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A TOPOLOGY ON INEQUALITIES

ANNA MARIA D’ARISTOTILE, ALBERTO FIORENZA

Abstract. We consider sets of inequalities in Real Analysis and construct a

topology such that inequalities usually called “limit cases” of certain sequences
of inequalities are in fact limits - in the precise topological sense - of such

sequences. To show the generality of the results, several examples are given for

the notions introduced, and three main examples are considered: Sequences of
inequalities relating real numbers, sequences of classical Hardy’s inequalities,

and sequences of embedding inequalities for fractional Sobolev spaces. All
examples are considered along with their limit cases, and it is shown how

they can be considered as sequences of one “big” space of inequalities. As

a byproduct, we show how an abstract process to derive inequalities among
homogeneous operators can be a tool for proving inequalities. Finally, we

give some tools to compute limits of sequences of inequalities in the topology

introduced, and we exhibit new applications.

1. Introduction

In Analysis it is frequent that authors consider inequalities that are limiting cases
of sequences of inequalities, or, more generally, of a parametrized set of inequalities.
The goal of this paper is to construct a topology such that inequalities usually called
“limit cases” of certain sequences of inequalities are in fact limits - in the precise
topological sense - of such sequences of inequalities. Such kind of problem can be
studied from several points of view, because, for instance, it is possible - in a quite
general, abstract setting - to speak about inequalities in ordered sets; moreover,
even confining ourselves for instance to inequalities involving real functions, several
notions of convergence can be considered. Our point of view has to be considered
only as a first approach to the problem, which seems new.

2. The main question through examples

To give an idea of the general setting of our results, we will examine three exam-
ples of sequences of inequalities. The first one is the case of elementary numerical
inequalities. The second one will be the classical integral inequality, known as
Hardy’s inequality and, finally, we conclude with a recent version of the Sobolev
inequality for fractional Sobolev spaces.
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2.1. Inequalities relating real numbers, part I. Let (an), (bn) be sequences
of positive real numbers such that an → a > 0, bn → b > 0, and

an ≤ bn ∀n ∈ N (2.1)

From elementary Analysis we know that one can “pass to the limit” in (2.1), ob-
taining

a ≤ b (2.2)
The question here is to identify the inequalities in (2.1) with a sequence of “In-
equalities” in a suitable topological space, let’s call it (I,τ), and to show that the
limit of such sequence, in the space (I,τ), is the “Inequality” identified with (2.2).

2.2. Hardy’s inequality, part I. Let p > 1, f be a nonnegative (Lebesgue)
measurable function on (0, 1). The classical Hardy’s integral inequality states that
([17]) ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)p

dx ≤
( p

p− 1

)p
∫ 1

0

fp(x)dx (2.3)

When p → 1+ the constant (which is the best one such that (2.3) holds)
(

p
p−1

)p

blows up, and this leads immediately to conjecture that it cannot exist a constant
c > 0 such that the inequality∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx ≤ c

∫ 1

0

f(x)dx

holds for any f . This conjecture is in fact true: it is sufficient to consider the
sequence fn(x) = x−1+1/n . Nevertheless, the “limiting” case of (2.3), when p →
1+, can be expressed through the norm of the Zygmund space LlogL(0, 1):∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx ≤ C‖f‖LlogL(0,1), (2.4)

where

‖f‖LlogL(0,1) = inf
{
λ > 0 :

∫ 1

0

|f(x)
λ

| log
(
e + |f(x)

λ
|
)
dx ≤ 1

}
. (2.5)

For a recent digression on equivalent norms in LlogL see e.g. [12].
As in the previous example, setting e.g. p = 1 + 1/n in (2.3), it is natural to

ask whether in some topological space it is really true that the sequence of Hardy’s
inequalities converges to the inequality (2.4).

2.3. Sobolev inequalities for fractional Sobolev spaces, part I. Let Ω ⊂ RN

(N ≥ 1) be a bounded smooth open set, and let p ≥ 1. Consider the classical
Sobolev space W 1,p

0 (Ω), defined as the completion of C∞0 (Ω) - the set of all functions
defined on Ω which have derivatives of any order on Ω, whose supports are compact
sets - in the norm ‖∇f‖Lp(Ω). Let 0 < s < 1 and consider the fractional Sobolev
space W s,p

0 (Ω), defined (see e.g. [19, 22]) as the completion of C∞0 (Ω) in the norm

‖f‖W s,p(Ω) =
( ∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+sp
dx dy

)1/p

The following version of Sobolev inequality for fractional Sobolev spaces holds (see
e.g. [1, 26, 3]):

‖f‖Lq(Ω) ≤ c(s, p, N)‖f‖W s,p
0 (Ω) (2.6)
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where sp < N , q = Np/(N − sp). Putting formally s = 1 in (2.6) we get

‖f‖LNp/(N−p)(Ω) ≤ c(p, N)‖f‖W 1,p
0 (Ω) (2.7)

It would be natural to think the inequality (2.7) as limit, in the topological sense,
of (2.6), as s → 1 (notice that, differently from the case of Hardy’s inequality
previously discussed, inequality (2.7) is true!). The main point here is that when
s → 1 the norm in W s,p

0 (Ω) blows up. This problem has been studied in [3, 4, 22],
and solved by proving a version of (2.6) where the right dependence of the constant
c(s, p, N) with respect to s has been found. We will examine the problem of the
convergence (in the topological sense) of (2.6) to (2.7) in Section 5.3.

3. Preliminary considerations for the well-posedness of the problem

Some preliminary considerations are due because the risk is that the problem is
trivial or not well-posed.

Let us analyze, for the moment, the first example (Example 2.1). Let cn be a
sequence of positive real numbers such that cn → 0, say, cn = 1/n. Then for each
n ∈ N the inequality an ≤ bn is equivalent to ancn ≤ bncn, and our topology should
be chosen in such a way that both sequences of inequalities converge to the same
inequality. But while it is natural that the first one converges to a ≤ b, the second
one (for analogous reason) should converge to the trivial 0 ≤ 0. This conclusion
shows a first difficulty for our construction.

To avoid phenomena like the previous one, we should look carefully to the phe-
nomenon described before. Suppose that cn → c, where c is positive. In this case
no contradiction arises, because the limit of “an ≤ bn”, i.e. “a ≤ b”, is equivalent
to the limit of “ancn ≤ bncn”, i.e. “ac ≤ bc”. Therefore, in order to overcome
the difficulty, we need always to consider inequalities in which both the left hand
side and the right hand side are not zero, but positive (we will give in the sequel a
precise meaning to this sentence). Of course, starting from an ≤ bn, one can always
consider the equivalent inequality ancn ≤ bncn, but the limit inequality, in order
to be called limit inequality, must have each side different from zero. In the most
general setting, this means that we have to introduce a class of possible left hand
sides and right hand sides (the admissible operators) in which the trivial zero must
be excluded.

