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MULTIPLICITY OF SOLUTIONS FOR A CLASS OF ELLIPTIC
SYSTEMS IN RN

GIOVANY M. FIGUEIREDO

Abstract. This article concerns the multiplicity of solutions for the system

of equations

−∆u + V (εx)u = α|u|α−2u|v|β ,

−∆v + V (εx)v = β|u|α|v|β−2v

in RN , where V is a positive potential. We relate the number of solutions with

the topology of the set where V attains its minimum. The results are proved
by using minimax theorems and Ljusternik-Schnirelmann theory.

1. Introduction

The purpose of this article is to investigate the multiplicity of solutions for the
system

−∆u+ V (εx)u = α|u|α−2u|v|β in RN ,

−∆v + V (εx)v = β|u|α|v|β−2v in RN ,

u, v ∈ H1(RN ), u(x), v(x) > 0 for all x ∈ RN ,

(1.1)

where ε > 0, α, β > 1 such that α + β = p, 2 < p < 2N/(N − 2), N ≥ 3 and the
potential V : RN → R is continuous and satisfies

0 < V0 := inf
x∈RN

V (x) < V∞ := lim inf
|x|→∞

V (x). (1.2)

In this work, we will consider the cases V∞ < ∞ or V∞ = ∞. This kind of hy-
pothesis was introduced by Rabinowitz [16] in the study of a nonlinear Schrödinger
equation.

We say that (u, v) ∈ H1(RN )×H1(RN ) is a weak solution of the system in (1.1)
if∫

RN

[
∇u∇φ+∇v∇ψ + V (εx)(uφ+ vψ)

]
=

∫
RN

[
α|u|α−2u|v|βφ+ β|u|α|v|β−2vψ

]
for all (φ, ψ) ∈ H1(RN )×H1(RN ).

2000 Mathematics Subject Classification. 35J20, 35J50, 35J60.
Key words and phrases. Variational methods; Palais-Smale condition;

Ljusternik-Schnirelmann theory.
c©2006 Texas State University - San Marcos.

Submitted May 24, 2005. Published July 12, 2006.

1



2 G. M. FIGUEIREDO EJDE-2006/76

In this paper we also relate the number of solutions of (1.1) with the topology
of the set of minima of the potential V . In order to present our result we introduce
the set of global minima of V , given by

M = {x ∈ RN : V (x) = V0}.

Note that, by (1.2), M is compact. For any δ > 0, let Mδ = {x ∈ RN : dist(x,M) ≤
δ} be the closed δ-neighborhood of M . Our main result is as follows.

Theorem 1.1. Suppose that V satisfies (1.2). Then, for any δ > 0 given, there
exists εδ > 0 such that, for any ε ∈ (0, εδ), the system (1.1) has at least catMδ

(M)
solutions.

We recall that, if Y is a closed set of a topological space X, catX(Y ) is the
Ljusternik-Schnirelmann category of Y in X, namely the least number of closed
and contractible set in X which cover Y .

Existence and concentration of positive solutions for the problem

−ε2∆u+ V (x)u = f(u) in RN (1.3)

have been extensively studied in recent years, see for example, Ambrosetti, Badiale
and Cingolani [4], Del Pino & Felmer [8], Floer [9], Lazzo [11], Oh [13, 14, 15],
Rabinowitz [16] , Wang [17] and their references.

Cingolani and Lazzo in [6] studied positive solutions for the Schrödinger equation
(1.3) with f(u) = |u|q−2u, ε > 0, 2 < q < 2∗, V satisfying (1.2) and proved a
multiplicity result similar to Theorem 1.1. Alves and Monari in [3], proved only
the existence and concentration of a nontrivial solutions (u, v) to problem (1.1).

In this work, motivated by [6], [3], and using some recent ideas from [2] and [10],
we prove the multiplicity of solutions to (1.1). Our main result completes the study
made in [6] in the following sense: We are working with a system of equations and
here, in the proof of some lemmas and propositions, we use different arguments
than those in [6], for example the proposition 3.6, Lemma 4.4 for appearing along
the text and we prove a compactness result on Nehari manifolds. Moreover, we do
not know if the problem below has a unique positive solution,

−∆u+ µu = α|u|α−2u|v|β in RN ,

−∆v + µv = β|u|α|v|β−2v in RN ,

u, v ∈ H1(RN ), u(x), v(x) > 0 for all x ∈ RN , µ > 0 .

