣∣∣ds
= 0,

which mean that
lim

m→+∞
‖Anxm −Anx0‖ = 0.

Finally, we show An(Br ∩P ) is relatively compact. Obviously, Br is an unbounded
set in C1

p . Without loss of generality, we suppose r > 1/n. Then, for any x ∈ Br∩P ,
we have

max
t∈[0,1]

|(Anx)(t)| = max
t∈[0,1]

|
∫ 1

0

G1(t, s)Φ(s)fn(s, x(s), p(s)x′(s))ds|

= max
t∈[0,1]

∫ 1

0

G1(t, s)Φ(s)fn(s, x(s), p(s)x′(s))ds

≤ max
t∈[0,1]

∫ 1

0

G1(t, s)Φ(s)k(s)h(max{ 1
n
, x(s)})

g(max{ 1
n , x(s)})

h(max{ 1
n , x(s)})

ds

≤ max
t∈[0,1]

∫ 1

0

G1(t, s)Φ(s)k(s)dsh(
1
n

)
g(r)
h(r)

≤ u1(0)v1(1)
∫ 1

0

p(s)Φ(s)k(s)dsh(
1
n

)
g(r)
h(r)

and

max
t∈[0,1]

|p(t)(Anx)′(t)| = max
t∈[0,1]

| − 1
ρ

∫ t

0

v1(s)p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds

+
α

ρ

∫ 1

t

u1(s)p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds|

≤ K

ρ

∫ 1

0

p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds

≤ K

ρ

∫ 1

0

p(s)Φ(s)k(s)h(max{ 1
n
, x(s)})

g(max{ 1
n , x(s)})

h(max{ 1
n , x(s)})

ds

≤ K

ρ

∫ 1

0

p(s)Φ(s)k(s)dsh(
1
n

)
g(r)
h(r)

,

which means that An(Br ∩ P ) is bounded. Assume that t, t′ ∈ [0, 1]. Then, for
x ∈ Br ∩ P , we have

|(Anx)(t)− (Anx)(t′)| = |
∫ 1

0

G1(t, s)Φ(s)fn(s, x(s), p(s)x′(s))ds

−
∫ 1

0

G1(t′, s)Φ(s)fn(s, x(s), p(s)x′(s))ds|
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≤
∫ 1

0

|G1(t, s)−G1(t′, s)|Φ(s)fn(s, x(s), p(s)x′(s))ds

≤
∫ 1

0

|G1(t, s)−G1(t′, s)|Φ(s)k(s)dsh(
1
n

)
g(r)
h(r)

and

|p(t)(Anx)′(t)− p(t′)(Anx)′(t′)|

= | − 1
ρ

∫ t

0

v1(s)p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds

+
1
ρ

∫ t′

0

v1(s)p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds

+
α

ρ

∫ 1

t

u1(s)p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds

− α

ρ

∫ 1

t′
u1(s)p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds|

≤ 2
K

ρ
|
∫ t′

t

p(s)Φ(s)fn(s, x(s), p(s)x′(s))|ds

≤ 2
K

ρ
|
∫ t′

t

p(s)Φ(s)k(s)ds|h( 1
n

)
g(r)
h(r)

.

Then, for any ε > 0, we can choose δ > 0 small enough such that

|(Anx)(t)− (Anx)(t′)| < ε, |p(t)(Anx)′(t)− p(t′)(Anx)′(t′)| < ε,

for all x ∈ Br ∩ P , |t − t′| < δ, t, t′ ∈ [0, 1]. Consequently, {(An(Br ∩ P ))(t)} and
{p(t)(An(Br ∩ P ))′(t)} is equicontinuous on [0, 1].

Consequently, from Arzela-Ascoli theorem, An(Br ∩ P ) is relatively compact.
The proof is complete. �

Theorem 3.3. Assume that (H1)–(H4) hold. Then (1.1) has at least two positive
solutions.

Proof. From Lemma 3.2, for each n ∈ {1, 2, . . . }, An : P → P is continuous operator
and for any r > 0, An(Br ∩ P ) is relatively compact. From (H2), choose R0 > 0
such that

R0h(R0)

u1(0)v1(1)
∫ 1

0
p(s)Φ(s)k(s)h(R0γ1(s))dsg(R0)

> 1. (3.3)

Without loss of the generality, suppose R0 ≥ 1/n, n ∈ {1, 2, . . . }. Set

Ω1 = {x ∈ C1
p |‖x‖1 < R0}.

Then for any x ∈ ∂Ω1 ∩ P , one has

x 6≤ Anx, n ∈ {1, 2, . . . }. (3.4)

If there exists an x0 ∈ ∂Ω1 ∩ P such that x0 ≤ Anx0, obviously, max{ 1
n , x0(t)} ≥

x0(t) ≥ γ1(t)R0. Then

R0 = max
t∈[0,1]

|x0(t)|

≤ max
t∈[0,1]

∫ 1

0

G1(t, s)Φ(s)f(s,max{ 1
n
, x0(s)}, p(s)x′0(s))ds
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≤ u1(0)v1(1)
∫ 1

0

p(s)Φ(s)k(s)g(max{ 1
n
, x0(s)})ds

≤ u1(0)v1(1)
∫ 1

0

p(s)Φ(s)k(s)h(max{ 1
n
, x0(s)})

g(max{ 1
n , x0(s)})

h(max{ 1
n , x0(s)})

)ds

≤ u1(0)v1(1)
∫ 1

0

p(s)Φ(s)k(s)h(R0γ1(s))ds
g(R0)
h(R0)

which implies

R0h(R0)

u1(0)v1(1)
∫ 1

0
Φ(s)k(s)h(R0γ1(s))dsg(R0)

≤ 1.

