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EXISTENCE OF POSITIVE PERIODIC SOLUTIONS TO
THIRD-ORDER DELAY DIFFERENTIAL EQUATIONS

ZHANJI GUI

Abstract. Using the continuation theorem of coincidence degree theory and
analysis techniques, we establish criteria for the existence of periodic solutions

to the following third-order neutral delay functional differential equation with

deviating arguments
...
x (t) + aẍ(t) + g(ẋ(t− τ(t))) + f(x(t− τ(t))) = p(t).

Our results complement and extend known results and are illustrated with
examples.

1. Introduction

The stability analysis of neutral delay differential systems has received consid-
erable attention over the decades. In the literature, Lyapunov technique, charac-
teristic equation method, or state solution approach have been utilized to derive
sufficient conditions for asymptotic stability. In [4, 16], the stability of delay differ-
ential equations was considered. Also, boundedness of solutions was discussed in
[16]. Later, many books and papers dealt with the delay differential equations and
obtained many good results, for example, [1, 3, 5, 6, 7, 11, 12, 13], etc. However,
the periodic solutions of third-order neutral delay functional differential equations
with deviating arguments has been investigated only by a few researchers.

In recent years, the existence of periodic solutions for some types of second-order
differential equation with deviating argument were studied; see [8, 9, 10, 15]. But
the corresponding problem for third-order neutral delay functional differential with
a deviating argument was studied far less often. In [14], Sadek obtained sufficient
conditions to ensure the stability and the boundedness of system

...
x (t) + aẍ(t) + g(ẋ(t− τ(t))) + f(x(t− τ(t))) = p(t). (1.1)

However, he did not research periodic solution of (1.1). The main purpose of this
note is to establish criteria to guarantee the existence of positive periodic solutions
to (1.1). By using the continuation theorem of Mawhin’s coincidence degree theory
[2], we obtain some new result which complement and extend the corresponding
ones already known; see [8, 9, 10, 14, 15]. An example to illustrate the main result
is given.
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2. Existence of periodic solutions

Throughout this paper, a is positive constant; the functions g, f, p are real
continuous and defined on R; τ(t) and p(t) are periodic with common period ω.
We point out that in this paper we allow

∫ ω

0
p(t)dt 6= 0 (It is zero in [10, 14]).

Meanwhile, we define |p|0 = maxt∈[0,ω] |p(t)|, |x|i :=
( ∫ 2π

0
|x(s)|ids

)1/i, i ≥ 1.
Now we define µ(t) = t − τ(t), then µ(t) has inverse function ν. set b(t) =
(1− τ̇(ν(t)))−1, τ̇ < 1. The following is our main results.

Theorem 2.1. Suppose that exist positive constants δ1 > 0, δ2 > 0, K > 0 and
M > 0, such that

(H1) |g(x)| 6 K + δ1|x| for x ∈ R
(H2) xf(x) > 0 and |f(x)| > K + |p|0 + δ1|x| for |x| > D

(H3) limx→−∞
f(x)

x 6 δ2.

Then (1.1) has at least one ω-periodic solution for aω+2δ1|b|2ω
3
2 +2ω2(1+ω)δ2 < 1.

Theorem 2.2. Suppose that there exist positive constants ρ1 > 0, ρ2 > 0, K > 0
and M > 0, such that

(S1) |g(x)| 6 K + ρ1|x| for x ∈ R
(S2) xf(x) > 0 and |f(x)| > K + |p|0 + ρ1|x| for |x| > D

(S3) limx→+∞
f(x)

x 6 ρ2.

Then (1.1) has at least one ω-periodic solution for aω+2ρ1|b|2ω
3
2 +2ω2(1+ω)ρ2 < 1.

To prove our results, we need the notion of the continuation theorem of coinci-
dence degree theory formulated in [2].

Lemma 2.3. Let X and Z be two Banach space. Consider an operator equation

Lx = λN(x, λ), (2.1)

where L : Dom L ∩ X → Z is a Fredholm operator of index zero, λ ∈ [0, 1] is a
parameter. Let P and Q denote two projectors such that

P : X → ker L, and Q : Z → Z/ImL.

Assume that N : Ω̄× [0, 1] → Z is L-compact on Ω̄× [0, 1], where Ω is open bounded
in X. Furthermore, suppose that

(a) For each λ ∈ (0, 1) and x ∈ ∂Ω ∩Dom L, Lx 6= λN(x, λ)
(b) For each x ∈ ∂Ω ∩ ker L, QNx 6= 0,
(c) deg{QN, Ω ∩ kerL, 0} 6= 0.

Then Lx = N(x, 1) has at least one solution in Ω̄.

Next we present the proof for Theorem 2.1. Since the proof of Theorem 2.2 is
similar we omit it.

