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ASYMPTOTIC BEHAVIOUR OF THE SOLUTION FOR THE
SINGULAR LANE-EMDEN-FOWLER EQUATION WITH

NONLINEAR CONVECTION TERMS

ZHIJUN ZHANG

Abstract. We show the exact asymptotic behaviour near the boundary for

the classical solution to the Dirichler problem

−∆u = k(x)g(u) + λ|∇u|q , u > 0, x ∈ Ω, u
˛̨
∂Ω

= 0,

where Ω is a bounded domain with smooth boundary in RN . We use the

Karamata regular varying theory, a perturbed argument, and constructing

comparison functions.

1. Introduction and statement of the main results

Let Ω be a bounded domain with smooth boundary in RN (N ≥ 1). Consider
the singular Dirichlet problem for the Lane-Emden-Fowler equation

−∆u = k(x)g(u) + λ|∇u|q, u > 0, x ∈ Ω, u|∂Ω = 0, (1.1)

where λ ∈ R, q ∈ [0, 2], and the functions g, k satisfy the hypotheses:
(H1) g ∈ C1((0,∞), (0,∞)), g′(s) ≤ 0 for all s > 0, lims→0+ g(s) = ∞
(H2) k ∈ Cα(Ω̄) for some α ∈ (0, 1), is non-negative and non-trivial on Ω.
The problem above arises in the study of non-Newtonian fluids, boundary layer

phenomena for viscous fluids, chemical heterogeneous catalysts, as well as in the
theory of heat conduction in electrical materials [5, 8, 10, 18, 21].

The main feature of this paper is the presence of the three terms: the singularity
term g(u) which is regular varying at zero of index −γ with γ ∈ (0, 1), the weight
k(x) which may be vanishing at the boundary, the both of them include a large
class of functions, and the nonlinear convection terms λ|∇u|q.

This problem was discussed in a number of works; see, for instance, [2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29]. When λ = 0, i.e.,
problem (1.1) becomes

−∆u = k(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0. (1.2)
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For k ≡ 1 on Ω. Fulks and Maybee [8], Stuart [21], Crandall, Rabinowitz and
Tartar [5] showed that (1.2) has a unique solution u ∈ C2+α(Ω)∩C(Ω̄). Moreover,
Crandall, Rabinowitz and Tartar [5, Theorems 2.2 and 2.5] showed that if p ∈
C[0, a] ∩ C2(0, a] is the local solution to the problem

−p′′(s) = g(p(s)), p(s) > 0, 0 < s < a, p(0) = 0,

then there exist positive constants C1 and C2 such that
(i) C1p(d(x)) ≤ u(x) ≤ C2p(d(x)) near ∂Ω, where d(x) = dist(x, ∂Ω)
(ii) |∇u(x)| ≤ C2[d(x)g(C1p(d(x))) + p(d(x))/d(x)] near ∂Ω.

In particular, u is Lipschitz continuous on Ω̄ if and only if
∫ 1

0
g(s)ds < ∞. Recently,

Ghergu and Rǎdulescu [9] showed that if g satisfies (H1) and
(H3) There exist positive constants C0, η0 and γ ∈ (0, 1) such that g(s) ≤ C0s

−γ ,
for all s ∈ (0, η0)

(H4) There exist θ > 0 and t0 ≥ 1 such that g(ξt) ≥ ξ−θg(t) for all ξ ∈ (0, 1)
and 0 < t ≤ t0ξ

(H5) The mapping ξ ∈ (0,∞) → T (ξ) = limt→0+
g(ξt)
ξg(t) is a continuous function;

and k satisfies (H2) and the following assumptions: there exist δ0 > 0 and
a positive non-decreasing function h ∈ C(0, δ0) such that

(H6) limd(x)→0
k(x)

h(d(x)) = c0

(H7) limt→0+ h(t)g(t) = +∞.
Then (1.2) has a unique solution u ∈ C1,1−α(Ω̄) ∩ C2(Ω) satisfying

lim
d(x)→0

u(x)
p(d(x))

= ξ0, (1.3)

where T (ξ0) = c−1
0 , and p ∈ C1[0, a] ∩ C2(0, a](a ∈ (0, δ0)) is the local solution to

the problem

−p′′(s) = h(s)g(p(s)), p(s) > 0, 0 < s < a, p(0) = 0. (1.4)

The exact asymptotic behaviour of the unique solution to (1.2) with
∫ 1

0
g(s)ds =

∞ has been studied in [27].
For λ 6= 0, existence and uniqueness of solutions to problem (1.1), see [10, 11,

26, 28], and the exact asymptotic behaviour of the unique solution to (1.1) with∫ 1

0
g(s)ds = ∞, see [11, 28, 29].
In this paper, we generalize the Ghergu and Rǎdulescu’s results [9] to problem

(1.1), and we showed that the asymptotic behaviour (1.3) of the unique solution uλ

to problem (1.1) is independent on λ|∇uλ|q.
First we recall a basic definition (see [17, 19, 20]).