This contradicts (3.3). Then, (3.4) is true. From the proof of Theorem 2.7, the
(2.13) is true, which means

i(An, P ∩ Ω1, P ) = 1, n ∈ {1, 2, . . . }. (3.5)

As a result, for n ∈ {1, 2, . . . }, there exists an x
(1)
n ∈ P ∩ Ω1 with Anx

(1)
n = x

(1)
n .

Since ‖x(1)
n ‖1 ≤ R0, n ∈ {1, 2, . . . }, it is easy to see that {x(1)

n (t)} and {p(t)x′(1)n (t)}
are uniformly bounded. Moreover, from Lemma 3.1, the condition (H4), there exists
a ψR0(t) such that

x(1)
n (t) =

∫ 1

0

G1(t, s)Φ(s)f(s,max{ 1
n
, x(1)

n (s)}, p(s)(x(1)
n )′(s))ds

≥
∫ 1

0

G1(t, s)Φ(s)ψR0(s)ds

≥ γ1(t)k∗,

(3.6)

where k∗ = maxt∈[0,1]

∫ 1

0
G1(t, s)Φ(s)ψR0(s)ds. Thus, for any t′, t′′ ∈ (0, 1) and

n ∈ {1, 2, . . . },

|x(1)
n (t′)− x(1)

n (t′′)|

≤
∫ 1

0

|G1(t′, s)−G1(t′′, s)|fn(s, x(1)
n (s), p(s)(x(1)

n )′(s))ds

≤
∫ 1

0

|G1(t′, s)−G1(t′′, s)|Φ(s)k(s)h(γ1(s)k∗)ds
g(R0)
h(R0)

,

(3.7)

and
|p(t′)(x(1)

n )′(t′)− p(t′′)(x(1)
n )′(t′′)|

≤ 2
∣∣ ∫ t′′

t′
p(s)Φ(s)fn(s, x(1)

n (s), p(s)(x(1)
n )′(s))ds

∣∣
≤ 2

∣∣ ∫ t′′

t′
p(s)Φ(s)k(s)h(γ1(s)k∗)ds

∣∣ g(R0)
h(R0)

, n ∈ {1, 2, . . . }.

(3.8)

Consequently, for any ε > 0, we can choose a δ > 0 such that

|x(1)
n (t′)− x(1)

n (t′′)| < ε, |p(t′)(x(1)
n )′(t′)− p(t′′)(x(1)

n )′(t′′)| < ε,

for all n ∈ {1, 2, . . . }, |t′ − t′′| < δ, t′, t′′ ∈ [0, 1], which implies that {x(1)
n (t)} and

{p(t)(x(1)
n )′(t)} are equi-continuous on [0, 1].
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The Arzela-Ascoli theorem guarantees that there is a subsequence {x(1)
nj } of

{x(1)
n } with limj→+∞ x

(1)
nj = x

(1)
0 . From (3.6), we have

x0(t) ≥ k∗γ1(t), ∀t ∈ [0, 1].

Then, for t ∈ (0, 1), if j is big enough, we have

|fnj
(t, x(1)

nj
(t), p(t)(x(1)

nj
)′(t))− f(t, x(1)

0 (t), p(t)(x(1)
0 )′(t))|

= |f(t, x(1)
nj

(t), p(t)(x(1)
nj

)′(t))− f(t, x(1)
0 (t), p(t)(x(1)

0 )′(t))| → 0, as j → +∞

and

fnj
(t, x(1)

nj
(t), p(t)(x(1)

nj
)′(t)) = f(t,max{ 1

nj
, x(1)

nj
(t)}, p(t)(x(1)

nj
)′(t))

≤ k(t)h(k∗γ1(t))
g(R0)
h(R0)

.

(3.9)

Then the Lesbegue Dominated Convergence Theorem guarantees that

x
(1)
0 (t) = lim

j→+∞
x(1)

nj
(t)

= lim
j→+∞

∫ 1

0

G1(t, s)Φ(s)f(s,max{ 1
nj
, x(1)

nj
(s)}, p(s)(x(1)

nj
)′(s))ds

=
∫ 1

0

G1(t, s)Φ(s)f(s, x(1)
0 (s), p(s)(x(1)

0 )′(s))ds.

(3.10)

Obviously ‖x(1)
0 ‖1 ≤ R0. Thus (3.3) can guarantee ‖x(1)

0 ‖1 < R0. Let 0 < a∗ <
b∗ < 1, and 0 < c∗ < mint∈[a∗,b∗] γ1(t). Suppose

N∗ =
(

min
t∈[a∗,b∗]

∫ b∗

a∗
G1(t, s)Φ(s)k1(s)dsc∗

)−1

+ 1.

From the condition (H3), there exists an R′ > R such that

g1(x) > N∗x,∀x ≥ R′. (3.11)

Now we define

Ω2 = {x ∈
∣∣‖x‖1 < R′

c∗
}. (3.12)

We might as well suppose that R′

c∗ > 1, R′ > 1. Then we have

Anx 6≤ x for all x ∈ ∂Ω2 ∩ P, n ∈ {1, 2, . . . }. (3.13)

Otherwise, suppose there exists x0 ∈ ∂Ω2∩P with Anx0 ≤ x0. Since x0 ∈ ∂(Ω2)∩P ,

min
t∈[a∗,b∗]

x0(t) ≥ min
t∈[a∗,b∗]

γ1(t)‖x‖1 > c∗
R′

c∗
= R′ > 1. (3.14)

Then, for t ∈ [a∗, b∗], from (3.11) and (3.14), we have

x0(t) ≥ (Anx0)(t)