(1.4)

This fact is used in a lot of papers in the scalar case.
The paper is organized as follows: In Section 2 we present the abstract framework

of the problem as well as some remarks on the autonomous problem. In Section 3
we obtain some compactness properties of the functional associated to the system
(1.1). Theorem 1.1 is proved in Section 4.

2. The variational framework

Throughout this paper we suppose that the function V satisfies the conditions
(1.2). We write only

∫
u instead of

∫
RN u(x)dx. For any ε > 0, we denote by Xε

the Sobolev space

Xε = {(u, v) ∈ H1(RN )×H1(RN ) :
∫
V (εx)(|u|2 + |v|2) <∞}
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endowed with the norm

‖(u, v)‖2ε =
∫

(|∇u|2 + |∇v|2) +
∫
V (εx)(|u|2 + |v|2),

We will look for solutions of (1.1) by finding critical points of the C2-functional
Iε : Xε → R given by

Iε((u, v)) =
1
2

∫ [
|∇u|2 + |∇v|2 + V (εx)(|u|2 + |v|2)

]
−

∫
Q(u, v),

where Q(u, v) = (u+)α(v+)β and w± = max{±w, 0} the positive (negative) part of
w. By definition of Q, we see that, if (u, v) is a nontrivial critical point of Iε, then
u, v are positive in RN . Indeed, since that

〈I ′ε((u, v)), (φ, ψ)〉 =
∫ [

∇u∇φ+∇v∇ψ + V (εx)(uφ+ vψ)
]

− α

∫
|u|α−2u|v|βφ− β

∫
|u|α|v|β−2vψ,

we have
0 = 〈I ′ε((u, v)), (u−, v−)〉 = ‖(u−, v−)‖2ε

and therefore u, v ≥ 0 in RN . By the Maximum Principle in RN , u, v > 0 in RN .
We introduce the Nehari manifold of Iε by setting

Nε = {(u, v) ∈ Xε \ {(0, 0)} : 〈I ′ε((u, v)), (u, v)〉 = 0} .

Note that, if (u, v) ∈ Nε, we have

Iε((u, v)) =
1
2
‖(u, v)‖2ε −

∫
Q(u, v) =

(1
2
− 1
p

)
‖(u, v)‖2ε ≥ 0,

and therefore the following minimization problem is well defined

cε = inf
(u,v)∈Nε

Iε((u, v)).

Moreover, we can easily conclude that there exists r > 0, independent of ε, such
that

‖(u, v)‖ε ≥ r > 0 for any ε > 0, (u, v) ∈ Nε. (2.1)

We now present some important properties of cε and Nε. The proofs can be
adapted from [18, Chapter 4] (see also [12, Lemmas 3.1 and 3.2]). First we observe
that, for any (u, v) ∈ Xε\{(0, 0)} there exists a unique tu,v > 0 such that tu,v(u, v) ∈
Nε. The maximum of the function t 7→ Iε(t(u, v)) for t ≥ 0 is achieved at t = tu,v

and the function (u, v) 7→ tu.v is continuous from Xε \ {(0, 0)} to (0,∞). Note that
by conditions on α and β, we have

Q(u, v) ≤ α

p
|u|p +

β

p
|v|p. (2.2)

Standard calculations imply that Iε satisfies the geometry of the Mountain Pass
theorem. Arguing as in [18, Theorem 4.2] we can prove that cε is positive, it
coincides with the mountain pass level of Iε and satisfies

cε = inf
γ∈Γε

max
t∈[0,1]

Iε(γ(t)) = inf
(u,v)∈Xε\{(0,0)}

max
t≥0

Iε(t(u, v)) > 0, (2.3)

where Γε = {γ ∈ C([0, 1], Xε) : γ(0) = (0, 0), Iε(γ(1)) < 0}.
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We will denote by ‖I ′ε((u, v))‖∗ the norm of the derivative of Iε restricted to Nε

at the point (u, v). This norm is given by (see [18, Proposition 5.12])

