Electronic Journal of Differential Equations, Vol. 2006(2006), No. 95, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE AND GLOBAL ATTRACTIVITY POSITIVE PERIODIC SOLUTIONS FOR A DISCRETE MODEL

ZHENG ZHOU, ZHENGQIU ZHANG

Abstract

Using a fixed point theorem in cones, we obtain conditions that guarantee the existence and attractivity of the unique positive periodic solution for a discrete Lasota-Wazewska model.

1. Introduction

Wazewska-Czyzewska and Lasota [10] investigated the delay differential equation

$$
x^{\prime}(t)=-\alpha x(t)+\beta e^{-\gamma x(t-\tau)}, \quad t \geq 0 .
$$

as a model for the survival of red blood cells in an animal. The oscillation and global attractivity of this equation have been studied by Kulenovic and Ladas [9. A few similar generalized model were investigated by many authors, see Xu and Li [12], Graef et al. [4, Jiang and Wei [8], Gopalsamy and Trofimchuk [3]. Recently, Liu [2] studied the existence and global attractivity of unique positive periodic solution for the Lasota-Wazewska model

$$
x^{\prime}(t)=-a(t) x(t)+\sum_{i=1}^{m} p_{i}(t) e^{-q_{i}(t) x\left(t-\tau_{i}(t)\right)}
$$

by using a fixed point theorem, and got some brief conditions to guarantee the conclusions. In [7], the existence of one positive periodic solution was proved by Mawhin's continuation theorem. In [13], the existence of multiple positive periodic solutions was studied by employing Krasnoselskii fixed point theorem in cones.

Though most models are described with differential equations, the discrete-time models are more appropriate than the continuous ones when the size of the population is rarely small or the population has non-overlapping generations [1. To our knowledge, studies on discrete models by using fixed point theorem are scarce, see [13]. In this paper, we consider the Lasota-Wazewska difference equation

$$
\begin{equation*}
\Delta x(k)=-a(k) x(k)+\sum_{i=1}^{m} p_{i}(k) e^{-q_{i}(k) x\left(k-\tau_{i}(k)\right)} \tag{1.1}
\end{equation*}
$$

We will use the following hypotheses:

[^0](H1) $a: Z \rightarrow(0,1)$ is continuous and ω-periodic function. i.e., $a(k)=a(k+\omega)$, such that $a(k) \not \equiv 0$, where ω is a positive constant denoting the common period of the system.
(H2) p_{i} and q_{i} are positive continuous ω-periodic functions, τ_{i} are continuous ω-periodic functions $(i=1,2, \ldots)$.
For convenience, we shall use the notation:
$$
\bar{h}=\max _{0 \leq k \leq \omega}\{h(k)\}, \quad \underline{h}=\min _{0 \leq k \leq \omega}\{h(k)\} .
$$
where h is a continuous ω-periodic function. Also, we use
\[

$$
\begin{gathered}
q=\max _{1 \leq i \leq m}\left\{\bar{q}_{i}\right\}, \quad \tau=\max _{1 \leq i \leq m}\left\{\bar{\tau}_{i}\right\}, \quad p=\omega \sum_{i=1}^{m} p_{i}(s), \quad(k \leq s \leq k+\omega-1), \\
A=\frac{\prod_{s=0}^{\omega-1}(1-a(s))}{1-\prod_{s=0}^{\omega-1}(1-a(s))} \\
B=\frac{1}{1-\prod_{s=0}^{\omega-1}(1-a(s))}, \quad \sigma=\prod_{s=0}^{\omega-1}(1-a(s))=\frac{A}{B}<1
\end{gathered}
$$
\]

Considering the actual applications, we assume the solutions of (1.1) with initial condition

$$
x(k)=\phi(k)>0 \quad \text { for }-\tau \leq k \leq 0
$$

To prove our result, we state the following concepts and lemmas.
Definition. Let X be Banach space and P be a closed, nonempty subset, P is said to be a cone if
(i) $\lambda x \in P$ for all $x \in P$ and $\lambda \geq 0$
(ii) $x \in P,-x \in P$ implies $x=\theta$.

The semi-order induced by the cone P is denoted by " \leq. That is, $x \leq y$ if and $y-x \in P$.
Definition. A cone P of X is said to be normal if there exists a positive constant δ, such that $\|x+y\| \geq \delta$ for any $x, y \in P .\|x\|=\|y\|=1$.
Definition. Let P be a cone of X and $T: P \rightarrow P$ an operator. T is called decreasing, if $\theta \leq x \leq y$ implies $T x \geq T y$.

