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RESTRICTED TOTAL STABILITY AND TOTAL
ATTRACTIVITY

GIUSEPPE ZAPPALÁ

Abstract. In this paper the new concepts of restricted total stability and

total attractivity is formulated. For this purpose the classical theory of Malkin
with suitable changes and the theory of limiting equations, introduced by

Sell developed by Artstein and Andreev, are used. Significant examples are

presented.

1. Introduction

Consider the differential system

ẋ = f(t, x), x(t0) = x0 (1.1)

where f ∈ C[R+ ×Rn, Rn]. Assume that

f(t, 0) ≡ 0.

Denote the perturbation of (1.1) by

ẋ = f(t, x) + F (t, x), x(t0) = x0 (1.2)

where F ∈ C[R+ × Rn, Rn] and denote by x(t, t0, x0) a solution of (1.2) through
(t0, x0).

Now, the zero solution, x ≡ 0, of (1.1) is called uniformly totally stable [13]
if, for every ε > 0 and for each t0 ≥ 0 there exist δ1(ε) and δ2(ε) > 0 so that for all
x0 ∈ Rn with ‖x0‖ < δ1 and for all F with ‖F‖ < δ2 we obtain ‖x(t, t0, x0)‖ < ε
for t ≥ t0 where x(t, t0, x0) is a solution of (1.2).

Malkin [13] deduced, under appropriate hypotheses, the following two properties.
(1) The solution x = 0 of (A1) is uniformly totally stable (1944).
(2) For all ε > 0 there exist δ1, δ2 > 0 and for any η ∈]0, ε] there exists δ3 ∈]0, δ2]

with the property that for all t0 ≥ 0, for all x0 satisfying ‖x0‖ < δ1 and
for all F with ‖F‖ < δ3 there exists T > 0 such that ‖x(t, t0, x0)‖ < η for
t ≥ T + t0 where x(t, t0, x0) is a solution of the perturbed system (1952).

The second property brings to mind the strong stability under perturbations in
generalized dynamical systems introduced by Seibert [15].
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In the classical total stability theory of Malkin, the norm ‖F (t, x)‖ of the per-
turbing function must either be bounded by a constant [12,13] or by a suitable func-
tion depending upon ε [18]. Under either of these restrictions a solution x(t, t0, x0)
through (t0, x0) of the perturbed differential equation remains in some arbitrarily
small neighborhood of the solution x ≡ 0 for all time t ≥ 0 and x0 small. Note that
the limit of the solution limt→∞ x(t, t0, x0) is uncertain.

In this paper we replace the bound for ‖F‖ with a different criteria on F . Under
this new criteria we can define and motivate a new concept called the restricted
total stability of (1.1). We then use this concept to motivate the total attractivity
of (1.1).

The Liapunov submethods employed in this work are the families of Liapunov
functions used by Salvadori [14] and the theory of limiting equations by Sell [16],
Artstein [5,6,7] and Andreev [1,2,3,4]. The topological limit theory by Cartan-
Silov [17] is used to formulate several theorems. Finally, the theoretical results are
supported by significant examples.

2. Preliminaries and basic concepts

Let I = R+ = [0,+∞[ and I ′ =]0,+∞[. Let Rn be a real n-dimensional vector
space. Let ‖x‖ be the Euclidean norm of x for any x ∈ Rn. Following the convention
of Hahn [13], let K denote the class of all strictly increasing functions c : I → I ∈ C
which satisfy c(0) = 0. Throughout this paper let b = b(u), c = c(u), m = m(u) ∈
K, let χ = χ(t, x), U = U(t, x), V = V (t, x), W = W (t, x) ∈ C[R × Rn → R] and
G = G(t, x), Γ = Γ(t, x) be continuous vector valued functions mapping I × Rn to
Rn . With F ·G denote the scalar product of the vectors F and G in Rn. Also, let
h = h(t, x) : I × Rn → I and h0 = h0(t, x) : I × Rn → I be continuous functions
having the property that

inf
x∈Rn

h(t, x) = inf
x∈Rn

h0(t, x) = 0 for every t ∈ I.

We shall select the functions h and h0 as measures of stability. Also, assume that the
measure h0 is uniformly finer than h. This implies that there exists a constant λ > 0
and a function m ∈ K so that when h0(t, x) < λ we have h(t, x) ≤ m[h0(t, x)] <
m(λ) [9].

2.1. Topological limit theory. Consider the sets

Q(s) = {(t, x) ∈ I × Rn : 0 < h(t, x) ≤ s}.
Note that Q(s1) ⊆ Q(s) if 0 < s1 ≤ s. Also the intersection

⋂
s∈I Q(s) = ∅ where ∅

denotes the empty set. Let Q = {Q(s) : s ∈ I}. Then Q represents a Cartan-Silov
direction or, simply stated, a direction. We say that

lim
h→0

V (t, x) = 0

if and only if for every direction Q satisfying lim h(t, x) = 0 we have lim V (t, x) = 0
[17].

2.2. Differential systems. Given a differential system

ẋ = f(t, x), t ∈ I, x ∈ Rn, x(t0) = x0 (2.1)

and a continuous function G = G(t, x) with ‖G‖ > 0. Consider only the perturbed
systems

ẋ = Γ(t, x) = f(t, x) + F (t, x), x(t0) = x0 (2.2)
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such that F ·G≤ 0 where f and F are measurable functions for t ∈ I and continuous
for x ∈ Rn. Further assume that for every closed and bounded subset B ⊆ Rn there
exists a locally integrable function σB = σB(t) so that

‖f(t, x)‖ ≤ σB(t) and ‖F (t, x)‖ ≤ σB(t) when x ∈ B. (2.3)

These conditions of Caratheodory [8] ensure the existence and the general continuity
of the solutions for (2.1) and (2.2).