‖I ′ε((u, v))‖∗ = min
λ∈R

‖I ′ε((u, v))− λJ ′ε((u, v))‖X∗ε ,

where X∗
ε denotes the dual space of Xε and Jε : Xε → R is defined as

Jε((u, v)) = ‖(u, v)‖2ε − p

∫
Q(u, v). (2.4)

As we will see, it is important to compare cε with the minimax level of the
autonomous problem (1.4). The solutions of (1.4) are precisely the positive critical
points of the functional Eµ : H1(RN )×H1(RN ) → R given by

Eµ((u, v)) =
1
2

∫ (
|∇u|2 + |∇v|2

)
+

1
2

∫
µ

(
|u|2 + |v|2

)
−

∫
Q(u, v).

We also define the autonomous minimization problem

m(µ) = inf
(u,v)∈Mµ

Eµ((u, v)),

where Mµ is the Nehari manifold of Eµ, that is

Mµ =
{
(u, v) ∈ H1(RN )×H1(RN ) \ {(0, 0)} : 〈E′µ((u, v)), (u, v)〉 = 0

}
.

The number m(µ) and the manifold Mµ have properties similar to those of cε and
Nε. Moreover, Alves and Monari in [3, Theorem 4.11] showed that m(µ) is attained
by a solution (u, v) ∈ H1(RN )×H1(RN ) of the problem (1.4).

3. A compactness condition

In this section we obtain some compactness properties of the functional Iε. We
start by recalling the definition of the Palais-Smale condition. So, let E be a Banach
space, V be a C1-manifold of E and I : E → R a C1-functional. We say that I|V
satisfies the Palais-Smale condition at level c ((PS)c) if any sequence (un) ⊂ V such
that I(un) → c and ‖I ′(un)‖∗ → 0 contains a convergent subsequence.

The next lemma shows a property involving (PS)c sequences for Iε. Its proof
uses well-know arguments and will be omitted.

Lemma 3.1. Let ((un, vn)) ⊂ Xε be a (PS)c sequence for Iε. Then
(i) ((un, vn)) is bounded in Xε,
(ii) there exists (u, v) ∈ Xε such that, up to a subsequence, (un, vn) ⇀ (u, v)

weakly in Xε and I ′ε((u, v)) = 0,
(iii) ((u+

n , v
+
n )) is also a (PS)c sequence for Iε.

Moreover, the same holds if we replace Iε and Xε which Eµ and H1(RN )×H1(RN ),
respectively.

Remark 3.2. Let ((un, vn)) be a Palais-Smale sequence for Iε (or Eµ). Since we
are always interested in the existence of convergent subsequences, we may use the
above lemma to suppose that un ≥ 0 and vn ≥ 0 for all n ∈ N. This will be made
from now on.

Lemma 3.3. Let ((un, vn)) ⊂ Xε be a (PS)d sequence for Iε. Then we have either
(i) ‖(un, vn)‖ε → 0, or
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(ii) there exist a sequence (yn) ⊂ RN and constants R, γ > 0 such that

lim inf
n→∞

∫
BR(yn)

(u2
n + v2

n) ≥ γ > 0.

The above lemma follows by adapting the arguments of [3, page 171] (see also
[12, Theorem 2.1]).

Remark 3.4. For future reference we note that, if εn → 0 and ((un, vn)) ⊂ Nεn
is

a bounded sequence in H1(RN )×H1(RN ) such that Iεn((un, vn)) → d, then we can
argue along the same lines of the above proof to conclude that either ‖(un, vn)‖εn →
0 or (ii) holds. We also have a similar result if ((un, vn)) ⊂ H1(RN ) ×H1(RN ) is
a (PS)d sequence for the autonomous functional Eµ.

Lemma 3.5. Consider V∞ < ∞ and let ((un, vn)) ⊂ Xε be a (PS)d sequence
for Iε such that (un, vn) ⇀ (0, 0) weakly in Xε. If (un, vn) 6→ (0, 0) in Xε, then
d ≥ m(V∞).