Definition 1.1. A positive measurable function g defined on some neighborhood
(0, a) for some a > 0, is called regular varying at zero with index β, written g ∈
RV Zβ if for each ξ > 0 and some β ∈ R,

lim
t→0+

g(ξt)
g(t)

= ξβ .

Our main result is summarized in the following theorem.

Theorem 1.2. Let g satisfy (H1) and g ∈ RV Z−γ with γ ∈ (0, 1) and k satisfy
(H2), (H6) and h ∈ RV Zβ with β ∈ [0, 1). If β < γ, then the unique solution
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uλ ∈ C1,1−α(Ω̄) ∩ C2(Ω) to problem (1.1) satisfies

lim
d(x)→0

uλ(x)
p(d(x))

= ξ0,

where ξ0 = c
1/(1+γ)
0 , and p ∈ C1[0, a] ∩ C2(0, a] is the local solution to problem

(1.4).

Remark 1.3. By (H1) and the proof of the maximum principle [12, Theorems 10.1
and 10.2] we see that (1.1) has at most one solution in C2(Ω)∩C(Ω̄) for each fixed
λ.

Remark 1.4. In section 2, we will see that g ∈ RV Z−γ with γ > 0 implies
lims→0+ g(s) = ∞ and h ∈ RV Zβ with β > 0 implies limt→0+ h(t) = 0.

Remark 1.5. For the existence of solutions to (1.4) with a ∈ (0, 1), see [1, Corollary
2.1].

The outline of this article is as follows. In section 2, we recall some basic def-
initions and the properties to Karamata regular varying theory. In section 3, we
prove the asymptotic behaviour of the unique solution in Theorem 1.2.

2. Karamata regular varying theory

Let us recall some basic definitions and the properties to Karamata regular
varying theory, which is a basic tool in probability theory (see [17, 19, 20]).

Definition 2.1. A positive measurable function f defined on [a,∞), for some
a > 0, is called regular varying at infinity with index ρ, written f ∈ RVρ, if for each
ξ > 0 and some ρ ∈ R,

lim
t→∞

f(ξt)
f(t)

= ξρ. (2.1)

The real number ρ is called the index of regular variation.

Definition 2.2. When ρ = 0, a positive measurable function L defined on [a,∞),
for some a > 0, is called slowly varying at infinity, if for each ξ > 0

lim
t→∞

L(ξt)
L(t)

= 1. (2.2)

It follows by the definition that if f ∈ RVρ it can be represented in the form

f(t) = tρL(t).

Some basic examples of slowly varying functions are:
(i) limt→∞ L(t) = c ∈ (0,∞);
(ii) L(t) =

∏m=n
m=1 (logm(t))αm , αm ∈ R;

(iii) L(t) = e(
Qm=n

m=1 (logm(t))αm ), 0 < αm < 1;

(iv) L(t) =
1
t

∫ t

a

ds

ln s
;

(v) L(t) = e((ln t)1/3 cos((ln t)1/3)), where limt→∞ inf L(t) = 0, limt→∞ supL(t) =
+∞.

Lemma 2.3 (Uniform convergence theorem). If f ∈ RVρ, then (2.1) (and so (2.2))
holds uniformly for ξ ∈ [a, b] with 0 < a < b.
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Lemma 2.4 (Representation theorem). A function L is slowly varying at infinity
if and only if it may be written in the form

L(t) = c(t) exp
( ∫ t

a

y(s)
s

ds
)
, t ≥ a,

for some a > 0, where c(t) and y(t) are measurable and for t → ∞, y(t) → 0 and
c(t) → c, with c > 0.

Lemma 2.5. If functions L,L1 are slowly varying at infinity, then
(i) Lα for every α ∈ R, L(t) + L1(t), L(L1(t)) (if L1(t) →∞ as t →∞), are

also slowly varying at infinity;
(ii) for every θ > 0 and t →∞,

tθL(t) →∞, t−θL(t) → 0;

(iii) for t →∞, ln(L(t))/ln t → 0.