Finally, let [G] = {F (t, x) : F ·G ≤ 0} be the set of selected perturbations. And,
as before, let x(t) = x(t, t0, x0) be a solution of (2.2) through (t0, x0).

We introduce the following definitions of restricted total stability and attractiv-
ity.

Definition 2.1. System (2.1) is said to be restrictedly totally (h0, h)-stable
or t-stable, if, for every t0 ∈ I and ε > 0 there exists δ = δ(t0, ε) > 0 such that
for all x0 ∈ Rn with h0(t0, x0) < δ we have h(t, x(t)) < ε for all t ≥ t0 where
x(t) = x(t, t0, x0). If δ = δ(ε) we have the uniformity, in short t, u-stability.

Definition 2.2. System (2.1) is called totally (h0, h)-attractive or t-attractive,
if there exists a function set [G1] ⊆ [G] with the property that for all t0 ∈ I there
exists δ1 = δ1(t0) > 0 so that for all x0 ∈ Rn satisfying h0(t0, x0) < δ1 and for all
η > 0 and F ∈ [G1] there exists T > 0 so that h(t, x(t)) < η for t ≥ t0 + T . If δ
is a constant and T = T (η) the system (2.1) is t, u-attractive. If δ = +∞ we have
global t-attractivity.

Definition 2.3. System (2.1) is said to be restrictedly totally asymptotically
stable or t-asymptotically stable if it is t-stable and t-attractive.

Definition 2.4. The system (2.1) is said to be restrictedly totally uniformly
asymptotically stable or t, u-asymptotically stable if it is t, u-stable and t, u-
attractive.

2.3. The derivatives. Let q = q(u) be a function from R to R. Denote by qu the
derivative of q with respect to u. For a function V = V (t, x) we shall denote by V̇

or V̇1 the derivative of V computed along the solutions of the differential system
(2.1) and also denote Vt = ∂V

∂t and gradV = ∂V
∂x .

If we assume that V = V (t, x) ∈ C1 is continuous with continuous derivative,
then Malkin [13] shows that

V̇2(t, x) = V̇1(t, x) + F (t, x) · gradV (t, x) (2.4)

where V̇1 = Vt + f gradV and V̇2 is the derivative over (2.2).
Observe that if gradV = χG where χ = χ(t, x)≥ 0 and if F · G ≤ 0 we deduce

that V̇2 = V̇1 + χF ·G ≤ V̇1.
Throughout this paper, assume that lim(f1, . . . , fm) = (a1, . . . , am) if and only

if lim fj = aj for every j = 1, . . . ,m.

3. The restricted total stability

We use the Liapunov families of functions [14] in this section. The basic advan-
tage of this method is that the single function needs to satisfy less rigid require-
ments.

Theorem 3.1. Suppose that for every s > 0 there exists two functions V =
V (t, x) ∈ C1 and χ = χ(t, x) ∈ C and a constant l so that:
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(i) h(t, x) = s implies V (t, x) ≥ l > 0
(ii) limh→0 V (t, x) = 0
(iii) V̇ (t, x) ≤ 0 on Q(s)
(iv) gradV (t, x) = (χG)(t, x) on Q(s).

Then the system (2.1) is t-stable.

Proof. Given t0 ∈ I, ε > 0 and V, χ, l, by (ii) there exists d > 0 so that h(t0, x) < d
implies V (t0, x) < l. If we select x0 ∈ Rn so that h0(t0, x0) < δ = min[λ, m−1(d)]
we obtain the results h(t0, x0) ≤ m[h0(t0, x0)] < d and V (t0, x0) < l. This is due
to the assumption throughout this paper that the measure of h0 is finer than h.

From equation (2.4) and hypotheses (iii), (iv) we obtain V̇2 ≤ 0 on Q(ε). Consider
a solution x(t) = x(t, t0, x0) and the corresponding function V (t, x(t)). Suppose
that there exists t′ > t0 so that h(t′, x(t′)) = ε with h(t, x(t)) < ε for t ∈ [t0, t′[ then
we have V (t′, x(t′)) ≥ l, hence there exists τ ∈]t0, t′[ where V̇2(τ, x(τ)) > 0 which
is a contradiction. �

The following proposition ensures the t, u-stability.

Theorem 3.2. Suppose that for every s > 0 there exists two functions V =
V (t, x) ∈ C1, χ = χ(t, x) ∈ C and two constants l, L ∈ R so that:

(i) V̇ (t, x) ≤ 0 on Q(s)
(ii) h(t, x) = s implies V (t, x) ≥ l
(iii) 0 < l ≤ L
(iv) h(t, x) < s implies V (t, x) ≤ L
(v) lims→0(l, L) = 0
(vi) if 0 < s1 < s, then h(t, x) < s1 implies V (t, x) ≤ V1(t, x)
(vii) gradV (t, x) = (χG)(t, x) on Q(s).

Then system (2.1) is t, u-stable.

Proof. Given ε > 0 with V, χ, l, L; from (v) we can select ε1 ∈]0, ε[ with V1, χ1, l1, L1

so that L1 < l. For any t0 ∈ I we select x0 ∈ Rn so that h0(t0, x0) < δ(ε1) =
min[λ, m−1(ε1)]. Then the connection between the measures of h and h0 implies
h(t0, x0) ≤ m[h0(t0, x0)] < ε1 and hence V (t0, x0) ≤ V1(t0, x0) ≤ L1 < l. On the
basis of the previous theorem we obtain the proof. �

We deduce the following theorem by using a single Liapunov function.

