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POSITIVE SOLUTIONS OF FOUR-POINT BOUNDARY-VALUE
PROBLEMS FOR FOUR-ORDER p-LAPLACIAN DYNAMIC

EQUATIONS ON TIME SCALES

HUA SU, BAOHE WANG, ZHONGLI WEI

Abstract. We study the existence of positive solutions for the nonlinear four-
point singular boundary-value problem with p-Laplacian operator on time

scales. By using the fixed-point index theory, the existence of positive solution
and many positive solutions for nonlinear four-point singular boundary-value

problem with p-Laplacian operator are obtained.

1. Introduction

In this paper, we study the existence of positive solutions for the following non-
linear four-point singular boundary-value problem with p-Laplacian operator on
time scales

(φp(u∆))∇ + g(t)f(u(t)) = 0, t ∈ (0, T ),

αφp(u(0))− βφp(u∆(ξ)) = 0, γφp(u(T )) + δφp(u∆(η)) = 0,
(1.1)

where φp(s) is p-Laplacian operator, i.e. φp(s) = |s|p−2s, p > 1, φq = φ−1
p , 1

p + 1
q =

1, ξ, η ∈ (0, T ) is prescribed and ξ < η, g : (0, 1) → [0,∞), α > 0, β ≥ 0, γ > 0,
δ ≥ 0.

In recent years, many authors have begun to pay attention to the study of
boundary-value problems on time scales. Here, two-point boundary-value problems
have been extensively studied; see [1, 2, 3, 4, 8] and the references therein. However,
there are not many concerning the p-Laplacian problems on time scales.

A time scale T is a nonempty closed subset of R. We make the blanket assump-
tion that 0, T are point in T. By an internal (0, T ), we always mean the intersection
of the real internal (0, T ) with the given time scale, that is (0, T ) ∩T.

Sun and Li [9] considered the existence of positive solution of the following
dynamic equations on time scales:

u∆∇(t) + a(t)f(t, u(t)) = 0, t ∈ (0, T ),

βu(0)− γu∆(0) = 0, αu(η) = u(T ),
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they obtained the existence of single and multiple positive solutions of the problem
by using fixed point theorem and Leggett-Williams fixed point theorem, respec-
tively.

In the rest of the paper, we make the following assumptions:
(H1) f ∈ C([0,+∞), [0,+∞));
(H2) a(t) ∈ Cld((0, T ), [0,+∞)) and there exists t0 ∈ (0, T ), such that

a(t0) > 0, 0 <

∫ T

0

a(s)∇s < +∞.

In this paper, by constructing one integral equation which is equivalent to the
problem (1.1), we research the existence of positive solutions for nonlinear singular
boundary-value problem (1.1) when g and f satisfy some suitable conditions. Our
main tool of this paper is the following fixed point index theory.

Theorem 1.1 ([5, 6]). Suppose E is a real Banach space, K ⊂ E is a cone, let
Ωr = {u ∈ K : ‖u‖ ≤ r}. Let operator T : K : Ωr → K be completely continuous
and satisfy Tx 6= x, for all x ∈ ∂Ωr. Then

(i) If ‖Tx‖ ≤ ‖x‖, ∀x ∈ ∂Ωr, then i(T,Ωr,K) = 1;
(ii) If ‖Tx‖ ≥ ‖x‖, ∀x ∈ ∂Ωr, then i(T,Ωr,K) = 0.

This paper is organized as follows. In section 2, we present some preliminaries
and lemmas that will be used to prove our main results. In section 3, we discuss
the existence of single solution of the systems (1.1). In section 4, we study the
existence of at least two solutions of the systems (1.1). In section 5, we give two
examples as an application.

2. Preliminaries and Lemmas

For convenience, we list here the following definitions which are needed later.
A time scale T is an arbitrary nonempty closed subset of real numbers R. The

operators σ and ρ from T to T which is defined in [7],

σ(t) = inf{τ ∈ T : τ > t} ∈ T, ρ(t) = sup{τ ∈ T : τ < t} ∈ T.

are called the forward jump operator and the backward jump operator, respectively.
The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) =

t, ρ(t) < t, σ(t) = t, σ(t) > t, respectively. If T has a right scattered minimum m,
define Tk = T − {m}; otherwise set Tk = T. If T has a left scattered maximum
M , define Tk = T− {M}; otherwise set Tk = T.