The comment above suggests also that if one inequality in a sequence of inequal-
ities is changed by another equivalent inequality, the limit should no change. This
means that, for a given inequality, we must consider all the equivalent inequalities,
and treat all of them in the same way. It will be natural, therefore, to consider
classes of equivalence of inequalities, that we will call “Inequalities” with capital
“I”, and speak about limits of “Inequalities”.

Consider now the second example (Example 2.2). If we start our limiting process
from inequality (2.3)∫ 1

0

( 1
x

∫ x

0

f(t)dt
)p

dx ≤
( p

p− 1

)p
∫ 1

0

fp(x)dx

or from the same inequality raised to 1/p:( ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)p

dx
)1/p

≤
(( p

p− 1

)p
∫ 1

0

fp(x)dx
)1/p

(3.1)



4 A. M. D’ARISTOTILE, A. FIORENZA EJDE-2006/85

or, say, from the same inequality raised to 2:( ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)p

dx
)2

≤
(( p

p− 1

)p
∫ 1

0

fp(x)dx
)2

(3.2)

we should expect to get the same limit, in the sense that the inequalities (possibly
different) obtained as limits (respectively) of (2.3), (3.1), (3.2) should be equivalent
each other. This gives an idea of the properties that we must require, to a couple
of inequalities, in order to be defined “equivalent”.

The plan of the rest of the paper is the following: in the next section we define
the admissible operators and we introduce a method to homogenize an inequality.
Besides being of interest in itself, this method will play a key role for one of our
main examples (Hardy’s inequality), which will be discussed later. In Section 5
we introduce a topology in inequalities, and describe the notion of convergence.
Such notion is applied to three main examples: sequences of inequalities relating
real numbers, sequences of classical Hardy’s inequalities, and sequences of embed-
ding inequalities for fractional Sobolev spaces. In Section 6 we introduce a notion
of equivalent inequalities, and we construct an abstract setting, starting from the
notions already introduced, which seems more suitable for inequalities relating ad-
missible operators. Finally, in Section 7, we compute explicitly some limits and we
see how the notion of convergence introduced in the paper can be a tool to derive
new results.

4. Homogenizing inequalities

We begin by introducing some notation. If not differently specified, Ω ⊂ RN

(N ≥ 1) will denote a bounded smooth open set. C∞0,+(Ω) will be the set of all
nonnegative functions defined on Ω which have derivatives of any order, and whose
supports are compact sets. We will denote by 0 the function whose value is zero
on all Ω.

Let O be the set of all operators (we will call them admissible)

T : C∞0,+(Ω) → [0,+∞[

such that, setting

FT,f : λ ∈ [0,+∞[ → FT,f (λ) = T (λf) ∈ [0,+∞[ ∀f ∈ C∞0,+(Ω)

it is

FT,f is continuous for all f ∈ C∞0,+(Ω) (4.1)

FT,f is strictly increasing for all f ∈ C∞0,+(Ω), f 6= 0 (4.2)

lim
λ→∞

FT,f (λ) = +∞ ∀f ∈ C∞0,+(Ω), f 6= 0 (4.3)

inf
λ>0

T
(f

λ

)
= T (0) := mT ∈ [0,+∞[ ∀f ∈ C∞0,+(Ω) (4.4)

For T , S in O we shall often write

d = d(T, S),

instead of
Tf ≤ Sf ∀f ∈ C∞0,+(Ω)
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We observe that the operators that we consider are very common in Analysis,
because many known inequalities have both sides enjoying the properties listed
above.

Before listing some examples, let us recall some definitions which will be useful
in the sequel.

A function A : [0,+∞[→ [0,+∞[ is called N-function if it is continuous, strictly
increasing, convex and such that

lim
t→0

A(t)
t

= 0, lim
t→∞

A(t)
t

= ∞.

Typical examples of N-functions are powers, with exponent greater than 1. Starting
from the notion of N-function it is possible to consider the norm

‖f‖A = ‖f‖LA(0,1) = inf
{
λ > 0 :

∫ 1

0

A
(∣∣f(x)

λ

∣∣)dx ≤ 1
}

which defines the Orlicz space LA(0, 1). If A(t) = t log(e + t), we get the norm
considered in (2.5); in this case the Orlicz space is called Zygmund space. We refer
to [12] for expressions for the norm in such spaces. For properties and further
examples of N-functions and Orlicz spaces see e.g. [1].

Let f be a (Lebesgue) measurable function defined on (0, 1), a.e. finite, and for
any Lebesgue measurable set E ⊂ (0, 1) let |E| be its measure. The decreasing
rearrangement of f is the function, denoted by f∗, defined by

f∗(t) = inf{λ > 0 : |{x ∈ (0, 1) : |f(x)| > λ}| ≤ t} t ∈ (0, 1)

This definition is usually given for a much more general class of functions, but it is
not in our purposes to give details here. For interested readers we refer to [2].

Example 4.1. Let X be a Banach space whose elements are measurable functions.
Suppose that C∞0 (Ω) ⊂ X. An example of operator in O is

T1f = ‖f‖X ∀f ∈ C∞0,+(Ω).

Example 4.2. Let p be a measurable function on Ω, whose values are in [1,∞],
and set Ω∞ = {x ∈ Ω : p(x) = ∞}. Then an example of operator in O is

T2f = inf
{
λ > 0 :

∫
Ω\Ω∞

∣∣f(x)
λ

∣∣p(x)
dx + ess sup

Ω∞

∣∣f(x)
λ

∣∣ ≤ 1
}

This operator is a special case of the previous example, in fact it is the norm in the
space Lp(·)(Ω). For details see [20].

Example 4.3. Let A : [0,+∞[→ [0,+∞[ be an N-function. Then an example of
operator in O is

T3f =
∫

Ω

A(f)dx ∀f ∈ C∞0,+(Ω).

Example 4.4. Let A1, A2, A3 : [0,+∞[→ [0,+∞[ be continuous and strictly in-
creasing functions such that Ai(+∞) = +∞, i = 1, 2, 3, and let w1, w2 be non-
negative, locally integrable functions defined respectively in Ω × Ω and Ω, such
that

w1(x, ·) 6≡ 0 ∀x ∈ Ω, w2 > 0 a.e. in Ω.