Lemma 1.1 (Guo [5, 6]). Suppose that
(i) P is normal cone of a real Banach space X and $T: P \rightarrow P$ is decreasing and completely continuous;
(ii) $T \theta>\theta, T^{2} \geq \varepsilon_{0} T \theta$, where $\varepsilon_{0}>0$;
(iii) For any $\theta<x \leq T \theta$ and $0<\lambda<1$, there exists $\eta=\eta(x, \lambda)>0$ such that

$$
\begin{equation*}
T(\lambda x) \leq[\lambda(1+\eta)]^{-1} T x \tag{1.2}
\end{equation*}
$$

Then T has exactly one positive fixed point $\tilde{x}>\theta$. Moreover, constructing the sequence $x_{n}=T x_{n-1}(n=1,2,3, \ldots)$ for any initial $x_{0} \in P$, it follows that $\left\|x_{n}-\tilde{x}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

2. Positive periodic solutions

To apply Lemma 1.1, let $X=\{x(k): x(k)=x(k+\omega)\},\|x\|=\max \{|x(k)|: x \in$ $X\}$. Then X is a Banach space endowed with the norm $\|\cdot\|$.

Define the cone

$$
P=\{x \in X: x(k) \geq 0, x(k) \geq \sigma\|x\|\}
$$

Lemma 2.1. If $x(k)$ is a positive ω-periodic solution of 1.1 , then $x(k) \geq \sigma\|x\|$.
Proof. It is clear that 1.1) is equivalent to

$$
x(k+1)=(1-a(k)) x(k)+\sum_{i=1}^{m} p_{i}(k) e^{-q_{i}(k) x\left(k-\tau_{i}(k)\right)} .
$$

Multiplying the two sides by $\prod_{s=0}^{k}(1-a(s))^{-1}$, we have

$$
\Delta\left(x(k) \prod_{s=0}^{k-1} \frac{1}{1-a(s)}\right)=\prod_{s=0}^{k} \frac{1}{1-a(s)} \sum_{i=1}^{m} p_{i}(k) e^{-q_{i}(k) x\left(k-\tau_{i}(k)\right)}
$$

Summing the two sides from k to $k+\omega-1$,

$$
\begin{equation*}
x(k)=\sum_{s=k}^{k+\omega-1} G(k, s) \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) x\left(k-\tau_{i}(k)\right)} . \tag{2.1}
\end{equation*}
$$

where

$$
G(k, s)=\frac{\prod_{r=s+1}^{k+\omega-1}(1-a(r))}{1-\prod_{r=0}^{\omega-1}(1-a(r))}, \quad k \leq s \leq k+\omega-1
$$

Then, $x(k)$ is an ω-periodic solution of (1.1) if and only if $x(k)$ is ω-periodic solution of difference equation (2.1). It is easy to calculate that

$$
\begin{gathered}
A:=\frac{\prod_{s=0}^{\omega-1}(1-a(s))}{1-\prod_{s=0}^{\omega-1}(1-a(s))} \leq G(k, s) \leq \frac{1}{1-\prod_{s=0}^{\omega-1}(1-a(s))}=: B \\
A=\frac{\sigma}{1-\sigma}, \quad B=\frac{1}{1-\sigma}, \quad \sigma=\frac{A}{B}<1 \\
\|x\| \leq B \sum_{S=k}^{k+\omega-1} \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) x\left(s-\tau_{i}(s)\right)} \\
\left.x(t) \geq A \sum_{S=k}^{k+\omega-1} \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) x\left(s-\tau_{i}(s)\right)}\right)
\end{gathered}
$$

Therefore, $x(k) \geq \frac{A}{B}\|x\|=\sigma\|x\|$.
Define the mapping $T: X \rightarrow X$ by

$$
\begin{equation*}
(T x)(k)=\sum_{s=k}^{k+\omega-1} G(k, s) \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) x\left(k-\tau_{i}(k)\right)} \tag{2.2}
\end{equation*}
$$

for $x \in X, k \in Z$. It is not difficult to see that T is a completely continuous operator on X, and a periodic solution of 1.1 is the fixed point of operator T.

Lemma 2.2. Under the conditions above, $T P \subset P$.
Proof. For each $x \in P$, we have

$$
\|T x\| \leq B \sum_{s=k}^{k+\omega-1} G(k, s) \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) x\left(k-\tau_{i}(k)\right)}
$$

From 2.2 , we obtain

$$
T x \geq A \sum_{s=k}^{k+\omega-1} G(k, s) \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) x\left(k-\tau_{i}(k)\right)} \geq \frac{A}{B}\|T x\|=\sigma\|T x\|
$$

Therefore, $T x \in P$, thus $T P \subset P$.