=
∫ 1

0

G1(t, s)Φ(s)fn(s, x0(s), p(s)x′0(s))ds

≥
∫ b∗

a∗
G1(t, s)Φ(s)f(s,max{ 1

n
, x0(s)}, p(s)x′0(s))ds
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≥
∫ b∗

a∗
G1(t, s)Φ(s)k1(s)g1(max{ 1

n
, x0(s)})ds

>

∫ b∗

a∗
G1(t, s)Φ(s)k1(s)N∗x0(s)ds

>

∫ b∗

a∗
G1(t, s)Φ(s)k1(s)dsN∗c∗

R′

c∗

>
R′

c∗
, ∀n ∈ {1, 2, . . . }

which implies ‖x0‖1 > R′/c∗. This contradicts to x0 ∈ P ∩ ∂Ω2.
From (3.4) and (3.13), the Theorem 2.7 guarantees that An has a fixed point

x
(2)
n ∈ (Ω2 − Ω1) ∩ P , n ∈ {1, 2, . . . }. It is easy to see that

x(2)
n (t) ≥ γ1(t)‖x(2)

n ‖1 ≥ γ1(t)R0, n ∈ {1, 2, . . . }. (3.15)

By proof similar to (3.6), (3.7), (3.8), we know that {x(2)
n } is relatively compact

in C1
p . Then there exists a subsequence {x(2)

ni } of {x(2)
n } with limi→+∞ x

(2)
ni = x

(2)
0 .

And moreover, by similar proof as (3.10), we get x(2)
0 (t) is a positive solution to

equation (1.1) with R′

c∗ > ‖x(2)
0 ‖1 > R0. Consequently, equation (1.1) has at least

two different positive solution x(1)
0 (t) and x(2)

0 (t). The proof is complete. �

Example 3.4. Now we consider

x′′ +
1
16
t−1/2(1− t)−1/4(x−1/4 + x2)(1 + cos2(x′)) = 0, t ∈ (0, 1)

lim
t→0+

x′(t) = 0 = x(1).
(3.16)

Then (3.16) has at least two positive solutions.

To prove that (3.16) has at least two positive solutions, we apply Theorem 3.3
with Φ(t) = 1

16 t
−1/2(1 − t)−1/4, p(t) ≡ 1, f(t, x, z) = (x−1/4 + x2)(1 + cos2(z)),

k(t) ≡ 1, g(x) = 2(x−1/4 + x2), h(x) = x−1/4, γ1(t) = 1 − t, k1(t) ≡ 1, g1(x) =
x−1/4 + x2, Ψc(t) = c−1/4. It is easy to verify that (H1)–(H4) hold. Hence, (3.16)
has at leat two positive solutions.

Example 3.5. Now we consider

x′′ +
1

12π
t−1/4(1− t)−1/4(x−1/4 + x2)(π + arctanx′) = 0, t ∈ (0, 1)

x(0) = 0 = x(1).
(3.17)

Then (3.17) has at least two positive solutions.

To prove that (3.17) has at least two positive solutions, we apply Theorem 3.3
with Φ(t) = 1

12π t
−1/4(1− t)−1/4, p(t) ≡ 1, f(t, x, z) = (x−1/4 + x2)(π + arctanx′),

k(t) ≡ 1, g(x) = 3π
2 (x−1/4 + x2), h(x) = x−1/4, γ1(t) = t(1 − t), k1(t) ≡ 1,

g1(x) = x−1/4 +x2, Ψc(t) = c−1/4. It is easy to verify that (H1)–(H4) hold. Hence,
(3.17) has at leat two positive solutions.
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4. The existence of multiple positive solutions to equation (1.2)

In this section, we consider (1.2) and suppose that f ∈ C(R+ ×R+
0 ×R+, R+),

p ∈ C(R+, R) ∩C(R+
0 , R

+
0 ) ∩C1(R+

0 , R) with
∫ +∞
0

1
p(r)dr = +∞, Φ ∈ C(R+

0 , R
+);

here R+ = [0,+∞), R+
0 = (0,+∞), R = (−∞,+∞). Let

G2(t, s) =

{
u2(t)v2(s)p(s), a ≤ s ≤ t < +∞
v2(t)u2(s)p(s), 0 ≤ t ≤ s < +∞,

where u2(t) = 1 and v2(t) =
∫ t

0
1

p(r)dr for all t ∈ R+.
Let C1

∞ =
{
x : [0,+∞) → R| x(t) is continuous on R+ and p(t)x′(t) is continuous

on R+ also with limt→+∞
x(t)

1+v2(t)
exists and supt∈[0,+∞) p(t)|x′(t)| < +∞

}
. For

x ∈ C1
∞, let

‖x‖1 = sup
t∈[0,+∞)

|x(t)|
1 + v2(t)

and ‖x‖2 = sup
t∈[0,+∞)

p(t)|x′(t)|.

It is easy to see that ‖ · ‖1 is a norm of C1
∞ and ‖ · ‖2 is a semi-norm of C1

∞. Now
Let ‖x‖ = max{‖x‖1, ‖x‖2}. Obviously, C1

∞ satisfies (1), (2) and (3) of the Banach
space E in section 2.

It is easy to prove that if x(t) ∈ C1
∞ is a solution to integral equation

x(t) =
∫ ∞

0

G2(t, s)Φ(s)f(s, x(s), p(s)x′(s))ds, t ∈ R+,

then x(t) is a solution to (1.2).
Let P = {x ∈ C1

∞|x(t) ≥ γ2(t)‖x‖1, ∀t ∈ R+}, where

γ2(t) =

{∫ t

0
1

p(r)dr, t ∈ [0, τ ]

1, t ∈ (τ,+∞)

γ̃2(t) =
γ2(t)

1 + v2(t)
, t ∈ R+;

here
∫ τ

0
1

p(r)dr = 1. Suppose that x = (1 + v2(t))y, t ∈ R+ and F (t, y, z) =
f(t, (1 + v2(t))y, z) = f(t, x, z).