Let f : T → R and t ∈ Tk (assume t is not left-scattered if t = supT), then the
delta derivative of f at the point t is defined to be the number f∆(t) (provided it
exists) with the property that for each ε > 0 there is a neighborhood U of t such
that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ |σ(t)− s|, for all s ∈ U.

Similarly, for t ∈ T (assume t is not right-scattered if t = inf T), the nabla derivative
of f at the point t is defined in [1] to be the number f∇(t) (provided it exists) with
the property that for each ε > 0 there is a neighborhood U of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ |ρ(t)− s|, for all s ∈ U.

If T = R, then x∆(t) = x∇(t) = x′(t). If T = Z, then x∆(t) = x(t+1)−x(t) is the
forward difference operator while x∇(t) = x(t)−x(t−1) is the backward difference
operator.
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A function f is left-dense continuous (i.e., ld-continuous), if f is continuous at
each left-dense point in T and its right-sided limit exists at each right-dense point
in T. It is well-known that if f is ld-continuous.

If F∇(t) = f(t), then we define the nabla integral by∫ b

a

f(t)∇t = F (b)− F (a).

If F∆(t) = f(t), then we define the delta integral by∫ b

a

f(t)∆t = F (b)− F (a).

In the rest of this article, T is closed subset of R with 0 ∈ Tk, T ∈ Tk. And
let E = Cld([0, T ], R) which is a Banach space with the maximum norm ‖u‖ =
maxt∈[0,T ] |u(t)|. And define the cone K ⊂ E by

K =
{
u ∈ E : u(t) ≥ 0, u(t) is concave function, t ∈ [0, 1]

}
.

We now state and prove several lemmas before stating our main results.

Lemma 2.1. Suppose condition (H2) holds, then there exists a constant θ ∈ (0, 1
2 )

satisfies

0 <

∫ T−θ

θ

a(t)∇t < ∞.

Furthermore, the function

A(t) =
∫ t

θ

φq

( ∫ t

s

a(t)∇t
)
∆s +

∫ T−θ

t

φq

( ∫ s

t

a(t)∇t
)
∆s, t ∈ [θ, T − θ] (2.1)

is positive continuous functions on [θ, T − θ], therefore A(t) has minimum on
[θ, 1−θ], hence we suppose that there exists L > 0 such that A(t) ≥ L, t ∈ [θ, T−θ].

Proof. At first, it is easily seen that A(t) is continuous on [θ, T − θ]. Nest, let

A1(t) =
∫ t

θ

φq

( ∫ t

s

a(s1)∇s1

)
∆s, A2(t) =

∫ T−θ

t

φq

( ∫ s

t

a(s1)∇s1

)
∆s.

Then, from condition (H2), we have the function A1(t) is strictly monotone nonde-
creasing on [θ, 1− θ] and A1(θ) = 0, the function A2(t) is strictly monotone nonin-
creasing on [θ, T − θ] and A2(T − θ) = 0, which implies L = mint∈[θ,T−θ] A(t) > 0.
The proof is complete. �

Lemma 2.2. Let u ∈ K and θ of Lemma 2.1, then

u(t) ≥ θ‖u‖, t ∈ [θ, T − θ]. (2.2)

Proof. Suppose τ = inf
{
ξ ∈ [0, T ] : supt∈[0,T ] u(t) = u(ξ)

}
. we shall discuss it from

three perspectives.
(i) τ ∈ [0, θ]. It follows from the concavity of u(t) that each point on chord

between (τ, u(τ)) and (T, u(T )) is below the graph of u(t), thus

u(t) ≥ u(τ) +
u(T )− u(τ)

T − τ
(t− τ), t ∈ [θ, T − θ],
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then

u(t) ≥ min
t∈[θ,T−θ]

[
u(τ) +

u(T )− u(τ)
T − τ

(t− τ)
]

= u(τ) +
u(T )− u(τ)

T − τ
(T − θ − τ)

=
T − θ − τ

T − τ
u(T ) +

θ

T − τ
u(τ) ≥ θu(τ),

this implies u(t) ≥ θ‖u‖, t ∈ [θ, T − θ].
(ii) τ ∈ [θ, T − θ]. If t ∈ [θ, τ ], similarly, we have

u(t) ≥ u(τ) +
u(τ)− u(0)

τ
(t− τ), t ∈ [θ, τ ],

then

u(t) ≥ min
t∈[θ,1−θ]

[
u(τ) +

u(τ)− u(0)
τ

(t− τ)
]