Then an example of operator in O is

T4f = A1

( ∫
Ω

A2

( ∫
Ω

A3(f(y))w1(x, y)dy
)
w2(x)dx

)
∀f ∈ C∞0,+(Ω)
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Next we consider the particular case: Ω =]0, 1[⊂ R, A1(t) = A2(t) = A3(t) = t,
w1(x, y) = χ(0,x)(y), w2(x) = 1/x, which gives the operator

T5 =
∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx ∀f ∈ C∞0,+(Ω)

Example 4.5. Let A1, A2 : [0,+∞[→ [0,+∞[ be N-functions and let X be a
Banach Function Space. Then an example of operator in O is

T6f = A1(‖A2(f)‖X) ∀f ∈ C∞0,+(Ω).

Example 4.6. Let us denote by f∗ the decreasing rearrangement of f , defined in
the interval ]0, |Ω|]. An example of operator in O is

T7f = f∗
( | supp(f)|

2
)

∀f ∈ C∞0,+(Ω)

where | supp(f)| denotes the Lebesgue measure of the support of f .

Example 4.7. Let us denote by f∗ the decreasing rearrangement of f , defined in
the interval ]0, |Ω|], let A1 be a strictly increasing, continuous function on [0, |Ω|]
such that A1(0) = 0, A1(+∞) = +∞, let A2 : [0,+∞[→ [0,+∞[ be an N-function,
and let w1, w2 be positive, locally integrable functions defined in ]0, |Ω|[. Then an
example of operator in O is

T8f =
∫ |Ω|

0

A1

( ∫ t

0

A2(f∗(s))w1(s)ds
)
w2(t)dt ∀f ∈ C∞0,+(Ω)

Operators of this type occur in Function Space Theory, see e.g. [11].

Let us now introduce a notion which will play a key role in the sequel. For each
T ∈ O we define the associate family {T (µ)} of homogeneous operators as the class
of operators T (µ) : C∞0,+(Ω) → [0,+∞[ defined by

T (µ)f = inf
{
λ > 0 : T

(f

λ

)
≤ µ

}
∀µ > mT ∀f ∈ C∞0,+(Ω)

We remark that since T ∈ O the set{
λ > 0 : T

(f

λ

)
≤ µ

}
is nonempty for all f ∈ C∞0,+(Ω) and all µ > mT , so that the definition of T (µ)f is
well posed for all µ > mT . The homogeneity of the operator T (µ) is proved by the
following result.

Proposition 4.8. If T is admissible, then for all µ > mT the operator T (µ) is
admissible and has the further property to be homogeneous (of degree 1):

T (µ)(kf) = kT (µ)f ∀f ∈ C∞0,+(Ω) ∀k ≥ 0.

Proof. First we prove the homogeneity. If k = 0 it is sufficient to see that

T (µ)0 = 0 ∀µ > mT , (4.5)

and this is trivial, because for all λ > 0 it is

T
(0
λ

)
= T0 ≤ µ ∀µ > mT .
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For k > 0 we have

T (µ)(kf) = inf
{
λ > 0 : T

(kf

λ

)
≤ µ

}
= inf

{
kλ > 0 : T

(f

λ

)
≤ µ

}
= k inf

{
λ > 0 : T

(f

λ

)
≤ µ

}
= kT (µ)(f)

Now we show that the operator T (µ) is admissible. Property (4.1) is trivial, because
the homogeneity of T (µ) implies that

λ ∈ [0,+∞[→ T (µ)(λf) ∈ [0,+∞[

is linear. In order to show properties (4.2) and (4.3), because of the homogeneity
of T (µ), it is sufficient to see that

f 6= 0 =⇒ T (µ)(f) > 0

Since T is admissible, property (4.3) is true for T , therefore there exists λ > 0 such
that T

(
f
λ

)
> µ. The conclusion is that T (µ)(f) > 0.

Finally, we observe that both sides of (4.4) are equal to zero: the left hand side
because of the homogeneity of T (µ), the right hand side because of (4.5). �

Remark 4.9. If T is homogeneous, then it is easy to show that T (µ) = (1/µ)T for
all µ > 0.

The main result of this Section is the following.

Theorem 4.10. Let T, S ∈ O. The following equivalence holds:

Tf ≤ Sf ∀f ∈ C∞0,+(Ω)

if and only if

T (µ)f ≤ S(µ)f ∀f ∈ C∞0,+(Ω) ∀µ > max(mT ,mS)

Proof. Let us assume first that

Tf ≤ Sf ∀f ∈ C∞0,+(Ω) (4.6)

and let µ > max(mT ,mS). Fix f ∈ C∞0,+(Ω) and let λ > 0 be such that S
(

f
λ

)
≤ µ.

By (4.6) the number λ is also such that T
(

f
λ

)
≤ µ; therefore,{

λ > 0 : T
(f

λ

)
≤ µ

}
⊇

{
λ > 0 : S

(f

λ

)
≤ µ

}
from which the first part of the assertion follows.

On the other hand, by contradiction, let us assume that there exists f such that

Tf > Sf

We observe that f can be always chosen different from 0. In fact, if

T0 > S0

then, fixing any f 6= 0, by property (4.1) for S in λ = 0, there exists λ sufficiently
small such that

T0 > S(λf) > S0
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and therefore, by property (4.2) for T ,

T (λf) > T0 > S(λf).

Setting f = λf we get the existence of µ > max(mT ,mS) such that

Tf > µ > Sf (4.7)

Now from the inequality Sf < µ, applying property (4.1) for S in λ = 1, we can
consider ε > 0 such that

1− ε ∈ {λ > 0 : S
(f

λ

)
≤ µ}

By our assumption

inf
{
λ > 0 : T

(f

λ

)
≤ µ

}
= T (µ)f ≤ S(µ)f ≤ 1− ε

from which Tf ≤ µ; this conclusion is in contrast with (4.7). �

In the sequel we will use the first implication proved above, which, starting from a
generic inequality, leads to a family of inequalities relating homogeneous operators.
We will say that such family of inequalities is obtained homogenizing the original
inequality.

Application 1. Let ϕ : [0,+∞[→ [0,+∞[ be increasing and such that ϕ(0) = 0,
and suppose to know that

ϕ(‖f‖X) ≤ ‖f‖Y ∀f ∈ C∞0,+(Ω), (4.8)

where X and Y are Banach Function Spaces (see [2, Def 1.3 p. 3]), such that C∞0 (Ω)
functions are dense in X and Y . Applying [2, Theorem 1.8 p. 7], one can deduce
that Y is continuously embedded into X; therefore, there exists a constant k > 0
such that

‖f‖X ≤ k‖f‖Y

We observe that it is possible to get the same conclusion homogenizing the inequal-
ity (4.8), getting also an estimate of the constant k.