Proof. Let (tn) ⊂ (0,+∞) be such that (tn(un, vn)) ⊂MV∞ . We start by proving
that lim supn→∞ tn ≤ 1. Arguing by contradiction, we suppose that there exist
λ > 0 and a subsequence, which we also denote by (tn), such that

tn ≥ 1 + λ for all n ∈ N. (3.1)

Since ((un, vn)) in bounded in Xε, 〈I ′ε((un, vn)), (un, vn)〉 → 0, that is,∫ [
|∇un|2 + |∇vn|2 + V (εx)(|un|2 + |vn|2)

]
= p

∫
Q(un, vn) + on(1).

Moreover, recalling that (tn(un, vn)) ⊂MV∞ , we get∫ [
|∇un|2 + |∇vn|2 + V∞(|un|2 + |vn|2)

]
= p(tp−2

n )
∫
Q(un, vn).

These two equalities imply

p(tp−2
n − 1)

∫
Q(un, vn) =

∫
[V∞ − V (εx)](|un|2 + |vn|2) + on(1). (3.2)

Using the condition (1.2), we have that given δ > 0, there exists R > 0 such that

V (εx) ≥ V∞ − δ for any |x| ≥ R. (3.3)

Let C > 0 be such that ‖(un, vn)‖ε ≤ C. Since ‖(un, vn)‖ε → 0 in H1(BR(0)) ×
H1(BR(0)) we can use (3.2) and (3.3) to obtain

p(tp−2
n − 1)

∫
Q(un, vn) ≤ δC + on. (3.4)

for any δ > 0. Since (un, vn) 6→ (0, 0), we may invoke Lemma 3.3 to obtain
(yn) ⊂ RN and R, γ > 0 such that∫

BR(yn)

(u2
n + v2

n) ≥ γ > 0. (3.5)

If we define (ũn(x), ṽn(x)) = (un(x+ yn), vn(x+ yn)) we may suppose that, up to
a subsequence,

(ũn, ṽn) ⇀ (u, v) weakly in Xε,

(ũn, ṽn) → (u, v) in Lp(BR(0))× Lp(BR(0)),

(ũn(x), ṽn(x)) → (u(x), v(x)) for a.e. x ∈ RN ,
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for some nonnegative functions u, v. Moreover, in view of (3.5), there exists a subset
Ω ⊂ RN with positive measure such that u, v are strictly positive in Ω.

We can use (3.1) to rewrite (3.4) as

0 < p((1 + λ)p−2 − 1)
∫

Ω

|ũn|α|ṽn|β ≤ δC, ∀δ > 0.

for any δ > 0. Letting n→∞, using Fatou’s lemma, we obtain

0 < p((1 + λ)p−2 − 1)
∫

Ω

|u|α|v|β ≤ δC.

for any δ > 0. We obtain a contradiction by taking δ → 0. Thus, lim supn→∞ tn ≤
1, as claimed.

Setting t0 = lim supn→∞ tn, we consider two complementary cases:
Case 1: t0 < 1. In this case we may suppose, without loss of generality, that
tn < 1 for all n ∈ N. Thus,

m(V∞) ≤ EV∞(tn(un, vn))− 1
2
E′V∞〈(tn(un, vn))(tn(un, vn))〉

= (
p

2
− 1)tpn

∫
Q(un, vn) ≤ (

p

2
− 1)

∫
Q(un, vn)

= Iε((un, vn))− 1
2
〈I ′ε((un, vn)), (un, vn)〉

= d+ on(1).

Taking the limit we conclude that d ≥ m(V∞).
Case 2: t0 = 1. Up to a subsequence, we may suppose that tn → 1. We first note
that

d+ on(1) ≥ m(V∞) + Iε((un, vn))− EV∞(tn(un, vn)).

Note that

Iε((un, vn))− EV∞(tn(un, vn))

=
∫

(1− t2n)
2

(|∇un|2 + |∇vn|2) +
1
2

∫
V (εx)(|un|2 + |vn|2)

− t2n
2

∫
V∞(|un|p + |vn|p)− (1− tpn)

∫
Q(un, vn).