=
θ

τ
u(τ) +

τ − θ

τ
u(0) ≥ θu(τ),

If t ∈ [τ, T − θ], similarly, we have

u(t) ≥ u(τ) +
u(T )− u(τ)

T − τ
(t− τ), t ∈ [τ, T − θ],

then

u(t) ≥ min
t∈[θ,T−θ]

[
u(τ) +

u(T )− u(τ)
T − τ

(t− τ)
]

=
θ

T − τ
u(τ) +

T − θ − τ

T − τ
u(T ) ≥ θu(τ),

this implies u(t) ≥ θ‖u‖, t ∈ [θ, 1− θ].
(iii) τ ∈ [T − θ, T ]. similarly, we have

u(t) ≥ u(τ) +
u(τ)− u(0)

τ
(t− τ), t ∈ [θ, T − θ],

then

u(t) ≥ min
t∈[θ,1−θ]

[
u(τ) +

u(τ)− u(0)
τ

(t− τ)
]

=
θ

τ
u(τ) +

τ − θ

τ
u(0) ≥ θu(τ),

this implies u(t) ≥ θ‖u‖, t ∈ [θ, T − θ]. From the above, we know u(t) ≥ θ‖u‖,
t ∈ [θ, T − θ]. The proof is complete. �

Lemma 2.3. Suppose that conditions (H1), (H2) hold. Then u(t) is a solution of
boundary-value problems (1.1) if and only if u(t) ∈ E is a solution of the integral
equation

u(t) =


φq

(
β
α

∫ σ

ξ
a(r)f(u(r))∇r

)
+

∫ t

0
φq

( ∫ σ

s
a(r)f(u(r))∇r

)
∆s,

if 0 ≤ t ≤ σ,

φq

(
δ
γ

∫ η

θ
a(r)f(u(r))∇r

)
+

∫ T

t
φq

( ∫ s

θ
a(r)f(u(r))∇r

)
∆s,

if σ ≤ t ≤ T.

(2.3)
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Proof. Necessity. By the equation of the boundary condition we have u∆(ξ) ≥ 0,
u∆(η) ≤ 0, then there exist a constant σ ∈ [ξ, η] ⊂ (0, 1) such that u∆(σ) = 0.

First, by integrating the equation of the problems (1.1) on (θ, 1) we have,

φp(u∆(t)) = φp(u∆(σ))−
∫ t

σ

a(s)f(u)(s)∇s, (2.4)

then u∆(t) = u∆(σ)− φq

( ∫ t

σ
a(s)f(u)(s)∇s

)
, thus

u(t) = u(σ) + u∆(σ)(t− σ)−
∫ t

σ

φq

( ∫ s

σ

a(r)f(u)(r)∇r
)
∆s, (2.5)

by u∆(σ) = 0, let t = η on (2.4), we have φp(u′(η)) = −
∫ η

σ
a(s)f(u)(s)∇s. By the

equation of the boundary condition (1.1), we have φp(u(T )) = − δ
γ φp(u′(η)), then

u(T ) = φq

( δ

γ

∫ η

σ

a(s)f(u)(s)∇s
)
. (2.6)

by (2.5), (2.6) and let let t = T on (2.5), we have

u(σ) = φq

( δ

γ

∫ η

σ

a(s)f(u)(s)∇s
)

+
∫ T

σ

φq

( ∫ s

σ

a(r)f(u)(r)∇r
)
∆s, (2.7)

by (2.5) and (2.7), for t ∈ (σ, T ) we know

u(t) = φq

( δ

γ

∫ η

σ

a(s)f(u)(s)∇s
)

+
∫ T

t

φq

( ∫ s

σ

a(r)f(u)(r)∇r
)
∆s.

Similarly, for t ∈ (0, σ), by integrating the equation of problems (1.1) on (0, σ), we
have

u(t) = φq

(β

α

∫ σ

ξ

a(r)f((u)(r))∇r
)

+
∫ t

0

φq

( ∫ σ

s

a(r)f((u)(r))∇r
)
∆s.