Proof of Theorem 2.1. To use Lemma 2.3 for (1.1), we take X = {x ∈ C3(R, R) :
x(t + ω) = x(t) for all t ∈ R} and Z = {z ∈ C(R, R) : z(t + ω) = z(t) for all t ∈ R}
and denote |x|0 = maxt∈[0,ω] |x(t)| and ‖x‖ = max{|x|0, |ẋ|0, |ẍ|0}. Then X and Z
are Banach spaces, for x ∈ X and z ∈ Z, endowed with the norms ‖ · ‖ and | · |0,
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respectively. Set

Lx(t) =
...
x , x ∈ X, t ∈ R;

N(x(t), λ) = −aẍ(t)− λg(ẋ(t− τ(t)))− f(x(t− τ(t))) + λp(t), x ∈ X, t ∈ R;

Px(t) =
1
ω

∫ ω

0

x(t)dt, Qz(t) =
1
ω

∫ ω

0

z(t)dt, x ∈ X, t ∈ R;

where x ∈ X, z ∈ Z, t ∈ R, λ ∈ [0, 1].
It is easy to prove that L is a Fredholm mapping of index 0, that P : X → ker L

and Q → Z/ Im L are projectors, and that N is L-compact on Ω̄ for any given open
and bounded subset Ω in X.

The corresponding differential equation for the operator Lx = λN(x, λ), λ ∈
(0, 1), takes the form

...
x (t) + λaẍ(t) + λ2g(ẋ(t− τ(t))) + λf(x(t− τ(t))) = λ2p(t). (2.2)

Let x ∈ X be a solution of (2.2) for a certain λ ∈ (0, 1). Integrating (2.2) over
[0, ω], we obtain∫ ω

0

[λg(ẋ(t− τ(t))) + f(x(t− τ(t)))− λp(t)] dt = 0. (2.3)

Thus, there is a point ξ ∈ [0, ω], such that

λg(ẋ(ξ − τ(ξ))) + f(x(ξ − τ(ξ)))− λp(ξ) = 0

Thus in view of condition (H1),
|f(x(ξ − τ(ξ)))| 6 |g(ẋ(ξ − τ(ξ)))|+ |p(ξ)|

6 K + δ1|ẋ(ξ − τ(ξ))|+ |p|0 6 K + |p|0 + δ1|ẋ|0 .
(2.4)

In what follows, we will prove that there is a point t0 ∈ [0, ω] such that

|x(t0) < |ẋ|0 + D. (2.5)

Case 1: δ1 = 0. If |x(ξ − τ(ξ))| > D, (H1), (H2) and (2.4) ensure K + |p|0 <
|f(x(ξ − τ(ξ)))| 6 K + |p|0, which is a contradiction. So

|x(ξ − τ(ξ))| 6 D. (2.6)

Case 2: r1 > 0. If |x(ξ − τ(ξ))| > D, then K + |p|0 + δ1|x(ξ − τ(ξ))| < |f(x(ξ −
τ(ξ)))| 6 K + |p|0 + δ1|ẋ|0. So that

|x(ξ − τ(ξ))| 6 |ẋ|0. (2.7)

Hence from (2.6) and (2.7), we see in either case 1 or case 2 that

|x(ξ − τ(ξ))| 6 |ẋ|0 + D.

Let ξ − τ(ξ) = 2kπ + t0, where k is an integer and t0 ∈ [0, ω]. Then

|x(t0)| = |x(ξ − τ(ξ))| < |ẋ|0 + D.

So (2.5) holds, and then

|x|0 6 |x(t0)|+
∫ ω

0

|ẋ(s)|ds < (ω + 1)|ẋ|0 + D. (2.8)

Let G(θ) = aω+2δ1|b|2ω
3
2 +2ω2(1+ω)(δ2 +θ), θ ∈ [0,+∞). ¿From the assumption

G(0) = aω + 2δ1|b|2ω
3
2 + 2ω2(1 + ω)δ2 < 1 and G(θ) is continuous on [0,+∞),

we know that there must be a small constant θ0 > 0 such that G(θ) = aω +
2δ1|b|2ω

3
2 + 2ω2(1 + ω)(δ2 + θ) < 1, θ ∈ (0, θ0]. Set ε = θ0/2, one can easily
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obtain that aω + 2δ1|b|2ω
3
2 + 2ω2(1 + ω)(δ2 + ε) < 1 For such a small ε > 0, in

view of assumption (H3), we find that there must be a constant ρ > D, which is
independent of λ and x, such that

f(x)
x

< (δ2 + ε), for x < −ρ. (2.9)

Thus letting ∆1 = {t : t ∈ [0, ω], x(t− τ(t)) > ρ}, ∆2 = {t : t ∈ [0, ω], x(t− τ(t)) <
−ρ}, ∆3 = {t : t ∈ [0, ω], |x(t− τ(t))| 6 ρ} and fρ = sup|x|6ρ f(x), we have∫

∆2

|f(t− τ(t))|dt < ω(δ2 + ε)|x|0,
∫

∆3

|f(t− τ(t))|dt 6 ωfρ.