Definition 2.6. A positive measurable function H defined on some neighborhood
(0, a) for some a > 0, is called slowly varying at zero, if for each ξ > 0

lim
t→0+

H(ξt)
H(t)

= 1.

It follows by Definitions 1.1 and 2.6 that if g ∈ RV Z−γ it can be represented in
the form g(t) = t−γH(t).

Lemma 2.7. Definition 1.1 is equivalent to saying that f∗(t) = g(1/t) is regular
varying at infinity of index −β.

Thus we transfer our attention from infinity to the origin.

Corollary 2.8 (Representation theorem). A function H is slowly varying at zero
if and only if it may be written in the form

H(t) = c(t) exp
( ∫ a

t

y(s)
s

ds
)
, 0 < t < a,

for some a > 0, where c(t) and y(t) are measurable and for t → 0+, y(t) → 0 and
c(t) → c, with c > 0.

Corollary 2.9. If a function H is slowly varying at zero, then for every θ > 0 and
t → 0+, t−θH(t) →∞, tθH(t) → 0.

Corollary 2.10. If g satisfies (H1), g ∈ RV Z−γ with γ ∈ (0, 1), and k satisfies
(H2), (H6), h ∈ RV Zβ with β ∈ (0, 1), then

g(t) = t−γc1(t) exp
( ∫ a

t

y1(s)
s

ds
)
, h(t) = tβc2(t) exp

( ∫ a

t

y2(s)
s

ds
)
,

where y1, y2, c1, c2 ∈ C[0, a], y1(0) = y2(0) = 0, c1(0) > 0, c2(0) > 0.

3. Asymptotic behaviour

First we give some preliminary considerations.

Lemma 3.1. If g satisfies (H1) and g ∈ RV Z−γ with γ ∈ (0, 1), then∫ 1

0

g(t)dt < ∞.
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Proof. We see by corollaries 2.9 and 2.10 that there exists γ1 ∈ (γ, 1) such that

lim
t→0+

tγ1g(t) = lim
t→0+

tγ1−γc1(t) exp
( ∫ a

t

y1(s)
s

ds
)

= 0.

It follow that there exists δ ∈ (0, 1) such that g(t) < t−γ1 , for all t ∈ (0, δ) and so
g ∈ L1(0, 1). �

Lemma 3.2. Under the assumptions in Theorem 1.2, the local solution p to problem
(1.4) has the following properties

(i) p ∈ C1[0, a];
(ii) lims→0+ p′′(s) = −∞;
(iii) lims→0+

(p′(s))q

p′′(s) = 0 for q ∈ [0, 2].

Proof. (i) Since −((p′(s))2)′ = 2h(s)g(p(s))p′(s) for s ∈ (0, a], and p(s) is a positive
concave on (0, a], p(0) = 0, p′′(s) < 0, we see that p′(s) is decreasing and p′(s) > 0
on (0, a], so p(s) is increasing. Since h is non-decreasing, multiplying (1.4) by p′(s)
and integrating on [t, a], 0 < t < a, we get by Lemma 3.1 that

(p′(a))2 + 2h(t)
∫ a

t

g(p(s))p′(s)ds = (p′(a))2 + 2h(t)
∫ p(a)

p(t)

g(y)dy

≤ (p′(a))2 + 2
∫ a

t

h(s)g(p(s))p′(s)ds

= (p′(t))2

≤ (p′(a))2 + 2h(a)
∫ p(a)

p(t)

g(y)dy,

≤ (p′(a))2 + 2h(a)
∫ p(a)

0

g(y)dy < ∞.

Thus p′(0) ∈ (0,∞), i.e., p ∈ C1[0, a].
(ii) Let b = p′(0). Since p′(s) is decreasing on [0, a], it follows by the Lagrange

mean value theorem that there exists τs ∈ (0, s) such that

p(s)/s = (p(s)− p(0))/s = p′(τs) < b, ∀s ∈ (0, a].

Thus p(s) < bs for all s ∈ (0, a] and so g(p(s)) ≥ g(bs), for all s ∈ (0, a]. Since
γ > β, we see by corollaries 2.9 and 2.10 that

lim
t→0+

h(t)g(t) = lim
t→0+

t−(γ−β)c1(t)c2(t) exp
( ∫ a

t

y1(s)
s

ds
)
exp

( ∫ a

t

y2(s)
s

ds
)

= ∞,

and

lim
t→0+

g(bt)
g(t)

= b−γ .