Then (2.3) holds.
Sufficiency. Suppose that (2.3) holds. Then by (2.3), we have

u∆(t) =

φq

( ∫ σ

t
a(r)f((u)(r))∇r

)
≥ 0, 0 ≤ t ≤ σ,

−φq

( ∫ t

σ
a(r)f((u)(r))∇r

)
≤ 0, σ ≤ t ≤ T,

(2.8)

So, (φp(u∆))∇ + a(t)f(u(t)) = 0, 0 < t < 1. These imply that the first equation
of (1.1) holds. Furthermore, by letting t = 0 and t = T on (2.3) and (2.8), we
can obtain the boundary value equations of (1.1). The proof of Lemma 2.3 is
complete. �

Now, we define a mapping T : K → E given by

(T (u))(t) =


φq

(
β
α

∫ σ

ξ
a(r)f(u(r))∇r

)
+

∫ t

0
φq

( ∫ σ

s
a(r)f(u(r))∇r

)
∆s,

if 0 ≤ t ≤ σ,

φq

(
δ
γ

∫ η

σ
a(r)f(u(r))∇r

)
+

∫ T

t
φq

( ∫ s

σ
a(r)f(u(r))∇r

)
∆s,

if σ ≤ t ≤ T.

Because of

(T (u))′(t) =

{
φq

( ∫ σ

t
a(r)f((u)(r))∇r

)
≥ 0, 0 ≤ t ≤ σ,

−φq

( ∫ t

σ
a(r)f((u)(r))∇r

)
≤ 0, σ ≤ t ≤ T,
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the operator T is monotone decreasing continuous and (T (u)∆)(σ) = 0, and for any
u ∈ K, we have

(φq(T (u))∆)∇(t) = −a(t)f((u)(t), a.e. t ∈ (0, 1),

and (T (u))(σ) = ‖T (u)‖. Therefore, T (K) ⊂ K.

Lemma 2.4. T : K → K is completely continuous.

Proof. Suppose D ⊂ K is a bounded set, Let M > 0 such that ‖u‖ ≤ M , u ∈ D.
For any u ∈ D, we have

‖Tu‖ = (Tu)(σ)

= φq

(β

α

∫ σ

ξ

a(r)f(u(r))∇r
)

+
∫ σ

0

φq

( ∫ σ

s

a(r)f(u(r))∇r
)
∆s,

≤
[
φq

(β

α

∫ σ

0

a(r)∇r
)

+
∫ σ

0

φq

( ∫ σ

s

a(r)∇r
)
∆s

]
φq

(
sup
u∈D

f(u)
)
.

Then T (D) is bounded. Furthermore it is easy see by Arzela-ascoli Theorem and
Lebesgue dominated convergence Theorem that T : K → K is completely continu-
ous. The proof is complete. �

For convenience, we set θ∗ = 2/L and

θ∗ =
1(

T + φq

(
β
α

))
φq

( ∫ T

0
a(r)∇r

) .

3. The Existence of Positive Solutions

The main results of this part are the following three Theorems.

Theorem 3.1. Suppose that conditions (H1), (H2) hold. Assume that f also sat-
isfies

(A1) f(u) ≥ (mr)p−1, θr ≤ u ≤ r;
(A2) f(u) ≤ (MR)p−1, 0 ≤ u ≤ R, where m ∈ (θ∗,∞), M ∈ (0, θ∗). Then,

the boundary-value problem (1.1) has a positive solution u such that ‖u‖ is
between r and R.

Theorem 3.2. Suppose that conditions (H1), (H2) hold. Assume that f also satisfy

(A3) f∞ = λ ∈
(
( 2θ∗

θ )p−1,∞
)
;

(A4) f0 = ϕ ∈ [0, ( θ∗
4 )p−1). Then, the boundary-value problem (1.1) has a posi-

tive solution u such that ‖u‖ is between r and R.

Theorem 3.3. Suppose that conditions (H1), (H2) hold. Assume that f also satisfy

(A5) f0 = ϕ ∈
(
( 2θ∗

θ )p−1,∞
)
;

(A6) f∞ = λ ∈
[
0, ( θ∗

4 )p−1
)
.

Then, the boundary-value problem (1.1) has a positive solution u such that ‖u‖ is
between r and R.

Proof of Theorem 3.1. . Without loss of generality, we suppose that r < R. For
any u ∈ K, by Lemma 2.2, we have

u(t) ≥ θ‖u‖, t ∈ [θ, T − θ]. (3.1)
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we define two open subset Ω1 and Ω2 of E,

Ω1 = {u ∈ K : ‖u‖ < r}, Ω2 = {u ∈ K : ‖u‖ < R}

For u ∈ ∂Ω1, by (3.1), we have

r = ‖u‖ ≥ u(t) ≥ θ‖u‖ = θr, t ∈ [θ, T − θ].