Lemma 2.3. $x(k)$ is positive and bounded on $[0, \infty)$.
Proof. Obviously, $x(k)$ is defined on $[-\tau,+\infty)$ and positive on $[0,+\infty)$. Now, we prove that every solution of (1.1) is bounded, otherwise, there exists an unbounded solution $x(k)$. Thus, for arbitrary $M>B m \omega \bar{p} / e^{q M}$, there exists $N=N(M)$, when $k>N, x(k)>M$. From (2.1), we have

$$
x(k) \leq B \sum_{s=k}^{k+\omega-1} \sum_{i=1}^{m} \bar{p} e^{-\underline{q} M}=B m \omega \bar{p} / e^{\underline{q} M}<M
$$

where

$$
\underline{q}=\min _{1 \leq i \leq m}\left\{\underline{q_{i}}\right\}, \quad \bar{p}=\max _{1 \leq i \leq m}\left\{\bar{p}_{i}\right\}
$$

which is a contradiction. Consequently, $x(k)$ is bounded.

Now, we are in position to state the main results in this section.
Theorem 2.4. Assume that (H1)-(H2) hold and Bpq ≤ 1. Then 1.1) has a unique ω-periodic positive solution $\tilde{x}(t)$. Moreover,

$$
\|x(k)-\tilde{x}\| \rightarrow 0(k \rightarrow \infty) m
$$

where $x(k)=T x(k-1)(k=1,2, \ldots)$ for any initial $x_{0} \in P$.
Proof. Firstly, it is clear that the cone P is normal. By an easy calculation, we know that T is decreasing, in fact

$$
\begin{aligned}
& (T x)(k)-(T y)(k) \\
& =\sum_{s=k}^{k+\omega-1} G(k, s) \sum_{i=1}^{m} p_{i}(s)\left(e^{-q_{i}(s) x\left(s-\tau_{i}(s)\right)}-e^{-q_{i}(s) y\left(s-\tau_{i}(s)\right)}\right) \\
& =\sum_{s=k}^{k+\omega-1} G(k, s) \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) x\left(s-\tau_{i}(s)\right)}\left[1-e^{-q_{i}(s)\left(y\left(s-\tau_{i}(s)\right)-x\left(s-\tau_{i}(s)\right)\right)}\right] \geq 0
\end{aligned}
$$

when $\theta \leq x \leq y$, i.e., $y\left(s-\tau_{i}(s)\right)-x\left(s-\tau_{i}(s)\right) \geq 0$.
Secondly, we will show that the condition (ii) of Lemma 1.1 is satisfied. From (2.2), we have

$$
B p \geq(T \theta)(k)=\sum_{s=k}^{k+\omega-1} G(k, s) \sum_{i=1}^{m} p_{i}(s) \geq A p>0
$$

Thus, $T \theta>\theta$, and

$$
\begin{aligned}
\left(T^{2} \theta\right)(k) & =\sum_{s=k}^{k+\omega-1} G(k, s) \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s)(T \theta)\left(s-\tau_{i}(s)\right)} \\
& \geq e^{-B p q} \sum_{s=k}^{k+\omega-1} G(k, s) \sum_{i=1}^{m} p_{i}(s) \\
& =e^{-B p q}(T \theta)(k)
\end{aligned}
$$

So that $T^{2} \theta \geq \varepsilon_{0} T \theta$, where $\varepsilon_{0}=e^{-B p q}>0$.
Finally, we prove that the condition (iii) of Lemma 1.1 is also satisfied. For any $\theta<x<T \theta$ and $0<\lambda<1$, we have $\|x\| \leq\|T \theta\| \leq B p$ and

$$
\begin{align*}
T(\lambda x)(k) & =\sum_{s=k}^{k+\omega-1} G(k, s) \sum_{i=1}^{m} p_{i}(s) e^{-\lambda q_{i}(s) x\left(s-\tau_{i}(s)\right)} \\
& =\sum_{s=k}^{k+\omega-1} G(k, s) \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) x\left(s-\tau_{i}(s)\right)} e^{(1-\lambda) q_{i}(s) x\left(s-\tau_{i}(s)\right)} \tag{2.3}\\
& \leq e^{(1-\lambda) B p q}(T x)(k) \\
& =\lambda^{-1} \lambda e^{(1-\lambda) B p q}(T x)(k)
\end{align*}
$$