Since (‖(un, vn)‖ε) is bounded, we have∫
(1− t2n)

2
(|∇un|2 + |∇vn|2) = on(1),

(1− tpn)
∫
Q(un, vn) = on(1).

Using the condition (1.2), we obtain

d+ on(1) ≥ m(V∞)− δC + on(1),

for any δ > 0. By taking n→∞ and δ → 0, we conclude that d ≥ m(V∞). �

We present below two compactness results which we will need for the proof of
the main theorem.

Proposition 3.6. The functional Iε satisfies the (PS)c condition at any level c <
m(V∞) if V∞ <∞ and at any level c ∈ R if V∞ = ∞.
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Proof. Let ((un, vn)) ⊂ Xε be such that Iε((un, vn)) → c and I ′ε((un, vn)) → 0 in
X∗

ε . By Lemma 3.1 the weak limit (u, v) of ((un, vn)) is such that I ′ε((u, v)) = 0.
Thus,

Iε(u, v) = Iε(u, v)−
1
2
I ′ε((u, v))(u, v) = (

p

2
− 1)

∫
Q(u, v) ≥ 0.

Let ũn = un − u and ṽn = vn − v. Arguing as in [1, Lemma 3.3] we can show that
I ′ε(ũn, ṽn) → 0 and

Iε((ũn, ṽn)) → c− Iε((u, v)) = d < m(V∞),

where we used that c < m(V∞) and Iε((u, v)) ≥ 0. Since (ũn, ṽn) ⇀ (0, 0) weakly
in Xε and d < m(V∞), it follows from Lemma 3.5 that (ũn, ṽn) → (0, 0) in Xε, i.e.,
(un, vn) → (u, v) in Xε.

The case V∞ = ∞ follows from [7, Proposition 2.4]. This concludes the proof of
the proposition. �

Proposition 3.7. The functional Iε restricted to Nε satisfies the (PS)c condition
at any level c < m(V∞) if V∞ <∞ and at any level c ∈ R if V∞ = ∞.

Proof. Let ((un, vn)) ⊂ Nε be such that Iε((un, vn)) → c and ‖I ′ε((un, vn))‖∗ → 0.
Then there exists (λn) ⊂ R such that

I ′ε((un, vn)) = λnJ
′
ε((un, vn))) + on(1), (3.6)

where Jε was defined in (2.4). Thus

0 = I ′ε((un, vn))(un, vn) = λnJ
′
ε((un, vn))(un, vn) + on(1).

Since
J ′ε((un, vn))(un, vn) = (2− p)‖(un, vn)‖2ε < 0,

and ‖(un, vn)‖2ε 6→ 0 by (2.1), we have λn = on(1). By using (3.6), we conclude
that I ′ε((un, vn)) → 0 in X∗

ε , that is, ((un, vn)) is a (PS)c sequence for Iε. The
result follows from Proposition 3.6. �

Corollary 3.8. The critical points of functional Iε on Nε are critical points of Iε
in Xε

The proof of the above corollary follows by using similar arguments explored in
the previous proposition.

4. Multiplicity of solutions

For any µ > 0, we denote by ‖ · ‖Hµ
the following norm in H1(RN )×H1(RN )

‖(u, v)‖Hµ
=

{ ∫ [
|∇u|2 + |∇v|2 + µ(|u|2 + |v|2)

]}1/2

which is well defined and equivalent to the standard norm of H1(RN )×H1(RN ).
Let (w1, w2) be a ground state solution of the problem (APV0) and consider

η : [0,∞) → R a cut-off function such that 0 ≤ η ≤ 1, η(s) = 1 if 0 ≤ s ≤ δ/2 and
η(s) = 0 if s ≥ δ. We recall that M denotes the set of global minima points of V
and define, for each y ∈M , Ψi,ε,y : RN → R by setting

Ψi,ε,y(x) = η(|εx− y|)wi

(εx− y

ε

)
, i = 1, 2.
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Let tε be the unique positive number satisfying

max
t≥0

Iε(t(Ψ1,ε,y,Ψ2,ε,y)) = Iε(tε(Ψ1,ε,y,Ψ2,ε,y)),

and define the map Φε : M → Nε in the following way

Φε(y) = Φε,y = (tε(Ψ1,ε,y,Ψ2,ε,y)). (4.1)

In view of the definition of tε we have that the above map is well defined. Moreover,
the following holds.