From (2.3), we have∫ ω

0

f(x(t− τ(t)))dt =
( ∫

E1

+
∫

E2

+
∫

E3

)
f(x(t− τ(t)))dt

6
∫ ω

0

|g(ẋ(t− τ(t)))|dt +
∫ ω

0

|p(t)|dt.

(2.10)

That is∫
E1

|f(x(t− τ(t)))|dt 6
∫

E2

|f(x(t− τ(t)))|dt +
∫

E3

|f(x(t− τ(t)))|dt

+
∫ ω

0

|g(ẋ(t− τ(t)))|dt + ω|p|0.
(2.11)

Using condition (H1), we have∫ ω

0

|g(ẋ(t− τ(t)))|dt =
∫ ω−τ(ω)

−τ(0)

1
1− τ̇(ν(s))

|g(ẋ(s))|ds

=
∫ ω

0

1
1− τ̇(ν(s))

|g(ẋ(s)|ds

6
∫ ω

0

δ1

1− τ̇(ν(s))
|ẋ(s)|ds +

∫ ω

0

K

1− τ̇(ν(s))
ds

6 δ1|b|2
( ∫ ω

0

|ẋ(s)|ds
)1/2

+ |b|2K
√

ω.

(2.12)

Thus, by (2.11) and (2.12), we have∫ ω

0

|...x (s)|ds 6 a

∫ ω

0

|ẍ(s)|ds +
∫ ω

0

|g(ẋ(t− τ(t)))|dt

+
∫ ω

0

|f(x(t− τ(t)))|dt + ω|p|0

= a

∫ ω

0

|ẍ(s)|ds +
∫ ω

0

|g(ẋ(t− τ(t)))|dt

+
( ∫

∆1

+
∫

∆2

+
∫

∆3

)
|f(x(t− τ(t)))|dt + ω|p|0

6 a
√

ω
( ∫ ω

0

|ẍ(s)|2ds
)1/2

+ 2δ1|b|2
( ∫ ω

0

|ẋ(s)|2ds
)1/2

+ 2ω(δ2 + ε)|x|0 + 2K
√

ω|b|2 + 2ωfρ + 2|p|0.

(2.13)
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Since x(0) = x(ω), there exists t1 ∈ [0, ω], such that ẋ(t1) = 0, Hence for t ∈ [0, ω],

|ẋ|0 6
∫ ω

0

|ẍ(t)|dt 6
√

ω
( ∫ ω

0

|ẍ(s)|2ds
)1/2

, (2.14)( ∫ ω

0

|ẋ(s)|2ds
)1/2

6
√

ω max
t∈[0,ω]

|ẋ(t)| 6 ω
( ∫ ω

0

|ẍ(s)|2ds
)1/2

. (2.15)

Since x(t) is periodic function, for t ∈ [0, ω], we have

|ẍ(t)| 6
∫ ω

0

|...x (t)|dt, (2.16)( ∫ ω

0

|ẍ(s)|2ds
)1/2

6
√

ω max
t∈[0,ω]

|ẍ(t)| 6
√

ω

∫ ω

0

|...x (t)|dt. (2.17)

Substituting (2.17) in (2.14), we obtain

|ẋ|0 6 ω

∫ ω

0

|...x (t)|dt. (2.18)

Substituting (2.18) in (2.8),

|x|0 6 D + ω(1 + ω)
∫ ω

0

|...x (t)|dt. (2.19)

Substituting (2.15),(2.17) and (2.19) in (2.13), and using inequality (2.16), we ob-
tain

|ẍ|0 6
∫ ω

0

|...x (t)|dt 6
2K

√
ω|b|2 + 2ωfρ + 2ω|p|0 + 2ω(δ2 + ε)D

1− aω − 2δ1|b|2ω
3
2 − 2ω2(1 + ω)(δ2 + ε)

, A3. (2.20)

Substituting (2.20) in (2.18) and (2.19), we obtain

|x|0 6 D + ω(1 + ω)A3 , A1, |ẋ|0 6 ωA3 , A2. (2.21)

Let A0 = max{A1, A2, A3} and take Ω = {x ∈ X : ‖x‖ 6 A0}. The above priori
estimates show that condition (a) of Lemma 2.3 is satisfied. If x ∈ ∂Ω ∩ ker L =
∂Ω ∩ R, then x is a constant with x(t) = A0 or x(t) = −A0. Then

QN(x, 0) =
1
ω

∫ ω

0

[
− aẍ(t)− f(x(t− τ(t))

]
dt

=
1
ω

∫ ω

0

−f(x)dt =
1
ω

∫ ω

0

−f(±A0)dt 6= 0

Finally, consider the mapping

H(x, µ) = µx +
1− µ

ω

∫ ω

0

f(x)dt, µ ∈ [0, 1].