In fact, by Theorem 4.10, from (4.8) we get, for all µ > 0 and f ∈ C∞0,+(Ω),

inf
{
λ > 0 : ϕ

(∥∥f

λ

∥∥
X

)
≤ µ

}
≤ inf

{
λ > 0 :

∥∥f

λ

∥∥
Y
≤ µ

}
,

inf
{
λ > 0 :

1
λ
‖f‖X ≤ sup{ξ : ϕ(ξ) ≤ µ}

}
≤ 1

µ
‖f‖Y ,

‖f‖X ≤ sup{ξ : ϕ(ξ) ≤ µ}
µ

‖f‖Y .

In conclusion:

‖f‖X ≤ inf
µ>0

sup{ξ : ϕ(ξ) ≤ µ}
µ

‖f‖Y ∀f ∈ C∞0,+(Ω)

and therefore the same inequality is true for all f , due to the assumed density of
the C∞0 (Ω) functions.
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Application 2. Let Φ be an N-function. By the well-known Jensen inequality it
is

Φ
( ∫ 1

0

f(x)dx
)
≤

∫ 1

0

Φ(f)dx ∀f ∈ C∞0,+(Ω)

Let us homogenize this inequality. For all µ > 0 and f ∈ C∞0,+(Ω) we get

inf{λ > 0 : Φ
( ∫ 1

0

f(x)
λ

dx
)
≤ µ

}
≤ inf

{
λ > 0 :

∫ 1

0

Φ
(f(x)

λ

)
dx ≤ µ

}
,

inf
{
λ > 0 :

∫ 1

0

f(x)
λ

dx ≤ Φ−1(µ)
}
≤ inf

{
λ > 0 :

∫ 1

0

(Φ
µ

)(f(x)
λ

)
dx ≤ 1

}
,

1
Φ−1(µ)

∫ 1

0

f(x)dx ≤ ‖f‖Φ/µ,∫ 1

0

f(x)dx ≤ Φ−1(µ)‖f‖Φ/µ

For µ = 1 such inequality reduces to

∫ 1

0

f(x)dx ≤ Φ−1(1)‖f‖Φ

which is the inequality which shows that the Orlicz space LΦ(0, 1) is embedded in
L1(0, 1). Notice that the constant Φ−1(1) on the right hand side is optimal (the
inequality becomes equality for f ≡ 1).

Application 3. Let us consider - as usual, we will consider functions f in C∞0,+ - a
well known inequality by Hardy and Littlewood (see [17, 241 (i) page 169], or [27,
vol.1, p.32, Theorem 13.15(iii)]):

∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx ≤ c1

∫ 1

0

f(x) log+ f(x)dx + c2 (4.9)

which is true for some c1, c2 > 0. Here log+ t = max(log t, 0). We now compute
the family of the homogenized inequalities. Since the left hand side is already
homogeneous, by Remark 4.9 it is immediate to compute the associated family of
homogeneous operators. Let us consider the right hand side:

Tf = c1

∫ 1

0

f(x) log+ f(x)dx + c2 =
∫ 1

0

[c1f(x) log+ f(x) + c2]dx

Let c3 > 0 be such that

c1t log+ t + c2 ≥ c3t log(e + t) ∀t > 0 .
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For all µ > 0 we have,

T (µ)(f) = inf
{
λ > 0 : T

(f

λ

)
≤ µ

}
= inf

{
λ > 0 :

∫ 1

0

[
c1

f(x)
λ

log+ f(x)
λ

+ c2

]
dx ≤ µ

}
≥ inf

{
λ > 0 :

∫ 1

0

c3
f(x)

λ
log

(
e +

f(x)
λ

)
dx ≤ µ

}
= inf

{
λ > 0 :

∫ 1

0

c3

µ

f(x)
λ

log
(
e +

f(x)
λ

)
dx ≤ 1

}
≥ min

(
1,

c3

µ

)
‖f‖LlogL(0,1)

where ‖f‖LlogL(0,1) is defined in (2.5). Last inequality is easily obtained considering
separately the cases c3 ≥ µ, c3 < µ. On the other hand, for all µ > c2 we have

T (µ)(f) = inf
{
λ > 0 : T

(f

λ

)
≤ µ

}
= inf

{
λ > 0 :

∫ 1

0

[
c1

f(x)
λ

log+ f(x)
λ

+ c2

]
dx ≤ µ

}
= inf

{
λ > 0 :

∫ 1

0

c1
f(x)

λ
log+ f(x)

λ
dx ≤ µ− c2

}
≤ inf

{
λ > 0 :

∫ 1

0

c1

µ− c2

f(x)
λ

log
(
e +

f(x)
λ

)
dx ≤ 1

}
≤ max

(
1,

c1

µ− c2

)
‖f‖LlogL(0,1)

In conclusion, the homogenized family of inequalities of (4.9) can be written as∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx ≤ C(µ)‖f‖LlogL(0,1) ∀µ > c2.

We observe that such inequalities are of the type (2.4).

We conclude this Section answering to a natural question: What happens if we
homogenize one of the inequalities obtained after a homogenization?

Let T, S ∈ O and fix a number µ > max(mT ,mS). If

Tf ≤ Sf ∀f ∈ C∞0,+(Ω)

by Theorem 4.10 we know that

T (µ)f ≤ S(µ)f ∀f ∈ C∞0,+(Ω)

Let us now apply again Theorem 4.10 to this inequality, and consider

T (µ)(σ)f ≤ S(µ)(σ)f ∀f ∈ C∞0,+(Ω) ∀σ > 0

By Remark 4.9 we get

1
σ

T (µ)f ≤ 1
σ

S(µ)f ∀f ∈ C∞0,+(Ω) ∀σ > 0

i.e.
T (µ)f ≤ S(µ)f ∀f ∈ C∞0,+(Ω)



EJDE-2006/85 A TOPOLOGY ON INEQUALITIES 11

The conclusion is that for each fixed µ > 0 the inequality T (µ)f ≤ S(µ)f has
a trivial family of associated homogeneous inequalities, pairwise identical to the
original one.

5. A topology on inequalities

Let us consider the set of inequalities

I0 = {d(T, S) : T, S ∈ O}

We construct a topology in I0, taking inspiration from the classical procedure used
to define the topology of pointwise convergence.