Lemma 4.1. limε→0 Iε(Φε,y) = m(V0), uniformly in y ∈M .

Proof. Suppose, by contradiction, that the lemma is false. Then there exist λ > 0,
(yn) ⊂M and εn → 0 such that

|Iεn
(Φεn,yn

)−m(V0)| ≥ λ > 0. (4.2)

Since 〈I ′εn
(Φεn,yn),Φεn,yn〉 = 0, we have that

‖(Ψ1,εn,yn ,Ψ2,εn,yn)‖2εn
= tp−2

εn
p

∫
Q(Ψ1,εn,yn ,Ψ2,εn,yn).

Moreover, making the change of variables z = (εnx−yn)/εn and using the Lebesgue
theorem, we can check that

lim
n→∞

‖(Ψ1,εn,yn
,Ψ2,εn,yn

)‖2εn
= ‖(w1, w2)‖2HV0

,

lim
n→∞

∫
Q(Ψ1,εn,yn

,Ψ2,εn,yn
) =

∫
Q(w1, w2).

Thus, up to a subsequence, we have tn → t0 > 0 and

‖(w1, w2)‖2HV0
= tp−2

0

∫
Q(w1, w2).

Since (w1, w2) ∈MV0 , we obtain t0 = 1. Letting n→∞, we get

lim
n→∞

Iεn
(Φεn,yn

) = EV0(w1, w2) = m(V0),

which contradicts (4.2) and proves the lemma. �

For any δ > 0, let ρ = ρδ > 0 be such that Mδ ⊂ Bρ(0). Let χ : RN → RN

be defined as χ(x) = x for |x| < ρ and χ(x) = ρx/|x| for |x| ≥ ρ. Finally, let us
consider the barycenter map βε : Nε → RN given by

βε(u, v) =
∫
χ(εx)|u(x)|2∫
|u(x)|2

+
∫
χ(εx)|v(x)|2∫
|v(x)|2

.

Lemma 4.2. limε→0 βε(Φε,y) = y uniformly for y ∈M .

Proof. Arguing by contradiction, we suppose that there exist λ > 0, (yn) ⊂M and
εn → 0 such that

|βεn
(Φεn,yn

)− yn| ≥ λ > 0. (4.3)
By using the change of variables z = (εnx− yn)/εn, we get

βε(Φεn,yn
) = yn +

∫
[χ(εnz + yn)− yn]|η(|εnz|)w1(z)|2∫

|η(|εnz|)w1(z)|2

+
∫

[χ(εnz + yn)− yn]|η(|εnz|)w2(z)|2∫
|η(|εnz|)w2(z)|2

.
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Since (yn) ⊂ M ⊂ Bρ(0) we have that χ(εnz + yn) − yn = on(1). Hence, by the
Lebesgue theorem, we conclude that

βεn
(Φεn,yn

)− yn = on(1),

which contradicts (4.3) and proves the lemma. �

Lemma 4.3 (A Compactness Lemma). Let ((un, vn)) ⊂ Mµ be a sequence satis-
fying Eµ(un, vn) → m(µ). Then,

(a) ((un, vn)) has a subsequence strongly convergent in H1(RN )×H1(RN ), or
(b) there exists a sequence (ỹn) ⊂ RN such that, up to a subsequence,

(ũn(x), ṽn(x)) = (un(x+ ỹn), vn(x+ ỹn))

converges strongly in H1(RN )×H1(RN ).
In particular, there exists a minimizer for m(µ).

Proof. Applying Ekeland’s variational principle [18, Theorem 8.5 ], we may suppose
that ((un, vn)) is a (PS)m(µ) sequence for Eµ. Thus, going to a subsequence if
necessary, we have that (un, vn) ⇀ (u, v) weakly in H1(RN )×H1(RN ) with (u, v)
being a critical point of Eµ.