Theorem 3.3. Suppose that there exists three functions V = V (t, x) ∈ C1, χ =
χ(t, x) ∈ C, b = b(u) ∈ K and a constant s ≥ m(λ) so that:

(i) V (t, x) ≥ b[h(t, x)] on Q(s)
(ii) limh→0 V (t, x) = 0
(iii) V̇ (t, x) ≤ 0 on Q(s)
(iv) gradV (t, x) = (χG)(t, x) on Q(s).

Then the system (2.1) is t-stable. Also, if there exists c ∈ K such that V (t, x) ≤
c[h(t, x)] on Q(s) then the system (2.1) is t, u-stable.

Proof. Given ε > 0 we obtain all the hypotheses of Theorem 3.1. In the following
formulation, fix ε > 0. If c[h(t, x)] < b(ε), then h(t, x) < c−1[b(ε)] = d and we obtain
V (t, x) < b(ε). If we consider (t0, x0) so that h0(t0, x0) < δ = min[λ, m−1(d)] we
have h(t0, x0) ≤ m[h0(t0, x0)] < d, therefore V (t0, x0) < b(ε). By applying Theorem
3.1 we have the proof. �
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Corollary 3.4. If V (t, x) ensures the stability of (2.1), with V̇ ≤ 0, then we
obtain the restricted total stability of (2.1) with respect to the systems (2.2) for
which F · gradV ≤ 0.

Corollary 3.4 is very useful in several applications.

Remark 3.5. The previous formulations of total stability theory require that V̇ <
0. Note also that, in restricted total stability, the modulus of perturbation can be
unbounded.

4. Preparation for the total attractivity in the x-bounded domains

Assume that there exists λ′ > λ so that the sets where h0(t, x) < λ′ and h(t, x) <
λ′ are bounded in x. Further, assume that there exists a compact set D ⊂ Rn so
that I ×D contains the set {(t, x) : h(t, x) ≤ m(λ)}.

We combine the limiting equations theory formulated by Sell, the convergence
of limiting equations by Artstein and the Liapunov’s second method formulated by
Andreev to study the asymptotic aspect of t-stability.

4.1. Precompactness. Let X = X(t, x) : I×Rn → Rn be a vector valued function
which is continuous in x and measurable in t. Then the precompactness conditions
for X(t, x) are [5]: For every compact set A ⊂ Rn there exist two locally L1 functions
MA(t) and NA(t) so that if x, y ∈ A and t ∈ I then

(i) ‖X(t, x)‖ ≤ MA(t)
(ii) ‖X(t, x)−X(t, y)‖ ≤ NA(t)‖x− y‖

where the functions MA(t) and NA(t) satisfy the following two criteria:
(a) For every t, ε > 0 there exists a µA = µA(ε) > 0 so that if E is a measurable

set in I, with measure less than µA, and E is contained in the interval
[t, t + 1], then

∫
E

MA(τ)dτ ≤ ε.
(b) There exists a number LA > 0 so that

∫ t+1

t
NA(τ)dτ ≤ LA for all t ∈ I.

We assume that the functions f and F satisfy the precompactness conditions. Ob-
serve that: (i) we can select the compact sets A,B, D so that A = B = D; (ii) the
above precompactness condition (ii) implies the uniqueness of solutions of (2.1).
We denote with = the family of functions from I × Rn to Rn which satisfy the
precompactness conditions.

4.2. The translates of the first kind. Given T > 0, x ∈ D, a sequence tm
diverging to +∞ and a solution x = x(t) of (2.2), the functions Γm(t, x) = Γ(t +
tm, x), xm(t) = x(t+ tm), defined for t ∈ [0, T ] and x ∈ D, are called the translates
of Γ(t, x) and x(t); obviously ẋm(t) = Γm[t, xm(t)] for m ∈ {1, 2, . . . } [16].

4.3. The convergence and the limiting equations. In this subsection, the
mathematical problem, which we face, is basically the convergence of the translates
previously considered and, particularly, to embed the functions Γm in a compact
metric space [5]. According to Artstein, the convergence in = can be induced by a
suitable metric defined on equivalence classes of =. Therefore we do not distinguish
between two elements that differ only on some t-set of measure zero [6].

Hence, under the previous hypotheses of precompactness, there exists, with re-
spect to a suitable metric, a subsequence {Γr(t, x)} of {Γm(t, x)} convergent to
g(t, x). In other words, the sequence

∫ t

0
Γr(u, x)du converges in Rn to

∫ t

0
g(u, x)du
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when t ∈ [0, T ] and x ∈ D [5]. This convergence concept is fairly weak and covers
a wide family of functions.

More clearly; let x ∈ A, t ∈ [0, T ],m = 1, 2, . . . and Gm(t, x) =
∫ t

0
Γm(u, x)du.

Then, from the precompactness conditions, one deduces the following:

(i) ‖Gm(t, x)‖ ≤
∫ t

0
‖Γm(u, x)‖ ≤ 2

∫ T

0
MA(u)du < ρ(A)

(ii) ‖Gm(t′, x′)−Gm(t′′, x′′)‖ ≤ 2‖x′ − x′′‖
∫ T

0
NA(u)du + 2‖

∫ t′′

t′
MA(u)du‖

where ρ(A) > 0 is a suitable constant. Hence we obtain, in order, the equibound-
edness and the equicontinuity for Gm(t, x).

From the Ascoli-Arzela’ theorem we deduce the uniform convergence for a suit-
able subsequence Gr of Gm. Since, on every closed interval [0, T ], the func-
tions xm(t) = x(tm) +

∫ t

0
Γm[u, xm(u)]du are equibounded and equicontinuous,

there exists a subsequence xr(t) which converges uniformly to y = y(t) where
ẏ(t) = g(t, y(t)). The functions g(t, x) and y(t) are called limiting or limit functions
with respect to tm for Γ(t, x) and x(t); we similarly define the limiting equation of
(2.2) the the following equation ẋ = g(t, x). [6,16]. Hence the limiting equations of
the nonautonomous ordinary differential equations are limit points of the translated
equations. The limit is taken in a prespecified and suitable space. The general mo-
tivation for introducing the limiting equations is that there is a strong connection
between the asymptotic behavior of the solutions of the original equation and the
solutions of the limiting equations [6].