Now we will list some conditions for convenience:
(H1) There exists a k ∈ C(R+, R+

0 ), a g ∈ C(R+
0 , R

+
0 ) and a decreasing continu-

ous function h ∈ C(R+
0 , R

+
0 ) such that

F (t, y, z) ≤ k(t)g(y), ∀(y, z) ∈ R+
0 ×R+

0 , t ∈ R+,

where g(y)
h(y) is an increasing function and

∫∞
0
p(s)Φ(s)k(s)h(cγ̃2(s))ds < +∞

for each c > 0
(H2)

sup
c∈R+

0

ch(c)∫∞
0
p(s)Φ(s)k(s)h(cγ̃2(s))dsg(c)

> 1

(H3) There exists a k1 ∈ C(R+, R+
0 ) and a g1 ∈ C(R+

0 , R
+
0 ) with F (t, y, z) ≥

k1(t)g1(y), for all (t, y, z) ∈ [0,+∞)×R+
0 ×R+ such that

lim
y→+∞

g1(y)
y

= +∞,

where
∫∞
0
p(s)Φ(s)k1(s)ds < +∞
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(H4) for any c > 0, there exists a ψc ∈ C(R+, R+
0 ) such that F (t, y, z) ≥ ψc(t)

for all (t, y, z) ∈ R+ × (0, c]×R+ with
∫∞
0
p(s)Φ(s)ψc(s)ds < +∞.

Let Cl =
{
x : R+ → R| x(t) is continuous on R+ and limt→+∞ x(t) exists

}
with

norm ‖x‖l = supt∈[0,+∞) |x(t)|. From [18], we know that Cl is a Banach space and
following theorem is true.

Theorem 4.1 ([18]). Let M ⊆ Cl(R+, R). Then M is relatively compact in the
space Cl(R+, R) if the following conditions hold:

(a) M is bounded in Cl

(b) the functions belonging to M are locally equi-continuous on R+;
(c) the functions from M are equiconvergent, that is, given ε > 0, there cor-

responds T (ε) > 0 such that |x(t) − x(+∞)| < ε for any t ≥ T (ε) and
x ∈M .

Theorem 4.2 ([22]). Let M ⊆ C1
∞(R+, R). Then M is relatively compact in

C1
∞(R+, R) if the following conditions hold:

(a) M is bounded in C1
∞;

(b) the functions belonging to {y
∣∣y(t) = x(t)

1+v2(t)
, x ∈ M} and the functions

belonging to {y
∣∣y(t) = p(t)x′(t), x ∈M} are locally equi-continuous on R+;

(c) the functions from {y
∣∣y(t) = x(t)

1+v2(t)
, x ∈ M} and the functions from

{y
∣∣y(t) = p(t)x′(t), x ∈M} are equi-convergent at +∞.

Lemma 4.3 ([22]). Assume that Φ(t) ∈ C(R+
0 , R

+) with
∫ +∞
0

p(s)Φ(t)dt < +∞
and F (t) =

∫∞
0
G2(t, s)Φ(s)ds. Then

F (t) ≥ γ2(t)
F (τ)

1 + v2(τ)
, ∀t ∈ R+, τ ∈ R+,

and

F (t) ≥ γ2(t)‖F‖1, ∀t ∈ R+, lim
t→+∞

F (t)
1 + v2(t)

= 0.

Let fn(t, x, z) = f(t,max{ 1
n (1 + v2(t)), x}, z), n ∈ {1, 2, . . . } and for x ∈ P ,

n ∈ {1, 2, . . . }, t ∈ R+, define

(Anx)(t) =
∫ ∞

0

G2(t, s)Φ(s)fn(s, x(s), p(s)x′(s))ds . (4.1)

Lemma 4.4. Assume that the condition (H1) holds. Then for each n ∈ {1, 2, . . . },
An : P → P is continuous and for any r > 0 and Br = {x ∈ C1

∞|‖x‖1 ≤ r},
An(P ∩Br) is relatively compact for each n ≥ 1.

Proof. First, we show that AnP ⊆ P . For any x ∈ P , we have

|(Anx)(t)| =
∣∣ ∫ ∞

0

G2(t, s)Φ(s)fn(s, x(s), p(s)x′(s))ds
∣∣

≤
∫ ∞

0

G2(t, s)Φ(s)f(s,max{ 1
n

(1 + v2(s)), x(s)}, p(s)x′(s))ds

=
∫ ∞

0

G2(t, s)Φ(s)F (s,max{ 1
n
,

x(s)
1 + v2(s)

}, p(s)x′(s))ds

≤
∫ ∞

0

G2(t, s)Φ(s)k(s)g(max{ 1
n
,

x(s)
1 + v2(s)

})ds
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≤
∫ ∞

0

G2(t, s)Φ(s)k(s)h(max{ 1
n
,

x(s)
1 + v2(s)

})
g(max{ 1

n ,
x(s)

1+v2(s)
})

h(max{ 1
n ,

x(s)
1+v2(s)

})
ds

≤
∫ ∞

0

G2(t, s)Φ(s)k(s)dsh(
1
n

)
g(max{ 1

n , ‖x‖1})
h(max{ 1

n , ‖x‖1})
< +∞

and

|p(t)(Anx)′(t)| =
∣∣ ∫ ∞

t

p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds
∣∣

≤
∫ ∞

t

p(s)Φ(s)f(s,max{ 1
n

(1 + v2(s)), x(s)}, p(s)x′(s))ds

=
∫ ∞

t

p(s)Φ(s)F (s,max{ 1
n
,

x(s)
1 + v2(s)