If (u, v) 6= (0, 0), it is easy to check that (u, v) is a ground state solution of the
autonomous problem (1.4), that is, Eµ(u, v) = m(µ).

We now consider the complementary case (u, v) = (0, 0). In this case, by Remark
3.4, there exist a sequence (ỹn) ⊂ RN and constants R, γ > 0 such that

lim inf
n→∞

∫
BR(ỹn)

(|un|2 + |vn|2) ≥ γ > 0.

Defining ũn(x) = un(x + ỹn) and ṽn(x) = vn(x + ỹn) we have that ((ũn, ṽn)) is
also a (PS)m(µ) sequence of Eµ such that (ũn, ṽn) ⇀ (ũ, ṽ) 6= (0, 0). It follows
from the first part of the proof that, up to a subsequence, ((ũn, ṽn)) converges in
H1(RN )×H1(RN ). The lemma is proved. �

Lemma 4.4. Let εn → 0 and ((un, vn)) ⊂ Nεn
be such that Iεn

((un, vn)) → m(V0).
Then there exists a sequence (ỹn) ⊂ RN such that (ũn, ṽn)(x) = (un(x+ ỹn), vn(x+
ỹn)) has a convergent subsequence in H1(RN ) ×H1(RN ). Moreover, up to a sub-
sequence, (yn) = (εnỹn) is such that yn → y ∈M .

Proof. Arguing as in Remark 3.4, we obtain a sequence (ỹn) ⊂ RN such that

ũn ⇀ ũ in H1(RN ) and ṽn ⇀ ṽ in H1(RN ),

where ũn = un(x+ ỹn) and ṽn = vn(x+ ỹn) with ũ 6≡ 0 and ṽ 6≡ 0.
Let (tn) ⊂ (0,+∞) be such that (ûn, v̂n) = tn(ũn, ṽn) ∈ MV0 . Defining yn =

εnỹn, changing variables and recalling that (un, vn) ∈ Nεn
, we get

EV0((ûn, v̂n))

≤ 1
2

∫ [
|∇ûn|2 + |∇v̂n|2 + V (εnx+ yn)

(
|ûn|2 + |v̂n|2

)]
−

∫
Q(ûn, v̂n)

= Iεn
((ûn, v̂n))

= Iεn(tn(ũn, ṽn))

≤ Iεn
((un, vn)) = m(V0) + on(1).
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Hence

EV0((ûn, v̂n)) → m(V0).

Since (tn) is bounded, the sequence ((ûn, v̂n)) is also bounded inH1(RN )×H1(RN ),
thus for some subsequence, (ûn, v̂n) ⇀ (û, v̂) in H1(RN ) × H1(RN ). Moreover,
reasoning as in [10], up to some subsequence, still denote by (tn),we can assume that
tn → t0 > 0, and this limit implies that (û, v̂) 6≡ (0, 0). From Lemma 4.3 (ûn, v̂n) →
(û, v̂) in H1(RN )×H1(RN ) and so, (ũn, ṽn) → (ũ, ṽ) in H1(RN )×H1(RN ).

To complete the proof of the lemma, it suffices to check that (yn) = (εnỹn) has
a subsequence such that yn → y ∈ M . Indeed, suppose by contradiction that (yn)
is not bounded, then there exists a subsequence, still denoted by (yn), such that
|yn| → ∞. Considering firstly the case V∞ = ∞, the inequality∫

V (εnx+ yn)(|un|2 + vn|2)

≤
∫

(|∇un|2 +∇vn|2) +
∫
V (εnx+ yn)(|un|2 + |vn|2)

= p

∫
Q(un, vn),

together with Fatou’s Lemma imply

∞ = p lim inf
n→∞

∫
Q(un, vn),

which is an absurd, because the sequence Q(un, vn) is bounded in L1(RN ).
Now, let us consider the case V∞ < ∞. Since (ûn, v̂n) → (û, v̂) in H1(RN ) ×

H1(RN ) and V0 < V∞, we have

m(V0) =
1
2

∫
(|∇û|2 +∇v̂|2) +

1
2

∫
V0(|û|2 + |v̂|2)−

∫
Q(û, v̂)