For t ∈ [θ, T − θ], if (A1) hold, we shall discuss it from three perspectives.
(i) If θ ∈ [θ, T − θ], thus for u ∈ ∂Ω1, by (A1) and Lemma 2.1, we have

2‖T (u)‖ = 2(T (u))(σ)

≥
∫ θ

0

φq

( ∫ θ

s

a(r)f((u)(r))∇r
)
∆s +

∫ T

θ

φq

( ∫ s

θ

a(r)f((u)(r))∇r
)
∆s

≥ (mr)
( ∫ θ

θ

φq

( ∫ θ

s

a(r)∇r
)
∆s

)
+ (mr)

( ∫ T−θ

θ

φq

( ∫ s

θ

a(r)∇r
)
∆s

)
≥ mrA(θ) ≥ mrL

> 2r = 2‖u‖.

(ii) If θ ∈ (T − θ, T ], thus for u ∈ ∂Ω1, by (A1) and Lemma 2.1, we have

‖T (u)‖ = (T (u))(θ)

≥
∫ θ

0

φq

( ∫ θ

s

a(r)f((u)(r))∇r
)
∆s

≥
∫ T−θ

θ

φq

( ∫ T−θ

s

a(r)f((u)(r))∇r
)
∆s

≥ mr

∫ T−θ

θ

φq

( ∫ T−θ

s

a(r)∇r
)
∆s

= mrA(T − θ) ≥ mrL

> 2r > r = ‖u‖.

(iii) If θ ∈ [0, θ), thus for u ∈ ∂Ω1, by (A1) and Lemma 2.1, we have

‖T (u)‖ = (T (u))(θ)

≥
∫ T

θ

φq

( ∫ s

θ

a(r)f((u)(r))∇r
)
∆s

≥
∫ T−θ

θ

φq

( ∫ s

θ

a(r)f((u)(r))∇r
)
∆s

≥ mr

∫ T−θ

θ

φq

( ∫ s

θ

a(r)∇r
)
∆s

= mrA(θ) ≥ mrL

> 2r > r = ‖u‖.

Therefore, ‖Tu‖ ≥ ‖u‖, for all u ∈ ∂Ω1. Then by Theorem 3.1,

i(T,Ω1,K) = 0. (3.2)
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On the other hand, since u ∈ ∂Ω2, we have u(t) ≤ ‖u‖ = R. By (A2), we know

‖T (u)‖ = (T (u))(θ)

= φq

(β

α

∫ θ

ξ

a(r)f((u)(r))∇r
)

+
∫ t

0

φq

( ∫ t

0

a(r)f((u)(r))∇r
)
∆s

≤ φq

(β

α

∫ T

0

a(r)f((u)(r))∇r
)

+
∫ T

0

φq

( ∫ T

0

a(r)f((u)(r))∇r
)
∆s

=
[
T + φq(

β

α
)
]
φq

( ∫ T

0

a(r)f((u)(r))∇r
)

≤
[
T + φq(

β

α
)
]
MRφq

( ∫ T

0

a(r)∇r
)

=
[
T + φq(

β

α
)
]
MRφq

( ∫ T

0

a(r)∇r
)

≤ R = ‖u‖.

Therefore, ‖T (u)‖ ≤ ‖u‖, for all u ∈ ∂Ω2. Then by Theorem 3.1,

i(T,Ω2,K) = 1. (3.3)

Therefore, by (3.2), (3.3) and r < R, we have

i(T,Ω2 \ Ω1,K) = 1.

Then T has a fixed point u ∈ (Ω2 \Ω1). Obviously, u is positive solution of problem
(1.1) and r < ‖u‖ < R. The proof of Theorem 3.1 is complete. �

Proof of Theorem 3.2. Firstly, by f0 = limu→0
f(u)
up−1 = ϕ, for ε = ( θ∗

4 )p−1−ϕ, there
exists an adequate small positive number ρ. Since 0 ≤ u ≤ ρ, u 6= 0, we have

f(u) ≤ (ϕ + ε)up−1 ≤ (
θ∗
4

)p−1(2ρ)p−1 =
(θ∗

2
ρ
)p−1

. (3.4)

Let R = ρ, M = θ∗
2 ∈ (0, θ∗), thus by (3.4), we have

f(u) ≤ (MR)p−1, 0 ≤ u ≤ R.