Set $f(\lambda)=\lambda e^{B p q(1-\lambda)}$; therefore, $f^{\prime}(\lambda)=(1-B p q \lambda) e^{B p q(1-\lambda)}>0$ for $\lambda \in(0,1)$. Thus $0<f(\lambda)<f(1)=1$. so set $f(\lambda)=(1+\eta)^{-1}$, where $\eta=\eta(\lambda)>0$. From (2.3), we have

$$
T(\lambda x) \leq \lambda^{-1} f(\lambda) T x=\lambda^{-1}(1+\eta)^{-1} T x=[\lambda(1+\eta)]^{-1} T x
$$

By Lemma 1.1, we see that T has exactly one positive fixed point $\tilde{x}>\theta$. Moreover, $\|x(k)-\tilde{x}\| \rightarrow 0(n \rightarrow \infty)$, where $x(k)=T x(k-1)(k=1,2, \ldots)$ for any initial $x_{0} \in P$ for $k \in N$.

Remark 2.5. Theorem 2.4 not only gives the sufficient conditions for the existence of unique positive periodic solution of 1.1), but also contains the conclusion of convergence of $x(k)$ to \tilde{x}.

Remark 2.6. From the statements above, we have

$$
\begin{gather*}
\tilde{x}(k)=(T \tilde{x})(k)=\sum_{s=k}^{k+\omega-1} G(k, s) \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) \tilde{x}\left(s-\tau_{i}(s)\right)} \geq A p e^{-q\|\tilde{x}\|}>0 \tag{2.4}\\
A p e^{-B p q} \leq \tilde{x}(k) \leq B p \geq 0 \tag{2.5}
\end{gather*}
$$

which will be used in the following section.

3. Global attractivity of the solution to 1.1

Theorem 3.1. Assume that (H1)-(H2) hold and Bpq ≤ 1. Then the unique ω periodic solution $\tilde{x}(k)$ of (1.1) is a global attractor of all other positive solutions of (1.1).

Proof. Let $y(k)=x(k)-\tilde{x}(k)$, where $x(k)$ is arbitrary solution of 1.1), Then it is easy to obtain

$$
\begin{align*}
\triangle y(k) & =\triangle(x(k)-\tilde{x}(k)) \\
& =\triangle x(k)-\triangle \tilde{x}(k) \\
& =-a(k) y(k)+\sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) \tilde{x}\left(s-\tau_{i}(s)\right)}\left(e^{-q_{i}(s) y\left(s-\tau_{i}(s)\right)}-1\right) . \tag{3.1}
\end{align*}
$$

Now, we shall prove $\lim _{k \rightarrow \infty} y(k)=0$ in the following three cases:
Case 1. Suppose that $y(t)$ is eventually positive solution of 3.1). It is easy to see that $\triangle y(k)<0$ for all sufficiently large k, so $\lim _{k \rightarrow \infty} y(k)=l \geq 0$. we claim that $l=0$. If $l>0$, then there exists $N>0$ such that $\triangle y(k)<-l a(k), k \geq N$. Summing the two sides of the inequality from N to ∞, we have

$$
l-y(N)=\sum_{k=N}^{\infty} \triangle y(k)<-l \sum_{k=N}^{\infty} a(k)=-\infty
$$

which is a contradiction, so $l=0$.
Case 2. Suppose that $y(k)$ is eventually negative. By similar proof as above we obtain that $l=0$.
Case 3. Suppose that $y(k)$ is oscillatory, from Lemma 2.3. we know $y(k)$ is bounded. We set

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sup y(k)=c \geq 0 \quad \text { and } \quad \lim _{k \rightarrow \infty} \inf y(k)=d \leq 0 \tag{3.2}
\end{equation*}
$$

For arbitrarily small positive constant $\epsilon, d-\epsilon<0$ and $c+\epsilon>0$. In view of (3.2), there exists $N_{\epsilon}>0$, such that

$$
\begin{equation*}
d-\epsilon<y(k)<c+\epsilon \quad \text { for all } k \geq N_{\epsilon}-\tau \tag{3.3}
\end{equation*}
$$

From (3.1) and (3.3), we have

$$
y(k+1)-(1-a(k)) y(k)=\sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) \tilde{x}\left(s-\tau_{i}(s)\right)}\left(e^{-q_{i}(s) y\left(s-\tau_{i}(s)\right)}-1\right)
$$

Multiplying the two sides by $\prod_{s=0}^{k}(1-a(s))^{-1}$, we have

$$
\begin{align*}
& \triangle\left(y(k) \prod_{s=0}^{k-1} \frac{1}{1-a(s)}\right) \\
& =\prod_{s=0}^{k} \frac{1}{1-a(s)} \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) \tilde{x}\left(s-\tau_{i}(s)\right)}\left(e^{-q_{i}(s) y\left(s-\tau_{i}(s)\right)}-1\right) \tag{3.4}\\
& \leq\left(e^{-q(d-\epsilon)}-1\right) \prod_{s=0}^{k} \frac{1}{1-a(s)} \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s) \tilde{x}\left(s-\tau_{i}(s)\right)} \\
& =\left(e^{-q(d-\epsilon)}-1\right) \triangle\left(\tilde{x}(k) \prod_{s=0}^{k-1} \frac{1}{1-a(s)}\right)
\end{align*}
$$