Thus

−p′′(t) = h(t)g(p(t)) ≥ h(t)g(t)
g(bt)
g(t)

, ∀t ∈ (0, a],

lim
s→0+

p′′(s) = −∞.

(iii) is follows by (i) and (ii). The proof is complete. �
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Proof of the asymptotic behaviour in Theorem 1.2. Set ξ0 = c
1/(1+γ)
0 and for a fix

ε ∈ (0, 1/4) let

ξ1ε =
( c0

1− 2ε

)1/(1+γ)
, ξ2ε =

( c0

1 + 2ε

)1/(1+γ)
,

we see that (c0

2
)1/(1+γ)

< ξ2ε < ξ1ε < (2c0)1/(1+γ).

For any δ > 0, we define Ωδ = {x ∈ Ω : d(x) ≤ δ}. By the regularity of ∂Ω and
lemma 3.2, we can choose δ sufficiently small such that

(i) d(x) ∈ C2(Ωδ);
(ii) | p′(s)

p′′(s)∆d(x) + λξq−1
iε

(p′(s))q

p′′(s) | < ε, for all (x, s) ∈ Ωδ × (0, δ), i = 1, 2 and
fixed λ;

(iii) ξ2εh(d(x))g(p(d(x)))
g(p(d(x))ξ2ε) (1 + ε) < k(x) < ξ1εh(d(x))g(p(d(x)))

g(p(d(x))ξ1ε) (1− ε) in Ωδ.

For any x ∈ Ωδ, define ū = ξ1εp(d(x)), and u = ξ2εp(d(x)). It follows from
|∇d(x)| = 1 that

∆u(x) + k(x)g(u(x)) + λ|∇u(x)|q

= k(x)g(ξ1εp(d(x))) + ξ1εp
′(d(x))∆d(x) + ξ1εp

′′(d(x)) + λξq
1ε(p

′(d(x)))q

= ξ1εh(d(x))g(p(d(x)))
[ k(x)g(ξ1εp(d(x)))
ξ1εh(d(x))g(p(d(x)))

− 1− p′(d(x))
p′′(d(x))

∆d(x)

− λξq−1
1ε

(p′(d(x))q

p′′(d(x))

]
≤ ξ1εh(d(x))g(p(d(x)))

[
(1− 2ε)− 1− p′(d(x))

p′′(d(x))
∆d(x)− λξq−1

1ε

(p′(d(x))q

p′′(d(x))

]
≤ 0;

and

∆u(x) + k(x)g(u(x)) + λ|∇u(x)|q

= k(x)g(ξ2εp(d(x))) + ξ2εp
′(d(x))∆d(x) + ξ2εp

′′(d(x)) + λξq
2ε(p

′(d(x)))q

= ξ2εh(d(x))g(p(d(x)))
[ k(x)g(ξ2εp(d(x)))
ξ2εh(d(x))g(p(d(x)))

− 1− p′(d(x))
p′′(d(x))

∆d(x)

− λξq−1
2ε

(p′(d(x))q

p′′(d(x))

]
≥ ξ2εh(d(x))g(p(d(x)))

[
(1 + 2ε)− 1− p′(d(x))

p′′(d(x))
∆d(x)− λξq−1

2ε

(p′(d(x))q

p′′(d(x))

]
≥ 0.

Let uλ ∈ C(Ω̄) ∩ C2+α(Ω) be the unique solution to problem (1.1). We assert

ξ2εp(d(x)) = u(x) ≤ uλ(x) ≤ ū(x) = ξ1εp(d(x)), ∀x ∈ Ωδ.

In fact, denote Ωδ = Ωδ+ ∪ Ωδ−, where Ωδ+ = {x ∈ Ωδ : uλ(x) ≥ u(x)} and
Ωδ− = {x ∈ Ωδ : uλ(x) < u(x)}. We need to show Ωδ− = ∅. Assume the contrary,
we see that there exists x0 ∈ Ωδ− such that

0 < u(x0)− uλ(x0) = max
x∈Ω̄δ−

(u(x)− uλ(x)),

and
∇u(x0) = ∇uλ(x0), ∆(u(x0)− uλ(x0)) ≤ 0.
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On the other hand, we see by (H1) that