}, p(s)x′(s))ds

≤
∫ ∞

t

p(s)Φ(s)k(s)g(max{ 1
n
,

x(s)
1 + v2(s)

})ds

≤
∫ ∞

t

p(s)Φ(s)k(s)h(max{ 1
n
,

x(s)
1 + v2(s)

})
g(max{ 1

n ,
x(s)

1+v2(s)
})

h(max{ 1
n ,

x(s)
1+v2(s)

})
ds

≤
∫ ∞

0

p(s)Φ(s)k(s)dsh(
1
n

)
g(max{ 1

n , ‖x‖1})
h(max{ 1

n , ‖x‖1})
< +∞.

Since (Anx)(t) ≥ 0, it is easy to see that An is well defined. Moreover, from Lemma
4.3, for any x ∈ P , we have

(Anx)(t) ≥ γ2(t)‖Anx‖1, ∀t ∈ R+.

Consequently, AnP ⊆ P .
Second, we show An : P → P is continuous. Assume that limm→+∞ xm =

x0, which means there exists an M > 1/n such that ‖xm‖ ≤ M , for all m ∈
{0, 1, 2, . . . }. Then

fn(t, xm(t), p(t)x′m(t)) = F (t,max{ 1
n
,
xm(t)

1 + v2(t)
}, p(t)x′m(t))

≤ k(t)g(max{ 1
n
,
xm(t)

1 + v2(t)
})

≤ k(t)h(max{ 1
n
,
xm(t)

1 + v2(t)
})
g(max{ 1

n ,
xm(t)

1+v2(t)
})

h(max{ 1
n ,

xm(t)
1+v2(t)

})

≤ k(t)h(
1
n

)
g(M)
h(M)

, m ∈ {1, 2, . . . }.

(4.2)

Since
fn(t, xm(t), p(t)x′m(t)) → fn(t, x0(t), p(t)x′0(t)), as m→ +∞,

from (4.2), the Lesbegue Dominated Convergence Theorem guarantees that

lim
m→+∞

sup
t∈[0,+∞)

|(Anxm)(t)− (Anx0)(t)|
1 + v2(t)
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= lim
m→+∞

sup
t∈[0,+∞)

∣∣ ∫ ∞

0

G2(t, s)
1 + v2(t)

Φ(s)(fn(s, xm(s), p(s)x′m(s))

− fn(s, x0(s), p(s)x′0(s)))ds
∣∣∣

≤ lim
m→+∞

sup
t∈[0,+∞)

∫ ∞

0

G2(t, s)
1 + v2(t)

Φ(s)|fn(s, xm(s), p(s)x′m(s))

− fn(s, x0(s), p(s)x′0(s))|ds

= lim
m→+∞

∫ ∞

0

p(s)Φ(s)|fn(s, xm(s), p(s)x′m(s))

− fn(s, x0(s), p(s)x′0(s))|ds = 0

and

lim
m→+∞

sup
t∈[0,+∞)

|p(t)(Anxm)′(t)− p(t)(Anx0)′(t)|

= lim
m→+∞

sup
t∈[0,+∞)

∣∣∣ ∫ ∞

t

p(s)Φ(s)fn(s, xm(s), p(s)x′m(s))ds

−
∫ ∞

t

p(s)Φ(s)fn(s, x0(s), p(s)x′0(s))ds
∣∣∣

≤ lim
m→+∞

sup
t∈[0,+∞)

∫ ∞

t

p(s)Φ(s)|fn(s, xm(s), p(s)x′m(s))

− fn(s, x0(s), p(s)x′0(s))|ds

= lim
m→+∞

∫ ∞

0

p(s)Φ(s)
∣∣fn(s, xm(s), p(s)x′m(s))− fn(s, x0(s), p(s)x′0(s))

∣∣ds = 0,

which implies

lim
m→+∞

‖Anxm −Anx0‖ = 0.

Finally, we show An(Br∩P ) is relatively compact. Obviously, Br is a unbounded set
in C1

∞. Without loss of generality, we suppose r > 1/n. Then, for any x ∈ Br ∩ P ,
we have

sup
t∈[0,+∞)

|(Anx)(t)|
1 + v2(t)

= sup
t∈[0,+∞)

|
∫ ∞

0

G2(t, s)
1 + v2(t)

Φ(s)fn(s, x(s), p(s)x′(s))ds|

= sup
t∈[0,+∞)

∫ ∞

0

G2(t, s)
1 + v2(t)

Φ(s)fn(s, x(s), p(s)x′(s))ds

≤ sup
t∈[0,+∞)

∫ ∞

0

G2(t, s)
1 + v2(t)

Φ(s)k(s)h(max{ 1
n
,

x(s)
1 + v2(s)

})
g(max{ 1

n ,
x(s)

1+v2(s)
})

h(max{ 1
n ,

x(s)
1+v2(s)

})
ds

≤ sup
t∈[0,+∞)

∫ ∞

0

G2(t, s)
1 + v2(t)

Φ(s)k(s)dsh(
1
n

)
g(r)
h(r)

≤
∫ ∞

0

p(s)Φ(s)k(s)dsh(
1
n

)
g(r)
h(r)
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and

sup
t∈[0,+∞)

|p(t)(Anx)′(t)|

= sup
t∈[0,+∞)

|
∫ ∞

t

p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds|

= sup
t∈[0,+∞)

∫ ∞

t

p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds

≤ sup
t∈[0,+∞)