Then condition (A2) holds. Next, by condition (A3),

f∞ = lim
u→0

f(u)
up−1

= λ ∈
(
(
2θ∗

θ
)p−1.∞

)
Then for ε = λ − ( 2θ∗

θ )p−1, there exists an adequate big positive number r 6= R.
Since u ≥ θr, we have

f(u) ≥ (λ− ε)up−1 ≥
(2θ∗

θ

)p−1(θr)p−1 = (2θ∗r)p−1. (3.5)

Let m = 2θ∗ > θ∗, thus by (3.5), condition (A1) holds. Therefore, by Theorem
3.1, we know that the results of Theorem 3.2 holds. The proof of Theorem 3.2 is
complete. �

Proof of Theorem 3.3. Firstly, by condition f0 = ϕ, then for ε = ϕ − ( 2θ∗

θ )p−1,
there exists an adequate small positive number r. Since 0 ≤ u ≤ r, u 6= 0, we have

f(u) ≥ (ϕ− ε)up−1 =
(2θ∗

θ

)p−1
up−1.
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Thus when θr ≤ u ≤ r, we have

f(u) ≥
(2θ∗

θ

)p−1(θr)p−1 = (2θ∗r)p−1. (3.6)

Let m = 2θ∗ > θ∗, so by (3.6), condition (A1) holds.
Next, by condition (A6): f∞ = λ, then for ε = ( θ∗

4 )p−1 − λ, there exists an
adequate big positive number ρ 6= r. Since u ≥ ρ, we have

f(u) ≤ (λ + ε)up−1 ≤
(θ∗

4
)p−1

up−1. (3.7)

If f is non-boundary, by the continuation of f on [0,∞), then exists constant R(6=
r) ≥ ρ, and a point u0 ∈ [0,∞) such that ρ ≤ u ≤ R and f(u) ≤ f(u0), 0 ≤ u ≤ R.
Thus, by ρ ≤ u0 ≤ R, we know

f(u) ≤ f(u0) ≤
(θ∗

4
)p−1

up−1
0 ≤

(θ∗
4

R
)p−1

.

Let M = θ∗/4 ∈ (0, θ∗), we have

f(u) ≤ (MR)p−1, 0 ≤ u ≤ R.

If f is boundary, we suppose f(u) ≤ M
p−1

, u ∈ [0,∞). There exists an adequate
big positive number R > 4

θ∗
M , then let M = θ∗

4 ∈ (0, θ∗), we have

f(u) ≤ M
p−1 ≤

(θ∗
4

R
)p−1 = (MR)p−1, 0 ≤ u ≤ R.

Therefore, condition (A2) holds. Therefore, by Theorem 3.1, we know that the
results of Theorem 3.3 holds. The proof of Theorem 3.3 is complete. �

4. The Existence of Many Positive Solutions

Now, we will discuss the existence of many positive solutions.

Theorem 4.1. Suppose that conditions (H1), (H2) and (A2) in Theorem 3.1 hold.
Assume that f also satisfy

(A7) f0 = +∞;
(A8) f∞ = +∞.

Then, the boundary-value problem (1.1) has at least two solutions u1, u2 such that

0 < ‖u1‖ < R < ‖u2‖.

Proof. Firstly, by condition (A7), for any M > 2
L , there exists a constant ρ∗ ∈ (0, R)

such that
f(u) ≥ (Mu)p−1, 0 < u ≤ ρ∗, u 6= 0. (4.1)

Set Ωρ∗ = {u ∈ K : ‖u‖ < ρ∗}, for any u ∈ ∂Ωρ∗ , by (4.1) and Lemma 2.2, similar
to the previous proof of Theorem 3.1, we can have from three perspectives

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Ωρ∗ .

Then by Theorem 3.1, we have

i(T,Ωρ∗ ,K) = 0. (4.2)

Next, by condition (A8), for any M > 2
L , there exists a constant ρ0 > 0 such that

f(u) ≥ (Mu)p−1, u > ρ0. (4.3)
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We choose a constant ρ∗ > max{R, ρ0
θ }, obviously, ρ∗ < R < ρ∗. Set Ωρ∗ = {u ∈

K : ‖u‖ < ρ∗}. For any u ∈ ∂Ωρ∗ , by Lemma 2.2, we have

u(t) ≥ θ‖u‖ = θρ∗ > ρ0, t ∈ [θ, 1− θ].

Then by (4.3) and also similar to the previous proof of Theorem 3.1, we can also
have from three perspectives

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Ωρ∗ .