Fix d = d(T, S) ∈ I0. For any n ∈ N, for any finite subset F ⊂ C∞0,+(Ω), let us
set

Un,F (d) = {d′ = d′(T ′, S′) : |T ′f − Tf | < 1
n
∀f ∈ F, |S′f − Sf | < 1

n
∀f ∈ F}

Let N (d) be the family of subsets of I0 whose elements contain some set of the
type Un,F (d):

A ∈ N (d) ⇔ ∃n ∈ N, ∃F ⊂ C∞0,+(Ω) finite: A ⊇ Un,F (d).

We will prove the following result.

Proposition 5.1. The family {N (d)}d∈I0 satisfies the following Hausdorff’s ax-
ioms:

(i) d ∈ A for all A ∈ N (d)
(ii) A ∈ N (d) and B ∈ N (d) implies A

⋂
B ∈ N (d)

(iii) A ∈ N (d) and B ⊇ A implies B ∈ N (d)
(iv) for all A ∈ N (d) there exists B ∈ N (d) such that A ∈ N (d′) for all d′ ∈ B

After this proposition we know (see e.g. [9, Theorem 3.2, p. 67]) that there
exists one and only one topology τ for I0 such that N (d) is, for any d ∈ I0, the set
of the nbds of d.

Proof. (i) Let A ∈ N (d) and let Un,F (d) ⊆ A. Since d ∈ Un,F (d), it is d ∈ A.
(ii) Let Un,F (d) ⊆ A, Um,G(d) ⊆ B. Then Umax(n,m),F

S
G(d) ⊆ A

⋂
B.

(iii) Let A ∈ N (d) and let Un,F (d) ⊆ A. Since B ⊇ A, then B ⊇ Un,F (d); therefore
B ∈ N (d)
(iv) Let A ∈ N (d) and let Un,F (d) ⊆ A. We show that (iv) is true with B = Un,F (d):

d′ ∈ Un,F (d) ⇒ A ∈ N (d′)

To this goal we need to find some Uν,F (d′) such that Uν,F (d′) ⊂ A. Since d′ ∈
Un,F (d),

|T ′f − Tf | < 1
n

∀f ∈ F,

|S′f − Sf | < 1
n

∀f ∈ F .

Since F is finite, we may consider ν ∈ N such that

1
ν

< min
{

min
F
{ 1
n
− |T ′f − Tf |},min

F
{ 1
n
− |S′f − Sf |}

}
.
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Let d′′ ∈ Uν,F (d′). Then

|T ′′f − T ′f | < 1
ν

∀f ∈ F,

|S′′f − S′f | < 1
ν

∀f ∈ F .

We have

|T ′′f − Tf | ≤ |T ′′f − T ′f |+ |T ′f − Tf | < 1
ν

+ |T ′f − Tf | < 1
n

∀f ∈ F

and similarly |S′′f − Sf | < 1/n for all f ∈ F . Therefore, d′′ ∈ Un,F (d) ⊆ A. �

At this point we have a topology τ in I0. The notion of convergence in this
topology is, as usual,

dn → d in τ ⇔ ∀Uν,F (d) ∃n0 ∈ N : dn ∈ Uν,F (d) ∀n > n0

Set dn = dn(Tn, Sn), d = d(T, S). It is readily seen that dn → d if and only if

∀ f ∈ C∞0,+(Ω) Tnf → Tf and Snf → Sf (5.1)

Now, we go back to the examples considered in Section 2, and we show how a
suitable choice of the operators Tn, Sn, T , S gives that the considered inequalities
converge to their respective limits in the sense of (5.1).

5.1. Inequalities relating real numbers, part II. Let (an), (bn) be sequences
of positive real numbers such that an → a > 0, bn → b > 0, and

an ≤ bn ∀n ∈ N (5.2)

We cannot consider the most natural operators

Tnf ≡ an Snf ≡ bn ∀f ∈ C∞0,+(0, 1)

because they are not admissible (notice that property (4.2) does not hold). Let us
set

Tnf ≡ an sup
(0,1)

f(x) Snf ≡ bn sup
(0,1)

f(x) ∀f ∈ C∞0,+(0, 1)

Observe that now the operators Tn, Sn are admissible. The limit (in the sense of
(5.1)) of

Tnf ≤ Snf ∀f ∈ C∞0,+(0, 1)

is

Tf ≤ Sf ∀f ∈ C∞0,+(0, 1),

where

Tf ≡ a sup
(0,1)

f(x) Sf ≡ b sup
(0,1)

f(x) ∀f ∈ C∞0,+(0, 1).
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5.2. Hardy’s inequality, part II. We start with the homogenized version of
inequality (2.3):

( ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)p

dx
)1/p

≤ p

p− 1

( ∫ 1

0

fp(x)dx
)1/p

(5.3)

As a first step, fix n ∈ N and set p = 1 + 1/n. Here, again, the most natural
operators Tn, Sn, respectively equal to the left hand side and the right hand side
of (5.3) do not work, due to the blowup of the right hand side. In this case Tn and
Sn would be admissible and it seems that there cannot be a better choice.

The important consideration to be made at this point is to understand which
inequality we wish to use before passing to the limit. In fact the standard proof
of Hardy’s inequality leads to a better version of (5.3), containing one more term,
which is usually dropped. Taking into consideration such term, we are able to prove
that the limit of Hardy’s inequality when p → 1+ is inequality (2.4) (actually, even
a better one).

We stress that inequality (2.4) has an independent, classical, simple proof in [27,
vol.1, p.32, Theorem 13.15(iii)]. However, our main intention here is to prove a
limiting process and to obtain, as a byproduct, a new tool for proving inequalities.
We believe that the following procedure has an independent interest.

For completeness, we start here with the simple proof of (5.3) (as usual, we are
assuming here to deal only with C∞0,+ functions, not identically zero). We have

∫ 1

0

( 1
x

∫ x

0

f(t)dt
)p

dx =
∫ 1

0

( ∫ x

0

f(t)dt
)p

x−pdx

=
∫ 1

0

( ∫ x

0

f(t)dt
)p

d
( x1−p

1− p

)
=

[
−

x1−p
( ∫ x

0
f(t)dt

)p

p− 1

]x=1

x=0
−

∫ 1

0

( x1−p

1− p

)
d
( ∫ x

0

f(t)dt
)p

= −
( ∫ 1

0
f(t)dt

)p

p− 1
+

p

p− 1

∫ 1

0

( 1
x

∫ x

0

f(t)dt
)p−1

f(x)dx

Applying Holder’s inequality,

∫ 1

0

( 1
x

∫ x

0

f(t)dt
)p

dx

≤ −
( ∫ 1

0
f(t)dt

)p

p− 1
+

p

p− 1

[ ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)p

dx
]1−1/p( ∫ 1

0

f(t)pdt
)1/p

At this point Hardy’s inequality (5.3) is readily obtained dropping the first added

and multiplying each side by
[ ∫ 1

0

(
1
x

∫ x

0
f(t)dt

)p

dx
]1/p−1

. We now do not drop the
first added, which plays a key role when passing to the limit for p → 1+, and we
raise both sides to the power 1/p, getting an inequality relating two homogeneous
operators, which we call respectively Tnf and Snf .
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We now compute the limit of Tnf and Snf . It is immediate to see that the limit
of Tnf is exactly the left hand side of inequality (2.4). As for Snf , we have