∫ ∞

t

p(s)Φ(s)k(s)h(max{ 1
n
,

x(s)
1 + v2(s)

})
g(max{ 1

n ,
x(s)

1+v2(s)
})

h(max{ 1
n ,

x(s)
1+v2(s)

})
ds

≤ sup
t∈[0,+∞)

∫ ∞

t

p(s)Φ(s)k(s)dsh(
1
n

)
g(r)
h(r)

=
∫ ∞

0

p(s)Φ(s)k(s)dsh(
1
n

)
g(r)
h(r)

,

which implies An(P∩Br) is bounded. Assume that t, t′ ∈ R+. Then, for x ∈ Br∩P ,
we have

| (Anx)(t)
1 + v2(t)

− (Anx)(t′)
1 + v2(t′)

|

= |
∫ ∞

0

G2(t, s)
1 + v2(t)

Φ(s)fn(s, x(s), p(s)x′(s))ds

−
∫ ∞

0

G2(t′, s)
1 + v2(t′)

Φ(s)fn(s, x(s), p(s)x′(s))ds|

≤
∫ ∞

0

| G2(t, s)
1 + v2(t)

− G2(t′, s)
1 + v2(t′)

|Φ(s)fn(s, x(s), p(s)x′(s))ds

≤
∫ ∞

0

| G2(t, s)
1 + v2(t)

− G2(t′, s)
1 + v2(t′)

|Φ(s)k(s)dsh(
1
n

)
g(r)
h(r)

and

|p(t)(Anx)′(t)− p(t′)(Anx)′(t′)|

=
∣∣ ∫ 1

t

p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds−
∫ 1

t′
p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds

∣∣
=

∣∣ ∫ t′

t

p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds
∣∣

≤
∣∣ ∫ t′

t

p(s)Φ(s)k(s)ds
∣∣h( 1

n
)
g(r)
h(r)

.

For any ε > 0, T > 0, we can choose δ > 0 small enough such that

| (Anx)(t)
1 + v2(t)

− (Anx)(t′)
1 + v2(t′)

| < ε, |p(t)(Anx)′(t)− p(t′)(Anx)′(t′)| < ε,

for all x ∈ Br ∩ P , |t − t′| < δ, t, t′ ∈ [0, T ]. Consequently, { (An(Br∩P ))(t)
1+v2(t)

} and
{p(t)(An(Br ∩ P ))′(t)} is locally equi-continuous on [0,+∞).
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Moreover, Lemma 4.3 guarantees that

lim
t→+∞

sup
x∈P∩Br

∣∣ (Ax)(t)
1 + v2(t)

∣∣
≤ lim

t→+∞

∫ ∞

0

G2(t, s)
1 + v2(t)

Φ(s)fn(s, x(s), p(s)x′(s))ds

≤ lim
t→+∞

sup
x∈P∩Br

∫ ∞

0

G2(t, s)
1 + v2(t)

Φ(s)k(s)g(max{ 1
n
,

x(s)
1 + v2(s)

})ds

≤ lim
t→+∞

∫∞
0
G2(t, s)Φ(s)k(s)ds

1 + v2(t)
h(

1
n

)
g(r)
h(r)

= 0

and

lim
t→+∞

sup
x∈P∩Br

|p(t)(Ax)′(t)| ≤ lim
t→+∞

∫ ∞

t

p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds

≤ lim
t→+∞

sup
x∈P∩Br

∫ ∞

t

p(s)Φ(s)k(s)g(max{ 1
n
, x(s)})ds

≤ lim
t→+∞

∫ ∞

t

p(s)Φ(s)k(s)dsh(
1
n

)
g(r)
h(r)

= 0,

which imply that the functions belonging to { (A(P∩Br))(t)
1+v2(t)

} and the functions be-
longing to {p(t)(A(P ∩Br))′(t)} are equi-convergent.

As a result, from Lemma 4.3, An(Br ∩ P ) is relatively compact. The proof is
complete. �

Theorem 4.5. Assume that (H1)–(H4) hold. Then (1.2) has at least two positive
solutions.

Proof. From Lemma 4.4, for each n ∈ {1, 2, . . . }, An : P → P is continuous operator
and for any r > 0, An(Br ∩ P ) is relatively compact. From (H2), choose R0 > 0
such that

R0h(R0)∫∞
0
p(s)Φ(s)k(s)h(R0γ̃2(s))dsg(R0)

> 1. (4.3)

Without loss of the generality, suppose R0 ≥ 1/n. Set

Ω1 = {x ∈ C1
∞|‖x‖1 < R0}. (4.4)

Then for any x ∈ ∂Ω1 ∩ P , one has

x 6≤ Anx, n ∈ {1, 2, . . . }. (4.5)

If there exists x0 ∈ ∂Ω1 ∩ P such that x0 ≤ Anx0, obviously, max{ 1
n , x0(t)} ≥

x0(t) ≥ γ2(t)R0 and max{ 1
n ,x0(t)}

1+v2(t)
≥ γ̃2(t)R0. Then

R0 = sup
t∈[0,+∞)

|x0(t)|
1 + v2(t)

≤ sup
t∈[0,+∞)

∫ ∞

0

G2(t, s)
1 + v2(t)

Φ(s)f(s,max{ 1
n
, x0(s)}, p(s)x′0(s))ds

≤
∫ ∞

0

p(s)Φ(s)k(s)g(
max{ 1

n ,
x0(s)

1+v2(s)
}

1 + v2(s)
)ds
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≤
∫ ∞

0

p(s)Φ(s)k(s)h(max{ 1
n
,

x0(s)
1 + v2(s)

})
g(max{ 1

n ,
x0(s)

1+v2(s)
})

h(max{ 1
n ,

x0(s)
1+v2(s)

})
ds

≤
∫ ∞

0

p(s)Φ(s)k(s)h(R0γ̃2(s))ds
g(R0)
h(R0)

,

which implies
R0h(R0)∫ +∞

0
p(s)Φ(s)k(s)h(R0γ̃2(s))dsg(R0)

≤ 1.