−∆(uλ − u)(x0) = k(x0)(g(u(x0))− g(uλ(x0))) < 0,

which is a contradiction. Hence Ωδ− = ∅, i.e., uλ(x) ≥ u(x) in Ωδ. As the same
way, we can see that uλ(x) ≤ ū(x), for all x ∈ Ωδ. Let ε → 0, we see that
limd(x)→0

uλ(x)
p(d(x)) = ξ0. As the same proof as in [9, 10], we see that uλ ∈ C1,1−α(Ω̄)∩

C2(Ω). The proof is complete. �

References

[1] R. P. Agarwal and D. O’Regan, Existence theory for single and multiple solutions to singular
positone boundary value problems, J. Diff. Equations 175 (2001), 393-414.

[2] S. Berhanu, S. Gladiali and G. Porru, Qualitative properties of solutions to elliptic singular
problems, J. Inequal. Appl. 3 (1999), 313-330.

[3] F. Ĉırstea, M. Ghergu, V. D. Rǎdulescu, Combined effects of asymptotically linear and singu-

lar nonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math. Pures Appl.
(J. Liouville), 84 (2005), 493-508.

[4] M. M. Coclite and G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial

Diff. Equations 14 (1989), 1315-1327.
[5] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular

nonlinearity, Comm. Partial Diff. Equations 2 (1977), 193-222.

[6] S. Cui, Existence and nonexistence of positive solutions for singular semilinear elliptic bound-
ary value problems, Nonlinear Anal. 41 (2000), 149-176.

[7] S. Cui, Positive solutions for Dirichlet problems associated to semilinear elliptic equations

with singular nonlinearity, Nonlinear Anal. 21 (1993), 181-190.
[8] W. Fulks and J. S. Maybee, A singular nonlinear elliptic equation , Osaka J. Math. 12 (1960),

1-19.
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[16] H. Mâagli and M. Zribi, Existence and estimates of solutions for singular nonlinear elliptic
problems, J. Math Anal Appl. 263 (2001), 522-542.

[17] V. Maric, Regular Variation and Differential Equations, Lecture Notes in Math., vol. 1726,

Springer-Verlag, Berlin, 2000.
[18] A. Nachman and A. Callegari, A nonlinear singular boundary value problem in the theory of

pseudoplastic fluids, SIAM J. Appl. Math. 28 (1980), 275-281.
[19] S. I. Resnick, Extreme Value, Regular Variation, and Point Processes, Springer-Verlag, New

York, 1987.
[20] R. Seneta, Regular Varying Functions, Lecture Notes in Math., vol. 508, Springer-Verlag,

Berlin, 1976.
[21] C. A. Stuart, Existence and approximation of solutions of nonlinear elliptic equations, Math.

Z. 147 (1976), 53-63.

[22] Y. Sun, S. Wu and Y. Long, Combined effects of singular and superlinear nonlinearities in
some singular boundary value problems, J. Differential Equations 176 (2001), 511-531



8 Z. ZHANG EJDE-2006/93

[23] H. Usami, On a singular nonlinear elliptic boundary value problem in a ball, Nonlinear Anal.

13 (1989), 1163-1170

[24] H. Yang, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear
elliptic problem, J. Differential Equations 189 (2003), 487-512

[25] Z. Zhang and J. Cheng, Existence and optimal estimates of solutions for singular nonlinear

Dirichlet problems, Nonlinear Anal. 57 (2004), 473-484.
[26] Z. Zhang and J. Yu, On a singular nonlinear Dirichlet problem with a convection term, SIAM

J. Math. Anal. 32 (2000), 916-927.

[27] Z. Zhang, The exact asymptotic behaviour of the unique solution for the singular Lane-
Emden-Fowler equation, J. Math. Anal. Appl. 312 (2005), 33-43.

[28] Z. Zhang, The existence and asymptotic behaviour of the unique solution near the boundary

to a singular Dirichlet problem with a convection term, Proc. Roy. Soc. Edinb. Sect. 136A
(2006), 209-222.

[29] Z. Zhang, The exact asymptotic behaviour of the unique solution for a singular Dirichlet
problem with a convection term, Chinese Ann. Math. 26A (2005), 463-468. (in chinese)

Zhijun Zhang

Department of mathematics and informational science, Yantai university, Yantai 264005,

China
E-mail address: zhangzj@ytu.edu.cn


	1. Introduction and statement of the main results
	2. Karamata regular varying theory
	3. Asymptotic behaviour
	References