We suppose also that the perturbation F (t, x) is integrally convergent to
zero. Then

lim
m→+∞

∫ β

α

F (τ + tm, φm(τ))dτ = 0 (4.1)

whenever {φm} is a uniformly convergent sequence of functions from [α, β] ⊂ I to
Rn and {tm} is a sequence diverging to +∞ [7]. Consequently systems (2.1) and
(2.2) have identical limiting equations [4]. This result implies that we can develop
the theory of total attractvity according to the restricted total stability.

Consider the limit set of Andreev. This set is very important and is denoted by
V −1
∞ (t, c) [2]; Now, x ∈ V −1

∞ (t, c) if there exists a sequence {tr} which diverges to
+∞ and a sequence {xr} which converges to x so that for t ≥ 0 and c ∈ R we have

lim
r→+∞

V (t + tr, xr) = c.

Let =1 denote the metric space of the scalar precompact functions U mapping
I × Rn to I. Then U ∈ =1.

5. The restricted total asymptotic stability and applications

In this section we consider theorems and examples on restricted total asymptotic
stability in bounded domains. According to Artstein [7], the Liapunov and La Salle
[10] theoretical constructions are a very powerful tool to establish the asymptotic
and the uniform asymptotic stability of ordinary differential equations. These two
methods are direct methods. A major role in our technique is played by the limiting
equations. This abstract characterization becomes practical in those cases where
the structure of the limiting equations is relatively easy.

Theorem 5.1. Under the first hypothises of Theorem 3.3 and under the hypotheses
and results of section 4, suppose that there exists U = U(t, x) ∈ =1 so that:
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(i) V̇ (t, x) ≤ −U(t, x) ≤ 0 on I ×D
(ii) limV→0 h(t, x) = 0
(iii) for every limit pair (g,W ) of (f, U) the set {(W = 0)∩ V −1

∞ (t, c)} contains
no solutions of ẋ = g(t, x), the limiting equation of (2.2), for c > 0.

Then the system (2.1) is t-asymptotically stable.

Proof. Suppose that there exists t0 ∈ I with the property that for all δ > 0 there
exists x0 ∈ D satisfying h0(t0, x0) < δ and there exists η > 0 and a sequence
{tm} diverging to +∞ so that we have h(t′m, x(t′m)) ≥ η where t′m = t0 + tm and
x(t) = x(t, t0, x0). Let v(t) = V (t, x(t)). Then by (i), we deduce

lim
t→+∞

v(t) = c ≥ 0

If c = 0 we have the proof; otherwise, when c > 0, consider for every T > 0 the
following three sequences of translates, of the first kind, and an obvious equality

Γm(t, x) = f(t + t′m, x) + F (t + t′m, x), Um(t, x) = U(t + t′m, x) (5.1)

xm(t) = x(t + t′m), ẋm(t) = Γm(t, xm(t)) (5.2)

where t ∈ [0, T ] and x ∈ D. According to the convergence of limiting equations, we
can select from Γm(t, x) and Um(t, x) two weakly converging subsequences Γr(t, x)
and Ur(t, x) which converge respectively to g(t, x) and W (t, x). We can also select
a subsequence xr(t) which converges uniformly to y(t) with ẏ(t) = g(t, y(t)).

From v̇(t) ≤ −U(t, x(t)) ≤ 0 and for r diverging to +∞ deduce successively:

v(t + t′r)− v(t′r) ≤ −
∫ t

0

Ur(u, xr(u))du ≤ 0 (5.3)

and

0 = c− c ≤ −
∫ t

0

W (u, y(u))du ≤ 0. (5.4)

Hence y(t) ∈ {(W = 0) ∩ V −1
∞ (t, c)} for c > 0 which is an absurdity. Therefore

lim
t→+∞

h(t, x(t)) = 0.

�

The set [G1], relative to the definition of attractivity given in section 2, is the
set of functions belonging to [G] which are measurable, precompact and integrally
convergent to zero.

Corollary 5.2. If V (t, x) and h(t, x) satisfy the hypotheses of Theorem 5.1 and if
there exists a function c ∈ K so that V ≤ c(h) then the system (2.1) is t, u-stable
and t-attractive.

We obtain the following theorem if we suppose also that the measure h(t, x) is
precompact.

Theorem 5.3. Under the assumptions and the results of section 4, suppose that
the system (2.1) is t, u-stable and t-attractive. Let h ∈ =1 and assume that for
every limit pair (g, l) of (f, h) the set h−1

∞ (t, 0) contains only the solutions y = y(t)
of the limiting system ẋ = g(t, x) so that l(0, y(0)) = 0 . Then the system (2.1) is
t, u-asymptotically stable.
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Proof. It is sufficient to show that the system (2.1) is uniformly attractive. Assume
the contrary. Then for all δ > 0 there exists η > 0, there exists tm ∈ I and there
exists xm ∈ D satisfying h0(tm, xm) < δ, so that for some divergent sequence {t′m}
we have h(t′′m, xm(t′′m)) ≥ η where t′′m = t′m +tm and xm(t) = x(t, tm, xm). Consider
the sequences of translates

hm(t, x) = h(t + t′′m, x), Γm(t, x) = Γ(t + t′′m, x), zm(t) = xm(t + t′′m) (5.5)

where t ∈ [0, T (> 0)], x ∈ D. We obtain

żm = Γm(t, zm(t)), zm(0) = xm(t′′m), hm(0, zm(0)) ≥ η. (5.6)