This contradicts (4.3). Then (4.5) is true. From the proof of Theorem 2.7, the
(2.13) is true, which means

i(An, P ∩ Ω1, P ) = 1, n ∈ {1, 2, . . . }. (4.6)

So for any n ≥ 1, there exists an x(1)
n ∈ P ∩ Ω1 with Anx

(1)
n = x

(1)
n .

From {x(1)
n } ⊆ Ω1 ∩ P , the {x(1)

n } is bounded. From Lemma 4.3, the condition
(H4), there exists a ψR0(t) such that

x(1)
n (t) =

∫ ∞

0

G2(t, s)Φ(s)f(s,max{ 1
n
, x(1)

n (s)}, p(s)(x(1)
n )′(s))ds

≥
∫ ∞

0

G2(t, s)Φ(s)ψR0(s)ds

≥ γ2(t)k∗,

(4.7)

where k∗ = supt∈[0,+∞)

∫∞
0

G2(t,s)
1+v2(t)

Φ(s)ψR0(s)ds. Then, from Lemma 4.3, one has

lim
t→+∞

sup
n≥1

∣∣ x
(1)
n (t)

1 + v2(t)

∣∣
≤ lim

t→+∞

∫ ∞

0

G2(t, s)
1 + v2(t)

Φ(s)fn(s, x(s), p(s)x′(s))ds

≤ lim
t→+∞

sup
n≥1

∫ ∞

0

G2(t, s)
1 + v2(t)

Φ(s)k(s)g(max{ 1
n
,
x

(1)
n (s)

1 + v2(s)
})ds

≤ lim
t→+∞

∫∞
0
G2(t, s)Φ(s)k(s)h(k∗γ̃2(s))ds

1 + v2(t)
g(R0)
h(R0)

= 0

(4.8)

and
lim

t→+∞
sup
n≥1

|p(t)(x(1)
n )′(t)|

≤ lim
t→+∞

sup
n≥1

∫ ∞

t

p(s)Φ(s)fn(s, x(s), p(s)x′(s))ds

≤ lim
t→+∞

sup
n≥1

∫ ∞

t

p(s)Φ(s)k(s)g(max{ 1
n
,
x

(1)
n (s)

1 + v2(s)
})ds

≤ lim
t→+∞

∫ ∞

t

p(s)Φ(s)k(s)h(k∗γ̃2(s))ds
g(R0)
h(R0)

= 0,

(4.9)

which imply that the functions belonging to { x(1)
n (t)

1+v2(t)
} and the functions belonging

to {p(t)(x(1)
n )′(t)} are equi-convergent. Moreover, for any t′, t′′ ∈ [0,+∞), n ∈
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{1, 2, . . . },

| x
(1)
n (t′)

1 + v2(t′)
− x

(1)
n (t′′)

1 + v2(t′′)
|

≤
∫ ∞

0

| G2(t′, s)
1 + v2(t′)

− G2(t′′, s)
1 + v2(t′′)

|fn(s, x(1)
n (s), p(s)(x(1)

n )′(s))ds

≤
∫ ∞

0

| G2(t′, s)
1 + v2(t′)

− G2(t′′, s)
1 + v2(t′′)

|Φ(s)k(s)h(γ̃2(s)k∗)ds
g(R0)
h(R0)

,

(4.10)

and

|p(t′)(x(1)
n )′(t′)− p(t′′)(x(1)

n )′(t′′)|

≤
∣∣ ∫ t′′

t′
p(s)Φ(s)fn(s, x(1)

n (s), p(s)(x(1)
n )′(s))ds

∣∣
≤

∣∣ ∫ t′′

t′
p(s)Φ(s)k(s)h(γ̃2(s)k∗)ds

∣∣ g(R0)
h(R0)

, n ∈ {1, 2, . . . }.

(4.11)

Consequently, for any ε > 0, T > 0, we can choose a δ > 0 such that if |t′ − t′′| < δ
and t′, t′′ ∈ [0, T ], then

| x
(1)
n (t′)

1 + v2(t′)
− x

(1)
n (t′′)

1 + v2(t′′)
| < ε, |p(t′)(x(1)

n )′(t′)− p(t′′)(x(1)
n )′(t′′)| < ε,

for all n ∈ {1, 2, . . . }, which implies that { x(1)
n (t)

1+v2(t)
} and {p(t)(x(1)

n )′(t)} are locally
equi-continuous on [0,+∞). Thus, Theorem 4.2 guarantees that there is a con-
vergent subsequence {x(1)

nj } of {x(1)
n } with limj→+∞ x

(1)
nj = x

(1)
0 . From (4.7), we

have
x

(1)
0 (t) ≥ k∗γ2(t), ∀t ∈ [0,+∞).

Then, for t ∈ (0,+∞), if j is big enough, we have

|fnj (t, x
(1)
nj

(t), p(t)(x(1)
nj

)′(t))− f(t, x(1)
0 (t), p(t)(x(1)

0 )′(t))|

= |f(t, x(1)
nj

(t), p(t)(x(1)
nj

)′(t))− f(t, x(1)
0 (t), p(t)(x(1)

0 )′(t))| → 0,

as j → +∞, and

fnj (t, x
(1)
nj

(t), p(t)(x(1)
nj

)′(t)) = f(t,max{ 1
nj

(1 + v2(t)), x(1)
nj

(t)}, p(t)(x(1)
nj

)′(t))

≤ k(t)h(k∗γ̃2(t))
g(R0)
h(R0)

.