(Snf)p = −
( ∫ 1

0
f(t)dt

)p

p− 1
+

p

p− 1

[ ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)p

dx
]1−1/p( ∫ 1

0

f(t)pdt
)1/p

=

( ∫ 1

0
f(t)pdt

)1/p −
( ∫ 1

0
f(t)dt

)p

p− 1

+
p
[ ∫ 1

0

(
1
x

∫ x

0
f(t)dt

)p
dx

]1−1/p − 1
p− 1

( ∫ 1

0

f(t)pdt
)1/p

We can now compute the limit as p → 1+, taking into account that the quotients
are in fact difference-quotients (therefore it suffices to compute derivatives in p and
set p = 1). We have:

lim
p→1+

( ∫ 1

0
f(t)pdt

)1/p −
( ∫ 1

0
f(t)dt

)p

p− 1

=
∫ 1

0

f(x) log f(x)dx− 2
( ∫ 1

0

f(t)dt
)

log
( ∫ 1

0

f(t)dt
)

and

lim
p→1+

p
[ ∫ 1

0

(
1
x

∫ x

0
f(t)dt

)p

dx
]1−1/p

− 1

p− 1
= 1 + log

( ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx

)
.

Hence the limit as p → 1+ is the inequality∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx

≤
∫ 1

0

f(x) log f(x)dx− 2
( ∫ 1

0

f(t)dt
)

log
( ∫ 1

0

f(t)dt
)

+
∫ 1

0

f(t)dt

+
( ∫ 1

0

f(t)dt
)

log
( ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx

)
We will prove that this inequality is finer than inequality (4.9), which leads to
inequality (2.4)(see Application 3 in Section 4). We consider two cases.
First case:

∫ 1

0

(
1
x

∫ x

0
f(t)dt

)
dx ≤ 1 so that the last term of our inequality is non-

positive: ( ∫ 1

0

f(t)dt
)

log
( ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx

)
≤ 0

We can drop it and observe that since

sup
t>0

−2t log t + t = M1 < ∞,

we get ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx ≤

∫ 1

0

f(x) log f(x)dx + M1

which is an inequality of the type (4.9).
Second case:

∫ 1

0

(
1
x

∫ x

0
f(t)dt

)
dx > 1. By Young’s inequality

ab ≤ (a +
1
2
) log(1 + 2a)− a +

1
2
(eb − b− 1) ∀a, b ≥ 0
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and therefore, setting

a =
∫ 1

0

f(t)dt b = log
( ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx

)
the following inequality holds( ∫ 1

0

f(t)dt
)

log
( ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx

)
≤

( ∫ 1

0

f(t)dt +
1
2

)
log

(
1 + 2

∫ 1

0

f(t)dt
)
−

∫ 1

0

f(t)dt +
1
2

∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx.

Substituting this into our limit inequality we get∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx ≤

∫ 1

0

f(x) log f(x)dx− 2
( ∫ 1

0

f(t)dt
)

log
( ∫ 1

0

f(t)dt
)

+
∫ 1

0

f(t)dt +
( ∫ 1

0

f(t)dt +
1
2

)
log

(
1 + 2

∫ 1

0

f(t)dt
)

−
∫ 1

0

f(t)dt +
1
2

∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx

i.e.,∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx ≤ 2

∫ 1

0

f(x) log f(x)dx− 4
( ∫ 1

0

f(t)dt
)

log
( ∫ 1

0

f(t)dt
)

+
(
2

∫ 1

0

f(t)dt + 1
)

log
(
1 + 2

∫ 1

0

f(t)dt
)
.

Finally, since supt>0−4t log t + (2t + 1) log(1 + 2t) = M2 < ∞, we get∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx ≤ 2

∫ 1

0

f(x) log f(x)dx + M2

which is exactly an inequality of the type (4.9).

Remark 5.2. The passages to the limit in p, similar to that one made above, are
made in [17, 6.8, p. 139], where a logarithm appears after the limiting process.
Much more recently, a similar passage to the limit has been fruitful when studying
maximal functions and related weight classes, see [24]. In both cases the limit of
the Lebesgue quasinorm in Lr has been studied when r → 0. The appearance of
the logarithm in a limit for r → 1, like in our case, has been noted and used in [23].
Finally, let us recall that the same procedure has been used to derive the LlogL
integrability of the Jacobian (see [18, (8.44) p. 186)].

5.3. Sobolev inequalities for fractional Sobolev spaces, part II. The prob-
lem of the “not natural” blowup of the norm of W s,p

0 , p < N , when s ↑ 1 has been
studied in [3, 4, 22]. The following relation, established in [4] for any p ∈ [1,∞[,
shows that the factor (1− s) permits to compute exactly the limit

lim
s↑1

(1− s)
∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+sp
dx dy = c(p)‖∇f‖p

Lp(Ω).

Here Ω stands for the cube Ω = {x ∈ RN : |xj | < 1/2, 1 ≤ i ≤ N}, and, as usual,
we restrict our attention to the functions f in C∞0,+(Ω). Therefore, when s ↑ 1, the
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limit of the embedding inequality, established in [3]

‖f‖Lq(Ω) ≤ c1(N)1/p (1− s)1/p

(N − sp)(p−1)/p
‖f‖W s,p

0 (Ω) (5.4)

where p < N , 0 < s < 1, q = Np/(N − sp), is

‖f‖LNp/(N−p)(Ω) ≤ c2(p, N)‖f‖W 1,p
0 (Ω) (5.5)

Let us set now s = 1− 1/n (n > 2) in (5.4) and consider

Tnf = ‖f‖LnNp/(nN−p)(Ω),

Snf = c1(N)1/p (1/n)1/p

(N − p/n)(p−1)/p
‖f‖

W
1−1/n,p
0 (Ω)

,

T f = ‖f‖LNp/(N−p)(Ω),

Sf = c2(p, N)‖f‖W 1,p
0 (Ω)

The limit (in the sense of (5.1)) of (5.4) is (5.5).