Since the functions zm(t) are equibounded and equicontinuous we can select, under
the conditions of precompactness, three converging subsequences Γr(t, x) converg-
ing to g(t, x), hr(t, x) converging to l(t, x), zr(t) converging uniformly to y(t) where
t ∈ [0, T ] and x ∈ D. Obviously

ẏ(t) = g(t, y(t)), l(0, y(0)) ≥ η > 0. (5.7)

Since the attractivity implies that

lim
r→+∞

h(t + t′′r , x(t + t′′r )) = 0 (5.8)

we deduce y(t) ∈ h−1
∞ (t, 0) which is a contradiction. See Theorem 3.3 of [19]. �

Remark 5.4. In this paper t ∈ I and x ∈ Rn, the restriction of the present theory
on a suitable subset of Rn is obvious.

We conclude this section by studying the behavior of two differential systems.
We establish the more general classes of perturbations corresponding to these two
different types of stability.

5.1. Example. Consider the differential system from I × R3 to R3

ẋ = a2(x2 − by2 + z2)x3y4 + a2(x2 + by2 + z2)xy2 + a3z = f1

ẏ = −a(x2 + by2 + z2)x2y + a(x2 − by2 + z2)x4y3 − a3z = f2

ż = −a2x + 3a3y = f3

(5.9)

where a = a(t) : I → I and b = b(t) : I → I are locally integrable functions.

Theorem 5.5. Under the previous hypotheses suppose that
(i) 0 ≤ a(t) ≤ 2
(ii) h = x2 + 3ay2 + az2 and h0 = x2 + 6y2 + 2z2

(iii) 2x2y2 ≤ 1
(iv) ȧ(t) ≤ 0.

Then the system (5.9) is t, u-stable with respect to the perturbations

F [−2xM1,−6ayM2,−2azM3]

where Mι = Mι(t, x, y, z) ≥ 0 (ι = 1, 2, 3) are arbitrary functions that satisfy,
locally, the Caratheodory conditions given in (2.3).

Proof. Let V = h and G = gradV = (2x, 6ay, 2az). Note that we obtain the
conditions of Theorem 3.3. In fact we have

(i) V ≥ h
(ii) for every direction lim h = lim V

(iii) on the set I × R3 the derivative V̇ satisfies
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= 8a2(x2 − by2 + z2)x4y4 − 4a2(x2 + by2 + z2)x2y2 + ȧ(3y2 + z2).
Also, on the set {(x, y, z) : 2x2y2 ≤ 1}, we obtain

V̇ ≤ ȧ(3y2 + z2) = −U ≤ 0. (5.10)

Observing that F · gradV ≤ 0 we have the proof. �

Theorem 5.6. Under the hypotheses of Theorem 5.5, suppose that
(i) a(t) and b(t) are bounded
(ii) Mι is integrally convergent to zero
(iii) limt→+∞{a, ȧ, b} = {α > 0,−α1< 0, β > 0}

Then the system (5.9) is t, u-asymptotically stable.

Proof. Since, for j=1,2,3, the derivatives of fj with respect to x, y, z are bounded on
every compact set D ⊂ R3, we deduce that system (5.9) is precompact. From (ii)
and (iii) the limiting system of (5.9) and the limiting system of a perturbed system
are identical and unique. Let W = lim U = α1(3y2 + z2) and l(x, y, z) = lim
h(t, x, y, z) = x2 + 3αy2 + βz2. Then on the set {W = 0} = {y = z = 0} the
limiting system of (5.9) assumes the form ẋ = 0, 0 = 0 and 0 = x. Therefore, only
the solution x = y = z = 0 of the limiting system belongs to {W = 0}. Hence,
according to Theorems 5.1 and 5.3, the result follows by observing that the set
{(W = 0) ∩ V −1

∞ (t, c)} contains no solutions of limiting equations for c > 0 and
h(t, 0, 0, 0) = l(0, 0, 0) = 0. �

We next consider the following application.

5.2. Application. Suppose that the adimensionate motion equations of a partic-
ular rigid body, with a fixed point and variable mass, are given by

Ȧp + 2Aṗ + 2(C −A)qr = 2Pzγ2 − 2f1p− 2f4qr

Ȧq + 2Aq̇ + 2(A− C)pr = −2Pzγ1 − 2f2q − 2f5pr

Ċr + 2Cṙ = 2(f4 + f5)pq − 2f3r

γ̇1 = rγ2 − qγ3, γ̇2 = pγ3 − rγ1, γ̇3 = qγ1 − pγ2, γ2 = 1− γ3.

(5.11)

where
(i) A = A(t), C = C(t) from I to I ′ are continuous functions
(ii) Ȧ = Ȧ(t), Ċ = Ċ(t), P = P (t), z = z(t) from I to R are locally integrable

functions;
(iii) for j = 1, 2, . . . , 5 the functions fj = fj(t, p, q, r, γ1, γ2) from I × R5 to R

satisfy the conditions of Caratheodory given in (2.3)
(iv) p, q, r, γ1, γ2, γ3 are the unknown variables.

We assume also that
(i) Pz < 0
(ii) There exists three constants A0, C0, P0 so that A ≥ A0 > 0, C ≥ C0 > 0,

and P ≥ P0 > 0.

Lemma 5.7. If we select the auxiliary function of Matrosov’s type [11]

V =
1
2
[A(p2 + q2) + Cr2]− 1

2
Pz(γ2

1 + γ2
2 + γ4) (5.12)

we deduce V̇ = −(f1p
2 + f2q

2 + f3r
2) = −U .
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Lemma 5.8. If f1, f2, f3 > 0 and min(A,C) > 0 then V is positive definite with
V̇ = −U ≤ 0.