Then the Lesbegue Dominated Convergence Theorem guarantees that

x
(1)
0 (t)

= lim
j→+∞

x(1)
nj

(t)

= lim
j→+∞

∫ ∞

0

G2(t, s)Φ(s)f(s,max{ 1
nj

(1 + v2(s)), x(1)
nj

(s)}, p(s)(x(1)
nj

)′(s))ds

=
∫ ∞

0

G2(t, s)Φ(s)f(s, x(1)
0 (s), p(s)(x(1)

0 )′(s))ds,

(4.12)
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which implies x(1)
0 (t) is a positive solution to (1.2). Obviously, ‖x(1)

0 ‖1 ≤ R0. Then
(4.3) can guarantee ‖x(1)

0 ‖1 < R0.
Let τ < a∗ < b∗ < +∞, and 0 < c∗ < mint∈[a∗,b∗] γ̃2(t). Suppose

N∗ =
(

min
t∈[a∗,b∗]

∫ b∗

a∗

G2(t, s)
1 + v2(t)

Φ(s)k1(s)dsc∗
)−1

+ 1.

From condition (H2), there exists an R′ > R such that

g1(y) > N∗y, ∀y ≥ R′. (4.13)

Now we define

Ω2 = {x ∈ C1
∞

∣∣‖x‖1 < R′

c∗
}. (4.14)

We might as well suppose that R′

c∗ > 1, R′ > 1. Then we have

Anx 6≤ x, n ∈ {1, 2, . . . } (4.15)

for all x ∈ ∂Ω2∩P . Otherwise, suppose there exists x0 ∈ ∂Ω2∩P with Anx0 ≤ x0.
Since x0 ∈ ∂(Ω2) ∩ P ,

min
t∈[a∗,b∗]

x0(t)
1 + v2(t)

≥ min
t∈[a∗,b∗]

γ̃2(t) sup
t∈[0,+∞)

|x(t)|
1 + v2(t)

> c∗
R′

c∗
= R′ > 1.

Then for t ∈ [a∗, b∗], from (4.13), we have

x0(t)
1 + v2(t)

≥ (Anx0)(t)
1 + v2(t)

=
∫ +∞

0

G2(t, s)
1 + v2(t)

Φ(s)fn(s, x0(s), p(s)x′0(s))ds

≥
∫ b∗

a∗

G2(t, s)
1 + v2(t)

Φ(s)f(s,max{ 1
n

(1 + v2(s)), x0(s)}, p(s)x′0(s))ds

≥
∫ b∗

a∗

G2(t, s)
1 + v2(t)

Φ(s)k1(s)g1(max{ 1
n
,

x0(s)
1 + v2(s)

})ds

>

∫ b∗

a∗

G2(t, s)
1 + v2(t)

Φ(s)k1(s)N∗ x0(s)
1 + v2(s)

ds

>

∫ b∗

a∗
G2(t, s)Φ(s)k1(s)dsN∗c∗

R′

c∗

>
R′

c∗
,

which implies ‖x0‖1 > R′/c∗. This contradicts to x0 ∈ P ∩ ∂Ω2. Then (4.15) is
true.

From (4.5) and (4.15), Theorem 2.7 guarantees that An has a fixed point x(2)
n ∈

(Ω2 − Ω1) ∩ P . For the set {x(2)
n }, since ‖x(2)

n ‖1 = supt∈[0,+∞)
|x(2)

n (t)|
1+v2(t)

≤ R′

c∗ , (H4)
guarantees that there is a ψR′/c∗(t) such that

f(t, x, z) = F (t, y, z) ≥ ψR′
c∗

(t), ∀(t, y, z) ∈ [0,+∞)× (0,
R′

c∗
]× [0,+∞). (4.16)

By proof as in (4.7), (4.8), (4.9), (4.10) and (4.11), we can prove that {x(2)
n } is

relatively compact in C1
∞, which means that there exists a subsequence {x(2)

ni } of
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{x(2)
n } with limi→+∞ x

(2)
ni = x

(2)
0 . By proof as in (4.12) x(2)

0 (t) is a positive solution
to equation (1.2) with R′

c∗ > ‖x(2)
0 ‖1 > R0.

Consequently, equation (1.2) has at least two different positive solutions x(1)
0 (t)

and x(2)
0 (t). The proof is complete. �

Example 4.6. Now we consider

x′′ +
1
16
e−tt−1/4((1 + t)1/2x−1/2 +

1
(1 + t)3

x3)(1 +
x′

2

1 + x′2
) = 0, t ∈ (0,+∞)

x(0) = 0, lim
t→+∞

x′(t) = 0.

(4.17)
Then, equation (4.17) has at least two positive solutions.

To prove that (4.17) has at least two positive solutions, we apply Theorem 4.5
with Φ(t) = 1

16e
−tt−1/4, p(t) ≡ 1, f(t, x, z) = ((1+t)1/2x−1/2+ 1

(1+t)3x
3)(1+ x′2

1+x′2 ),

k(t) ≡ 1, g(y) = 2(y−1/2 + y3), h(x) = y−1/2, γ1(t) =

{
t, t ∈ [0, 1]
1, t ∈ (0,+∞)

, γ̃2(t) =

γ2(t)
1+t , k1(t) ≡ 1, g1(y) = y−1/4 + y3, Ψc(t) = c−1/4. It is easy to verify that
(H1)–(H4) hold. Hence, (4.17) has at leat two positive solutions.
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