6. A topology on Inequalities

The topology on I0 is not satisfactory for our purposes, since, for instance, in
I0 the inequalities

Tf ≤ Sf ∀f ∈ C∞0,+(Ω),

2Tf ≤ 2Sf ∀f ∈ C∞0,+(Ω)

are different objects. We are going to build up an abstract setting in which we
identify all equivalent inequalities, and we will consider a topology on these new
objects. Of course the convergence proved in the previous Section will be preserved
in this new setting.

6.1. Equivalence of inequalities.

Definition 6.1. Let T1, S1, T2, S2 ∈ O and let the inequalities

d1 : T1f ≤ S1f ∀f ∈ C∞0,+(Ω),

d2 : T2f ≤ S2f ∀f ∈ C∞0,+(Ω)

be given. We will say that d1 is equivalent to d2, and we will write

d1 ∼ d2

if it is possible to deduce d2 from d1 or d1 from d2 by combining a finite number of
the following two operations:

• There exists W ∈ O such that T2f = T1f + Wf and S2f = S1f + Wf for
all f ∈ C∞0,+(Ω)

• There exists Φ nonnegative, strictly increasing function on [0,∞[ such that
T2f = Φ(T1f), S2f = Φ(S1f) for all f ∈ C∞0,+(Ω)

We immediately observe that such definition is well-posed, in fact it is trivial to
prove the following

Proposition 6.2. The notion of equivalence introduced in Definition 6.1 is reflex-
ive, symmetric, transitive.
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6.2. The quotient space. Definition 6.1 leads naturally to consider classes of
equivalent inequalities. Let us consider the set of inequalities

I0 = {d(T, S) : T, S ∈ O}
and in such set we consider the classes of equivalence given by ∼:

I =
I0

∼
An element of I will be denoted by [d], which is the class of all inequalities d1 ∈ I0

equivalent to the inequality d ∈ I0:

[d] = {d1 ∈ I0 : d ∼ d1}
In order to remember that [d] is not an inequality, but a class of inequalities, we will
refer to it, in the sequel, as “Inequality”. The notion of convergence of inequalities
and the introduction of a topology for inequalities have much more sense when
dealing with Inequalities rather than inequalities.

We introduce in I the topology of the quotient space I0/∼ (see e.g. [9, p. 125]):
if we call P the projection

P : I0 → I =
I0

∼
then

A ⊆ I is open in I
if and only if

P−1[A] = ∪{A : A ∈ A} is open in I0.

It is well-known that

dn → d in I0 ⇒ [dn] → [d] in I
therefore the convergence already shown in the previous Section still hold in I.

We conclude writing explicitly, in terms of the admissible operators in O, what
does it mean that [dn] → [d] in I. The following notion of convergence represents
the answer we wanted to find to our original question, settled in the Introduction.

Let [dn], [d] in I. Write d = d(T, S), dn = dn(Tn, Sn) ∀n ∈ N.
It is [dn] → [d] in I if for any d′ = d′(T ′, S′), d′ ∼ d, for any
n′ = n′(T ′, S′) ∈ N, for any F ′ = F ′(T ′, S′) ⊂ C∞0,+(Ω) finite, there
exists ν ∈ N such that for n > ν the following holds:

∀ d′n(T ′
n, S′

n) ∼ dn(Tn, Sn) ∃d′(T ′, S′) ∼ d(T, S) : d′n(T ′
n, S′

n) ∈ Un′,F ′(d′(T ′, S′))

6.3. The three main examples. We now make a few comments on the examples
discussed in Sections 5.1, 5.2, and 5.3. In the first case, the sequence of inequal-
ities was a sequence of relations between norms, therefore, the step made in this
last Section has no a relevant meaning. In the other two cases, we changed, for
convenience, the sequences of inequalities: in the case of Hardy’s inequality, we pre-
ferred to deal with (5.3) rather than (2.3); in the case of the Sobolev inequalities
for fractional Sobolev spaces, we dealt with inequality (5.4), and we used a relation
of limit involving the right norms, up to the factor (1 − s). It is trivial that such
transformations (to raise the inequalities to a certain power, and to multiply the
inequalities by a constant) can be done, giving of course equivalent inequalities.
But without this last step (the construction of a topology on Inequalities, made
in this Section 6), the trivial transformations would lead to different inequalities,
and this would be not natural for the problem we wished to study.
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7. Computing limits

In this last Section we wish to provide some tools to compute explicitly the
limits of some Inequalities. Some of them have been implicitly proved or used in
the previous Sections, others come as a byproduct from Function Space Theory. We
stress here that the novelty of the limits we are going to show is not in the difficulty
of the computations, but in the new light given by our construction: more or less
common “passages to the limit” are in fact concrete limits in a suitable topology. We
will conclude the Section giving two applications, which show how the construction
of the topology leads to the proof of new results.

7.1. Some basic tools. Given a sequence of true inequalities, it is evident that
the explicit computation of the limit must be carried out by passing through equiv-
alent inequalities (namely, the operations described in the Definition 6.1), and by
computing the limits of the left hand side and the right hand side. Therefore the
basic tools rely upon the study of sequences of admissible operators, rather than
the inequalities themselves. Moreover, we observe that since the admissible oper-
ators have real values, the standard theorems on operation of limits (for instance,
the limit of a sum, of a product, the composition with a continuous nonnegative
real function) can be applied. We are going to show some first “bricks” that can
be used in applications. For our purposes it will be sufficient to confine ourselves
to functions defined in domains having measure 1.

The first tool, which has been already used in Sections 5.2 and 5.3, is completely
standard, and it can be found in [17], n. 194, p. 143.

Proposition 7.1. Let 0 < p, p0 < ∞. Then( ∫ 1

0

f(t)pdt
)1/p

→
( ∫ 1

0

f(t)p0dt
)1/p0

as p → p0 ∀f ∈ C∞0,+(0, 1)

For completeness, we state here the case when p0 = 0 (we refer to [17, n. 187,
p. 139], and [17, Section 6.7] for the exact meaning of the limit expression).