During the rest of this section, we will assume that 4h = 2V = h0. Then let
G = [Ap, Aq,Cr,−Pzγ1,−Pzγ2, P z(1− γ3)] and consider only the perturbations

F = [−ApM1,−AqM2,−CrM3, pzγ1M4, P zγ2M5,−Pz(1− γ3)M6]

where Mι = Mι(t, p, . . . , γ2) : I × R5 → I for ι = 1, 2, . . . , 6 are arbitrary functions
that satisfy Caratheodory’s conditions.

Theorem 5.9. Under the hyptheses of Lemma 5.8 and the above assumptions and
the definition of the perturbation F , the system (5.11) is t, u-stable. In fact we have

(i) V ≥ h
(ii) for every direction lim 2h = lim V

(iii) V̇ ≤ 0
(iv) gradV = G
(v) F · gradV ≤ 0.

Theorem 5.10. Under the previous hypotheses suppose that
(i) limt→+∞{A,C, Ȧ, Ċ, P, f3} = {A1, C1, A2, C2, P1,Λ > 0} = d for some

constant d and where A2 = 2A1α > 0
(ii) limt→+∞{f(j=1,2,4,5), z} = {0, 0}
(iii) A,C, Ȧ, Ċ, Pz are bounded
(iv) Mι are integrally convergent to zero
(v) the functions fj and the derivatives of fj with respect to p, q, r, γ1, γ2 are

bounded on every compact set D ⊂ R5.
Then the system (5.11) is t, u-asymptotically stable.

Proof. From the previous hypotheses and assumptions we have: (i) the system
(5.11) is precompact; (ii) the limit of (5.11) and the limit of a perturbed system
are identical and unique. The mutual limiting system is

A2p + 2A1ṗ + 2(C1 −A1)qr = 0

A2q + 2A1q̇ + 2(A1 − C1)pr = 0
C2r + 2C1ṙ = −2Λr

(5.13)

and the fourth line of (5.11) is unchanged; (iii) the limit of U is W = Λr2 hence
W = 0 implies r = 0. Also, the limiting system on {W = 0} assumes the form

A2p + 2A1ṗ = 0, A2q + 2A1q̇ = 0 , 0 = 0. (5.14)

From this we deduce p = q = Ze−αt where Z is some arbitrary constant.
We complete the proof with the following considerations. Since over the solutions

of system (5.14) we have
lim

t→+∞
V = 0

then the set {(W = 0) ∩ V −1
∞ (t, c)} contains no solutions of limiting equations for

c > 0. According to Theorem 5.3, since the limit of h is l = 1
4 [A1(p2 + q2) + C1r

2],
the unique solution of (5.14) which belongs to h−1(t, 0) and satisfies l = 0, is
p = q = r = 0. Therefore the system (5.11) is t, u -asymptotically stable with
respect to the select measures. �
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5.3. Partial stability of motion. In system (5.11) suppose that:
(i) fj = fj(t, p, q, γ1, γ2) for j = 1, 2
(ii) f3 = f3(r)
(iii) f4 = f5 = 0
(iv) the third equation Ċr + 2Cṙ = −2f3r determines, as a solution for every

(t0, r0), a continuous function r = r(t, t0, r0) defined for t ≥ t0.

Theorem 5.11. Under the previous hypotheses, the system

Ȧp + 2Aṗ + 2(C −A)qr = 2Pzγ2 − 2f1p

Ȧq + 2Aq̇ + 2(A− C)pr = −2Pzγ1 − 2f2q

γ̇1 = rγ2 − qγ3, γ̇2 = pγ3 − rγ1, γ̇3 = qγ1 − pγ2, γ2 = 1− γ3

(5.15)

is t, u-stable with respect to the measures h = 1
4 [A(p2 + q2)−Pz(γ2

1 + γ2
2 + γ4)] and

h0 = 4h.

Proof. Consider the new positive definite auxiliary function

V =
1
2
[A(p2 + q2)− Pz(γ2

1 + γ2
2 + γ4)]

with the derivative V̇ = −(f1p
2 + f2q

2) = −U1 ≤ 0. Select

G = [Ap,Aq,−Pzγ1,−Pzγ2, P z(1− γ3)],

F = [−ApM1,−AqM2, pzγ1M3, pzγ2M4,−pz(1− γ3)M5]

where Mι satisfies the Caratheodory conditions. We deduce the proof using the
previous theory. �

Observe that the Matrosov motion [11] p = q = γ1 = γ2 = γ = 0 and r = r(t)
describing an irregular rotation of the body around the vertical axis of symmetry,
is t, u-stable with respect to the variables p, q, γ1, γ2, γ and to the select measures.
Under the corresponding hypotheses of Theorem 5.10 we also obtain the partial t, u
-attractivity with respect to p, q, γ1, γ2, γ of the system (5.15).

6. Assumptions for the attractivity in x-unbounded domains

Definitions and theorems. In this section we consider the case where

lim
‖x‖→+∞

h(t, x) = 0.

Hence we can consider only the solutions x = x(t) of (2.2) so that h(t, x(t)) ≤ m(λ)
for t ≥ t0. Since the hypotheses of precompactness are not sufficient to obtain the
previous convergences discussed in section 4, we assume more restrictive conditions
that ensure the uniform convergence for suitable subsequences of translates. In
this section we use the known translates of the first kind and the translates of the
second kind which are defined later. We shall assume also that the perturbation F
is integrally convergent to zero with respect to two different divergent sequences.