Then by Theorem 3.1, we have

i(T,Ωρ∗ ,K) = 0. (4.4)

Finally, set ΩR = {u ∈ K : ‖u‖ < R}, For any u ∈ ∂ΩR, by (A2), Lemma 2.2 and
also similar to the latter proof of Theorem 3.1, we can also have

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂ΩR.

Then by Theorem 3.1,
i(T,ΩR,K) = 1. (4.5)

Therefore, by (4.2), (4.4), (4.5) and ρ∗ < R < ρ∗, we have

i(T,ΩR \ Ωρ∗ , k) = 1, i(T,Ωρ∗ \ ΩR, k) = −1.

Then T has fixed points u1 ∈ ΩR \Ωρ∗ , and fixed point u2 ∈ Ωρ∗ \ΩR. Obviously,
u1, u2 are all positive solutions of problem (1.1),(2.1) and 0 < ‖u1‖ < R < ‖u2‖.
The proof of Theorem 4.1 is complete. �

Theorem 4.2. Suppose that conditions (H1), (H2) and (A1) in Theorem 3.1 hold.
Assume that f also satisfy

(A9) f0 = 0;
(A10) f∞ = 0.

Then the boundary-value problem (1.1) has at least two solutions u1, u2 such that

0 < ‖u1‖ < r < ‖u2‖.

Proof. Firstly, by f0 = 0, for ε1 ∈ (0, θ∗), there exists a constant ρ∗ ∈ (0, r) such
that

f(u) ≤ (ε1u)p−1
, 0 < u ≤ ρ∗. (4.6)

Set Ωρ∗ = {u ∈ K : ‖u‖ < ρ∗}, for any u ∈ ∂Ωρ∗ , by (4.6), we have

‖Tu‖ = (Tu)(δ)

= φq

(β

α

∫ σ

ξ

a(r)f(u(r))∇r
)

+
∫ δ

0

φq

( ∫ σ

s

a(r)f(u(r))∇r
)
∆s

≤ φq

(β

α

∫ T

0

a(r)f(u(r))∇r
)

+ Tφq

( ∫ T

0

a(r)f(u(r))∇r
)

≤
(
φq(

β

α
) + T

)
ε1ρ∗φq

( ∫ T

0

a(r)∇r
)

≤ ρ∗ = ‖u‖.

i.e., ‖Tu‖ ≤ ‖u‖, for all u ∈ ∂Ωρ∗ . Then by Theorem 3.1, we have

i(T,Ωρ∗ ,K) = 1. (4.7)
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Next, let f∗(x) = max0≤u≤x f(u), note that f∗(x) is monotone increasing with
respect to x ≥ 0. Then from f∞ = 0, it is easy to see that

lim
x→∞

f∗(x)
xp−1

= 0.

Therefore, for any ε2 ∈ (0, θ∗), there exists a constant ρ∗ > r such that

f∗(x) ≤ (ε2x)p−1, x ≥ ρ∗. (4.8)

Set Ωρ∗ = {u ∈ K : ‖u‖ < ρ∗}. For any u ∈ ∂Ωρ∗ , by (4.8), we have

‖Tu‖ = (Tu)(δ)

= φq

(β

α

∫ σ

ξ

a(r)f(u(r))∇r
)

+
∫ δ

0

φq

( ∫ σ

s

a(r)f(u(r))∇r
)
∆s

≤ φq

(β

α

∫ T

0

a(r)f(u(r))∇r
)

+ Tφq

( ∫ T

0

a(r)f(u(r))∇r
)

≤ φq

(β

α

∫ T

0

a(r)f∗(ρ∗))∇r
)

+ Tφq

( ∫ T

0

a(r)f∗(ρ∗))∇r
)

≤
(
φq(

β

α
) + T

)
ε∗ρφq

( ∫ T

0

a(r)∇r
)
≤ ρ∗ = ‖u‖.

i.e., ‖Tu‖ ≤ ‖u‖, for all u ∈ ∂Ωρ∗ . Then by Theorem 3.1, we have

i(T,Ωρ∗ ,K) = 1. (4.9)

Finally, set Ωr = {u ∈ K : ‖u‖ < r}. For any u ∈ ∂Ωr, by (A1), Lemma 2.2 and
also similar to the previous proof of Theorem 3.1, we have

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Ωr.

Then by Theorem 3.1, we have

i(T,Ωr,K) = 0. (4.10)

Therefore, by (4.7), (4.9), (4.10), ρ∗ < r < ρ∗ we have

i(T,Ωr \ Ωρ∗ , k) = −1, i(T,Ωρ∗ \ Ωr, k) = 1.