Proposition 7.2. Let 0 < p < ∞. Then( ∫ 1

0

f(t)pdt
)1/p

→ exp
( ∫ 1

0

log f(t)dt
)

as p → 0 ∀f ∈ C∞0,+(0, 1)

Now let Ω ⊂ RN be a bounded regular domain and let 1 ≤ p < ∞. Since
by the Poincaré’s inequality the expression ‖|∇f |‖Lp(Ω) is equivalent to the norm
‖f‖W 1,p

0 (Ω) of the Sobolev space W 1,p
0 (Ω), from the Proposition 7.1 we get imme-

diately that

Proposition 7.3. Let 1 ≤ p, p0 < ∞. Then

‖f‖W 1,p
0 (Ω) → ‖f‖

W
1,p0
0 (Ω)

as p → p0 ∀f ∈ C∞0,+(0, 1)

We consider now other two convergences, for which the deduction of the limit is
less trivial. Since our goal is just to provide some tools for explicit computations,
we omit the corresponding statements for Sobolev functions. Both of them can be
deduced by a standard computation (it suffices to take into account that the limit
to be computed is of a difference-quotient). The first one is used in [18, Section
8.6], and [17, Section 6.8, p.139].
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Proposition 7.4. Let 0 < p < ∞. Then

1
p

( ∫ 1

0

f(t)pdt− 1
)
→

∫ 1

0

log f(t)dt as p → 0 ∀f ∈ C∞0,+(0, 1)

The second convergence result will be stated for the parameter p approaching p0

from the right, because the expression involved, if p > p0, is an admissible operator
in the sense of Section 4, by virtue of the classical Hölder’s inequality.

Proposition 7.5. Let 1 ≤ p0 < p < ∞. Then
‖f‖Lp(Ω) − ‖f‖Lp0 (Ω)

p− p0
→ 1

p0

(‖fp0 log f‖L1(Ω)

‖f‖p0−1
Lp0 (Ω)

− ‖f‖Lp0 (Ω) log ‖f‖Lp0 (Ω)

)
as p → p0+, for all f ∈ C∞0,+(Ω).

We conclude this subsection stating explicitly the following result, proved and
used in Section 5.2.

Proposition 7.6. Let 1 < p < ∞. Then
‖f‖Lp(Ω) − ‖f‖p

L1(Ω)

p− 1
→ ‖f log f‖L1(Ω) − 2‖f‖L1(Ω) log ‖f‖L1(Ω)

as p → 1 for all f ∈ C∞0,+(Ω).

7.2. Application 1: A refinement of the endpoint Hardy’s inequality. In
this section we highlight the following result, obtained in Section 5.2. It is an
inequality, involved in the limit of the Hardy’s inequalities when the exponent goes
to 1, which has been shown to be sharper than the classical one. In order to give a
meaning to the right hand side, we recall that the expression f(x) log f(x) (which
is an integrand in the right hand side) has to be understood equal to zero whenever
f(x) = 0.

Proposition 7.7. The following inequality holds for every nonnegative, measurable
function f on (0, 1):∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx ≤

∫ 1

0

f(x) log f(x)dx− 2
( ∫ 1

0

f(t)dt
)

log
( ∫ 1

0

f(t)dt
)

+
∫ 1

0

f(t)dt +
( ∫ 1

0

f(t)dt
)

log
( ∫ 1

0

( 1
x

∫ x

0

f(t)dt
)
dx

)
.

7.3. Application 2: Misproving inequalities without counterexamples.
We present here a new application of our limits of inequalities, in which the so-
called small Lebesgue spaces are involved. Such spaces, introduced by the second
author in [10] and then studied in [6], turned out to be useful in Sobolev-type es-
timates in borderline cases and in questions of regularity for quasilinear equations
(see [13]). Our main goal now is to discuss an inequality, close to the classical mul-
tiplicative embedding inequality for Sobolev functions (see [8], chap. IX, n. 1, p.
423), which is in a class of inequalities useful for variational problems with critical
exponent (see the recent paper [14]). A complete picture of this class of inequalities
is in the paper [15], announced in [14].

Let Ω be a bounded, open, connected, smooth set in Rn, n > 1, and let u ∈
C∞0,+(Ω). Let q, r, p be such that

1 ≤ r < n 1 < p ≤ q <
nr

n− r
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and set

a =
1
p −

1
q

1
n −

1
r + 1

p

Let us consider the inequality

(Ia) ‖u‖(q ≤ β‖|∇u|‖a
(r‖u‖

1−a
p

where the symbol ‖u‖p denotes the usual norm in the Lebesgue space Lp(Ω) and
‖ · ‖(q stands for the norm of the small Lebesgue space L(q(Ω) (see e.g. [6] and
references therein).

The problem is to know whether such inequality, when 0 ≤ a ≤ 1, is true or not,
in the sense that there exists a constant β, independent of u ∈ C∞0,+(Ω), possibly
depending on q, r, p, n, Ω, such that (Ia) holds. We begin our discussion observing
that the inequality (Ia) is false when a = 0, true when a = 1: in fact in the first
case it is p = q, and the inequality reduces to

‖u‖(p ≤ β‖u‖p (7.1)

and this is false, because the embedding Lp(Ω) ⊂ L(p(Ω) does not hold (see e.g.
[10]); on the other hand, when a = 1, the inequality reduces to

‖u‖(q ≤ β‖|∇u|‖(r
and this is true in view of the classical Sobolev embedding theorem:

‖u‖(q ≤ β1‖u‖nr/n−r ≤ β2‖|∇u|‖r ≤ β3‖|∇u|‖(r
(here βi, i = 1, 2, 3 are independent of u).

The question in the cases 0 < a < 1 will be analyzed, also in a much more
general framework, in [15], where other applications involving PDEs will be given.
Here we will show - by using a simple argument based on our limit processes - that
for a sufficiently small the inequality (Ia) cannot hold with a uniform bound β.
The importance of this fact is immediately understood after noticing that in the
classical case

‖u‖q ≤ β‖|∇u|‖a
r‖u‖1−a

p

a uniform bound for β exists (with respect to a; see e.g. [21]).
We are now ready to prove the following result.

Proposition 7.8. There exists a0, 0 < a0 < 1, such that (Ia) cannot hold with a
bound β uniform with respect to 0 ≤ a < a0.

Proof. We make an argument by contradiction. Suppose, on the contrary, that
there exists a sequence (an)n∈N, 0 < an < 1, an → 0, such that (Ian

) is true for
every n, for some β > 0. Fix

1 ≤ r < n 1 < q <
nr

n− r

and define pn by

an =
1

pn
− 1

q
1
n −

1
r + 1

pn

Set Tnu = ‖u‖(q, Snu = ‖|∇u|‖an

(r ‖u‖
1−an
p . We observe that both Tn, Sn are

admissible operators in the sense of Section 4. The limit of dn = d(Tn, Sn) is, in
the sense of (5.1), the inequality (7.1), which is false. The proposition is therefore
proven. �
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