Throughout this section, assume that the set {x ∈ Rn : h0(t, x) < λ for some
t ∈ I} is bounded and that the system (2.1) is t-stable. Let S be the set S = {x ∈
Rn : h(t, x) < m(λ) for some t ∈ I} and assume that S is open and unbounded.
We also assume that the function f = f(t, x), satisfies the hypotheses:

‖f(t, x)‖ < M,

‖f(t′, x′)− f(t′′, x′′)‖ < L[|t′ − t′′|+ ‖x′ − x′′‖]
(6.1)
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where L,M > 0 are constants and where F = F (t, x) and U = U(t, x) satisfy
the above two criteria as well. Observe that criteria (ii) implies the uniqueness of
solutions. Let tm ∈ I and zm ∈ Rn denote two sequences so that limm→∞ tm = ∞
and limm→∞ ‖zm‖ = ∞.

Definition 6.1. We say that f2m(t, x) = f(t + tm, x + zm), F2m(t, x) = F (t +
tm, x + zm), U2m(t, x) = U(t + tm, x + zm) are the translates of second kind [3],
respectively for f, F, U when t ∈ I and x ∈ Rn.

Assume that the perturbation F (t, x) is integrally bi-convergent to zero with
respect to the sequences tm and zm i.e: for every sequence of uniformly convergent
functions φm(u) : [α, β] ⊂ I → Rn we have

lim
m→+∞

∫ β

α

F (tm + s, φm(s) + zm)ds = 0. (6.2)

Hence, as in section 4, the limit of the original system (2.1) is the same as the limit
of the perturbed system (2.2).

Theorem 6.2. Given a differential system (2.2), a constant T > 0 and a sequence
{tm} suppose there exists a solution x = x(t) so that

lim
t→+∞

‖x(t)‖ = +∞.

Let zm = x(tm), zm(t) = x(t + tm) and z2m(t) = zm(t) − zm. Then the translates
of second kind, z2m(t), are equibounded and equicontinuous for t ∈ [0, T ].

Proof. Since x(t) = x(0) +
∫ t

0
Γ(u, x(u))du for all t ∈ [0, T ] we have

z2m(t) =
∫ t

0

Γ2m(u, z2m(u))du = zm(t)− zm (6.3)

and therefore from criteria (i) given in equation (6.1) we deduce ‖z2m(t)‖ < 2MT
and ‖z2m(t′)− z2m(t′′)‖ < 2M |t′ − t′′|. �

We now give a corollary to Theorem 6.2.

Corollary 6.3. For all T > 0, there exists a compact set E ⊂ Rn so that z2m(t) ∈ E
for 0 ≤ t ≤ T and there exists a subsequence z2r(t), defined on [0, T ] which converges
uniformly to φ(t) [or y2(t)]. This subsequence converges to the limit of the second
kind of the solution x(t).

Theorem 6.4. Suppose that x(t) and E are respectively the solution and the com-
pact set defined in Corollary 6.3. Then the sequence of functions G2m(t, x) =∫ t

0
Γ2m(u, x)du, where 0 ≤ t ≤ T, x ∈ E,m = 1, 2, . . . is equibounded and equicon-

tinuous.

Proof. From the two criteria given in equation (6.1) we deduce that ‖G2m(t, x)‖ <
2MT , and ‖G2m(t′, x′)−G2m(t′′, x′′)‖ < ε when |t′−t′′| < ε

4M and ‖x′−x′′‖ < ε
4LT .

Obviously the sequence of functions W2m(t, x) =
∫ t

0
U2m(u, x)du are also equi-

bounded and equicontinuous. Consequently there exists two subsequences G2r(t, x)
and W2r(t, x) which are uniformly convergent respectively to

∫ t

0
g2(u, x)du and to∫ t

0
W2(u, x)du. This implies that the functions g2 and W2 are limiting functions of

second kind for Γ and U .
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Observe that from ẋ(t) = f(t, x(t)) + F (t, x(t)) for 0 ≤ t ≤ T we deduce

ż2m(t) = f2m(t, z2m(t)) + F2m(t, z2m(t)) (6.4)

and hence φ̇(t) = g2(t, φ(t)) for 0 ≤ t ≤ T . �

Theorems 6.2 and 6.4 are, respectively, the analog of Lemmas 1 and 2 of [3]. We
denote by g1(t, x), y1(t) and W1(t, x) respectively the limits of the first kind for
f(t, x), x(t) and U(t, x) with regard to tm.

Definition 6.5. Given V = V (t, x), t ≥ 0 and a constant c ∈ R we define and
denote by V −2

∞ (t, c) the set {x ∈ Rn} such that there exists two sequences {tm},
{zm} for which

lim
m→+∞

V (t + tm, x + zm) = lim
m→+∞

V2m(t, x) = c.

The previous definition recalls the definition of N2(t, c) given in [3].

Theorem 6.6. Under the first hypotheses of Theorem 3.3, suppose that
(i) V̇ (t, x) ≤ −U(t, x) ≤ 0 on S
(ii) limV→0 h = 0
(iii) j = 1, 2
(iv) for every pair (gj ,Wj) limit of (f, U) the set {(Wj = 0)∩V −j

∞ (t, c)} contains
no solutions of the limiting system ẋ = gj(t, x) for every c > 0.

Then the system (2.1) is t-asymptotically stable.