<
1
2

∫
(|∇û|2 +∇v̂|2) +

1
2

∫
V∞(|û|2 + |v̂|2)−

∫
Q(û, v̂)

≤ lim inf
n→∞

[1
2

(∫
((|∇ûn|2 +∇v̂n|2) + V (εnx+ yn)(|ûn|2 + |v̂n|2))

)
−

∫
Q(ûn, v̂n)

]
,

or, equivalently,

m(V0) < lim inf
n→∞

[ t2n
2

(∫
((|∇ũn|2 +∇ṽn|2) + V (εnx+ yn)(|ũn|2 + |ṽn|2))

)
−

∫
Q(tnũn, tnṽn)

]
.

The last inequality implies,

m(V0) < lim inf
n→∞

Iεn
((tnun, tnvn)) ≤ lim inf

n→∞
Iεn

((un, vn)) = m(V0),

which is impossible. Hence, (yn) is bounded and, up to a subsequence, yn → y ∈
RN . If y 6∈ M , then V (y) > V0 and we obtain a contradiction arguing as above.
Thus, y ∈M and the lemma is proved. �
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Following [6], we introduce a subset of Nε which will be useful in the future. We
take a function h : [0,∞) → [0,∞) such that h(ε) → 0 as ε→ 0 and set

Σε = {(u, v) ∈ Nε : Iε((u, v)) ≤ m(V0) + h(ε)}.

Given y ∈M , we can use Lemma 4.1 to conclude that h(ε) = |Iε(Φε,y)−m(V0)| is
such that h(ε) → 0 as ε → 0. Thus, Φε,y ∈ Σε and we have that Σε 6= ∅ for any
ε > 0.

Lemma 4.5. For any δ > 0 we have that

lim
ε→0

sup
(u,v)∈Σε

dist(βε(u, v),Mδ) = 0.

Proof. Let (εn) ⊂ R be such that εn → 0. By definition, there exists ((un, vn)) ⊂
Σεn such that

dist(βεn
(un, vn),Mδ) = sup

(u,v)∈Σεn

dist(βεn
(u, v),Mδ) + on(1).

Thus, it suffices to find a sequence (yn) ⊂Mδ such that

|βεn(un, vn)− yn| = on(1). (4.4)

To obtain such sequence, we note that ((un, vn)) ⊂ Σεn ⊂ Nεn . Thus, recalling
that m(V0) ≤ cεn

, we get

m(V0) ≤ cεn ≤ Iεn((un, vn)) ≤ m(V0) + h(εn),

from which follows that Iεn((un, vn)) → m(V0). We may now invoke the Lemma
4.4 to obtain a sequence (ỹn) ⊂ RN such that (yn) = (εnỹn) ⊂Mδ for n sufficiently
large. Hence,

βε(un, vn) = yn +
∫

[χ(εnz + yn)− yn]|ũn(z)|2∫
|ũn(z)|2

+
∫

[χ(εnz + yn)− yn]|ṽn(z)|2∫
|ṽn(z)|2

,

Since εnz + yn → y ∈M , we have that βεn(un, vn) = yn + on(1) and therefore the
sequence (yn) verifies (4.4). The lemma is proved. �

We are now ready to present the proof of the multiplicity result and the technique
used here is due to Benci and Cerami [5].

Proof of Theorem 1.1. Given δ > 0 we can use Lemmas 4.1, 4.2, 4.5 and argue as
in [6, Section 6] to obtain εδ > 0 such that, for any ε ∈ (0, εδ), the diagram

M
Φε−→ Σε

β−→Mδ

is well defined and βε ◦ Φε is homotopically equivalent to the embedding ι : M →
Mδ. Moreover, using the definition of Σε and taking εδ small if necessary, we may
suppose that Iε satisfies the Palais-Smale condition in Σε. Standard Ljusternik-
Schnirelmann theory and Corollary 3.8 provide at least catΣε(Σε) solutions of the
problem (1.1). The inequality

catΣε(Σε) ≥ catMδ
(M)

follows from arguments used in [5, Lemma 4.3]. �
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