Then T has fixed points u1 ∈ Ωr \ Ωρ∗ , and u2 ∈ Ωρ∗ \ Ωr. Obviously, u1, u2 are
all positive solutions of problem (1.1), (2.1) and 0 < ‖u1‖ < r < ‖u2‖. The proof
of Theorem 4.2 is complete. �

Similar to Theorem 3.1, we obtain the following Theorems.

Theorem 4.3. Suppose that conditions (H1), (H2) and (A2) in Theorem 3.1, (A4)
in Theorem 3.2 and (A6) in Theorem 3.3 hold. Then the boundary-value problem
(1.1) has at last two solutions u1, u2 such that 0 < ‖u1‖ < R < ‖u2‖.

Theorem 4.4. Suppose that conditions (H1), (H2) and (A1) in Theorem 3.1, (A3)
in Theorem 3.2 and (A5) in Theorem 3.3 hold. Then the boundary-value problem
(1.1) has at last two solutions u1, u2 such that 0 < ‖u1‖ < r < ‖u2‖.
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5. Applications

Example 5.1. Consider the following singular boundary-value problem (SBVP)
with p-Laplacian:

(φp(u∆))∇ +
1
4
t−

1
2 u1/2

[1
3

+
64e2u

120 + 7eu + e2u

]
= 0, 0 < t <

3
2
,

4φp(u(0))− φp(u∆(
1
4
)) = 0, φp(u(

3
2
)) + δφp(u∆(

1
2
)) = 0,

(5.1)

where β = γ = 1, α = 4, p = 3
2 , δ ≥ 0, ξ = 1

4 , η = 1
2 , T = 3

2 ,

a(t) =
1
4
t−1/2, f(u) = u1/2

[1
3

+
64e2u

120 + 7eu + e2u

]
.

Then obviously,

q = 3, f0 = ε = lim
u→0+

f(u)
up−1

=
5
6
,

f∞ = lim
u→∞

f(u)
up−1

= 64 +
1
3
,

∫ T

0

a(t)∇t =
√

6
4

,

so conditions (H1), (H2) hold. Next,

θ∗ =
1(

T + φq(β
α )

)
φq

( ∫ T

0
a(r)∇r

) =
32
√

6
75

,

then ε ∈ [0, ( θ∗
4 )p−1) = [0, 1.97), so conditions (A4) holds. We choose θ = 1/4, then

it is easy see by calculating that

L = min
t∈[θ,1−θ]

A(t) =
1
16

( 7
36

+
√

3
3

)
.

Because of (2θ∗

θ

)p−1 = 96×
( 1
7 + 12

√
3

)1/2
< 64 +

1
3
,

then f∞ = λ ∈
(
( 2θ∗

θ )p−1,∞
)
, so conditions (A3) holds. Then by Theorem 3.2,

SBVP (5.1) has at least a positive solution.

Example 5.2. Consider the following singular boundary-value problem (SBVP)
with p-Laplacian

(φp(u′))′ +
3

256π3
t−

1
2 (1− t)[u2 + u4] = 0, 0 < t < 1,

2φp(u(0))− φp(u′(
1
4
)) = 0, φp(u(1)) + δφp(u′(

1
2
)) = 0,

(5.2)

where β = γ = 1, α = 2, p = 4, δ ≥ 0, ξ = 1
4 , η = 1

2 , T = 1,

a(t) =
3

256π3
t−1/2(1− t),

and f(u) = u2 + u4. Then obviously,

q =
4
3
,

∫ T

0

a(t)∇t =
1

64π3
, f∞ = +∞, f0 = +∞,
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so conditions (H1), (H2), (A7), (A8) hold. Next,

φq

( ∫ T

0

a(t)∇t
)

=
1
4π

, θ∗ =
4π

1 + 3
√

2
,

we choose R = 3, M = 2. Because f(u) is monotone increasing on [0,∞), we have
f(u) ≤ f(3) = 90, for 0 ≤ u ≤ 3. Therefore, because M ∈ (0, θ∗), (MR)p−1 =
(6)3 = 216. Also we know that

f(u) ≤ (MR)p−1, 0 ≤ u ≤ 3,

so conditions (A2) holds. Then by Theorem 4.1, SBVP (5.2) has at least two
positive solutions u1, u2 and 0 < ‖u1‖ < 3 < ‖u2‖.
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