Proof. The system (2.1) is t-stable so suppose that t0 ∈ I exists so that for all
δ > 0 there exists an η > 0 and there exists x0 ∈ Rn satisfying h0(t0, x0) < δ and
there exists a sequence tm so that we have h(t′m, x(t′m)) ≥ η where t′m = t0 + tm
and x(t) = x(t, t0, x0). Let v(t) = V (t, x(t)). Then, since V̇ ≤ 0, we have

lim
t→+∞

v(t) = c ≥ 0

and if c = 0 we have the proof. If c > 0 with ‖x(t)‖ bounded we proceed as
in Theorem 5.1. If c > 0 and sup{x2(t)} = +∞ then consider the sequences
x(t′m) = zm, x(t + t′m) = zm(t), z2m(t) = zm(t) − zm and the corresponding
translates of the second kind Γ2m(t, x), U2m(t, x) where t ∈ [0, T ] and x ∈ E. The
set E is defined in Corollary 6.3. We have

ż2m(t) = Γ2m(t, z2m(t)). (6.5)

From the previous theorem and their assumptions there exist three subsequences
Γ2r(t, x) converging to g2(t, x), U2r(t, x) converging to W2(t, x), and z2r(t) con-
verging uniformly to φ(t) with φ̇(t) = g2(t, φ(t)) on [0, T ]. From (i) we deduce

v(t + t′m)− v(t′m) ≤ −
∫ t′m+t

t′m

U(u, x(u))du ≤ 0. (6.6)

With the known procedure we obtain W2(t, φ(t)) = 0 ∀t ∈ [0, T ] and also φ(t) ∈
V −2
∞ (t, c) with c > 0, which is a contradiction. �

Theorem 6.7. Under the hypotheses of Theorem 6.6, suppose that:
(i) h satisfies the assumptions of Section 6
(ii) the system (2.1) is t, u-stable
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(iii) for every limiting pair (gj , lj) of (f, h) the set {h−j
∞ (t, 0)} contains only the

solutions yj = yj(t) of the limiting system ẋ = gi(t, x) so that lj(0, yj(0)) =
0 when j = 1 and 2.

Then the system (2.1) is t, u-asymptotically stable.

This theorem brings to mind Theorem 5.3. In fact, given T > 0 and t ∈ [0, T ],
if we let

xm(t) = x(t, tm, xm), zm(t) = xm(t + t′′m),

zm = zm(0) = xm(t′′m), z2m(t) = zm(t)− zm

we find that the functions z2m(t) are equibounded and equicontinuous in [0, T ], and
so it is sufficient to establish the proof.

We proceed with an example.

6.1. Example. Consider the differential system from I × R3 to R3

u̇ = −qqu + [(1− µ)q − r

p
]v

v̇ = [1− (1− µ)
pq

r
]qqu + [

1
2
(
ṗ

p
− ṙ

r
)− r

p
]v − qrz

ż =
r2q

p
v − ν2z

(6.7)

and the vector G = [qqu, r
pv, z]. In system (6.7) u, v, z are the unknown variables.

The function q = q(u) : R → R belongs to C2; µ = µ(t, u, v, z) : I×R3 → I satisfies
the Caratheodory conditions given in equation (2.3); p = p(t), r = r(t) : I → R
are continuous with locally integrable derivatives ṗ(t), ṙ(t); also ν = ν(t) : I → R
is locally integrable. Relatively to p and r assume p1 ≥ p(t) ≥ p0 > 0, r1 ≥ r(t) ≥
r0 > 0 with p0, p1 and r0, r1 as constants.

Theorem 6.8. Suppose that
(i) q(u)qu(u) 6= 0 for u ∈ R
(ii) 0 < r

p ≤ 2 for t ≥ 0
(iii) h = q2 + r

pv2 + z2, h0 = q2 + 2v2 + z2.

Then the system (6.7) is t-stable with respect to the following perturbations:

F = [−qquM1, −r

p
vM2, −zM3] (6.8)

where Mι = Mι(t, u, v, z) : I × R3 → I are arbitrary functions for ι = 1, 2, 3 that
satisfy the conditions given in equation (2.3). If the ratio of r to p is constant then
the system (6.7) is (t, u)-stable.

Proof. If we select the auxiliary function

V = q2 +
r

p
v2 + z2 = h

we obtain

V̇ = −2[(qqu)2 + (
r

p
)2v2 + ν2z2] ≤ 0; gradV = 2G. (6.9)

Now the proof follows by Theorem 3.3, since limh→0 V = 0 and vice versa and since
F · gradV ≤ 0. �
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Observe that the sets where h and ‖f‖ < σ, for every σ > 0, are bounded in v, z
and unbounded in u.

Theorem 6.9. Under the hypothesis of Theorem 6.8 suppose that
(i) limu→+∞q(u) = 0 and

lim
t→+∞

{(1− µ),
r

p
, ν, (

ṗ

p
− ṙ

r
)} = {0, r2 6= 0, ν2 6= 0, 0}

(ii) the functions q, qu and µ are bounded with their derivatives with respect to
u, v, z on every compact set of R3

(iii) Mι is integrally bi-convergent to zero.
Then the system (6.7) is t-asymptotically stable.

Proof. System (6.7) is precompact. The limit of system (6.7) and the limit of a
perturbed system are identical and unique. Letting

U = (qqu)2 + (
r

p
v)2 + (νz)2

we obtain
W1 = (qqu)2 + (r2v)2 + (ν2z)2

and so {W1 = 0} = ∅. Since

W2 = (r2v)2 + (ν2z)2 and {W2 = 0} = {v = z = 0}
we consider the limiting system of second kind given by

u̇ = −r2v, v̇ = −r2v, ż = −ν2
2z. (6.10)

On the set {W2 = 0} we have the system u̇ = 0, 0 = 0, 0 = 0 with the solutions
{u = c, v = z = 0} for some constant c. Also V = q2(u). Hence

lim
m→∞

V (t + tm, u + xm) = lim
m→∞

q2(u + xm) = 0.

Therefore, the set {(Wj = 0) ∩ V −j
∞ (t, 0)} contains no solutions of first and second

type for c > 0 and j = 1, 2. �

Conclusion. The total stability is a property of some differential equations that
has the power to influence the behavior of the solutions of some other differen-
tial equations. Since, in literature, there is not an analogous work relative to the
attractivity, this paper is written to fill this gap.
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