Since for every µ ∈ [0, 1] and x in the intersection of ker L and ∂Ω, we have

xH(x, µ) = µx2 +
1− µ

ω

∫ ω

0

xf(x)dt > 0,

thus H(x, µ) is a homotopy. This shows that

deg{QN(x, 0),Ω ∩ ker L, 0} =deg{−f(x),Ω ∩ ker L, 0}
=deg{−x,Ω ∩ ker L, 0}
=deg{−x,Ω ∩R, 0} 6= 0.
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All conditions in Lemma 2.3 are satisfied; therefore, (1.1) has at least one solution
in Ω. �

Example. Consider the equation

...
x (t) +

1
2π

ẍ(t) +
7

3π2
ẋ(t− cos 8t)) +

3
2
e−(ẋ(t−cos 8t))2 + f(x(t− cos 8t))

=
1 + sin 8t

4

where p(t) = (1 + sin 8t)/4, τ(t) = cos 8t, g(u) = 7
3π2 u + 3

2e−u2
and

f(u) =


7

3π2 u + 3
2 + arctanu, for u > D,(

7
3π2 + 3

2 + π
4

)
, for |u| 6 D,

7
3π2 u− 3

2 + arctanu, for u < −D.

So we can chose δ1 = δ2 = 7/(3π2), D = 1, K = 1, |p|0 = 1/2, |b|2 <
√

ω, ω = π/4.
It is easy to verify that all the assumptions in Theorem 2.1 are satisfied. Thus this
equation has a periodic solution with period π/4.

References

[1] Brayton, JRK and Willoughby, RA. On the numerical integration of a symmetric system of

difference-differential equations of neutral type. J Math Anal App1, Vol. 18 (1967), 182-189.
[2] Game RE., and Mawhin JL. Coincidence Degree and Nonlinear Differential Equations. Berlin:

Springer, 1977.
[3] Gopalsamy, K. Stability and Oscillations in Delay Differential Equation of Population Dy-

namics. Boston: Kluwer Academic Publisher, 1992.

[4] Hale, J. and Verduyn Lunel, SM. Introduction to Functional Differential Equations, New
York: Springer, 1993.

[5] Hu, GDi. and Hu GDa. Some simple stability criteria of neutral delay-differential systems.

Appl Math Comput, Vol. 80 (1996), 257-271.
[6] Kolmanovskii, V. and Myshkis, A. Applied Theory of Functional Differential Equations.

Dordrecht Kluwer: Academic Publisher, 1992.

[7] Li, LM. Stability of linear neutral delay-differential systems. Bull Austral Math Soc, Vol. 38
(1998), 339-344.

[8] Lu, S., and Ge, W. On the existence of periodic solutions of second order differential equations

with deviating arguments. Acta Math Sinica (In Chinese), Vol. 45 (2002), 811-818.
[9] Lu, S. Ge, W. and Zheng Z. Periodic solutions for a kind of Rayleigh equation with a deviating

argument. Appl Math Lett, Vol. 17 (2004), 443-449.

[10] Lu, S., and Ge W. Periodic solutions for a kind of second order differential equations with
multiple deviating amvments. Appl Math Comnut, Vol. 146 (2003), 195-209.

[11] Mahmoud, MS. and Al-Muthairi, NF. Quadratic stabilization of continuous time systems
with state-delay and norm-bounded time-varying uncertainties. Automatica, Vol. 32 (1994),

2135-2139.
[12] Park, Ju-H. and Won, S. A note on stability of neutral delay-differential system. Journal of

the Franklin Institute, Vol. 336 (1999), 543-548.
[13] Shen, J C. Chen, BS. and F.C. Kung, Memoryless stabilization of uncertain dynamic delay

systems Riccati equation approach, IEEE Transactions on Automatic Control, Vol. 36 (1991),
638-640.

[14] Sadek AI. Stability and bovndedness of a kind of Third-order Delay Differential System. Appl
Math Letters, Vol. (2003), 657-662.

[15] Wang, GQ. A priori bounds for periodic solutions of a delay Rayleigh equation. Applied
Mathematics Letters, Vol. 12 (1999), 41-44.

[16] Yoshizawa, T. Stability Theorem by Liapvnov’s Second Method. The Mathematical Society
of Japan, 1966.



EJDE-2006/91 EXISTENCE OF POSITIVE PERIODIC SOLUTIONS 7

Zhanji Gui

Department of Computer Science, Hainan Normal University, Haikou, Hainan, 571158,

China
And Department of Mathematics, Huazhong University of Science and Technology,

Wuhan, 430074, China

E-mail address: zhanjigui@sohu.com


	1. Introduction
	2. Existence of periodic solutions
	Example

	References