Summing the two sides from N_{ϵ} to ∞, for $k \geq N_{\epsilon}$, we have

$$
\begin{align*}
& y(k+1) \prod_{s=0}^{k} \frac{1}{1-a(s)}-y\left(N_{\epsilon}\right) \prod_{s=0}^{N_{\epsilon}-1} \frac{1}{1-a(s)} \tag{3.5}\\
& \leq\left(e^{-q(d-\epsilon)}-1\right)\left[\tilde{x}(k+1) \prod_{s=0}^{k} \frac{1}{1-a(s)}-\tilde{x}\left(N_{\epsilon}\right) \prod_{s=0}^{N_{\epsilon}-1} \frac{1}{1-a(s)}\right]
\end{align*}
$$

Thus

$$
\begin{equation*}
y(k+1) \leq y\left(N_{\epsilon}\right) \prod_{s=N_{\epsilon}}^{k}(1-a(s))+\left(e^{-q(d-\epsilon)}-1\right)\left[\tilde{x}(k+1)-\tilde{x}\left(N_{\epsilon}\right) \prod_{s=N_{\epsilon}}^{k}(1-a(s))\right] . \tag{3.6}
\end{equation*}
$$

From (3.2), 3.6) and Remark 2.6, we have

$$
c \leq B p\left(e^{-q(d-\epsilon)}-1\right)
$$

As ϵ is arbitrary small, we have that

$$
\begin{equation*}
c \leq B p\left(e^{-q d}-1\right) \tag{3.7}
\end{equation*}
$$

By the similar method as above, we obtain

$$
\begin{equation*}
d \geq B p\left(e^{-q c}-1\right) \tag{3.8}
\end{equation*}
$$

From results in [2, 12, $B p q \leq 1$ implies that (3.7), 3.8) have a unique solution $c=d=0$. Therefore,

$$
\lim _{k \rightarrow \infty} y(k)=\lim _{k \rightarrow \infty}[x(k)-\tilde{x}(k)]=0 .
$$

The proof is complete.

References

[1] R. P. Agarwal; Difference Equations and Inequalities. Theory, Methods, and Applications, 2nd ed., Monographs and Textbooks in Pure and Applied Mathematics, vol. 228, Marcel Dekker, New York, 2000.
[2] G. Liu,A. Zhao, J. Yan; Existence and global attractivity of unique positive periodic solution for a Lasota-Wazewska model, Nonlinear Analysis 64 (2006), 1737-1746.
[3] K. Gopalsamy, S. T. Trofimchuk; Almost periodic solutions of Lasota-Wazewska type differential equation, J.Math. Anal. Appl. 237 (1999) 106-127.
[4] J. R. Graef, C. Qian, P. W. Spikes; Oscillation and global attractivity in a periodic delay equation, Can. Math. Bull. 38 (1996), 275-283.
[5] D. Guo; Some fixed point theorems and applications, Nonlinear Anal. TMA10 (1986), 12931302.
[6] D. Guo; Nonlinear Functional Analysis, Shandong Science and Technology Press, Jinan, 2001 (in Chinese).
[7] D.Q. Jiang, R. P. Agarwal; Existence of positive periodic solutions for a class of difference equations with several deviating arguments, Advance in Difference Equation IV, Computers and Mathematics with Applications, 45 (2003), 1303-1309.
[8] D. Jiang, J. Wei; Existence of positive periodic solutions for nonautonomous delay differential equations, Chinese Ann. Math. Ser. A20 (1999), 715-720 (in Chinese).
[9] M. R. S. Kulenovic, G. Ladas; Linearized oscillations in population dynamics, Bull. Mth. Biol. 49 (1987), 615-627.
[10] M. Wazewska-Czyzewska, A. Lasota; Mathematical problems of the dynamics of red blood cells system, Ann. Polish Math. Soc. Ser. III Appl. Math. 17 (1998), 23-40.
[11] L. Wang, W. T. Li; Periodic solutions and stability for a delayed discrete ratio-dependent predator-prey system with Holling-type functional response, Discrete Dynamics in Nature and Society 2004:2 (2004), 325-343.
[12] W. Xu, J. Li; Global attractivity of the model for the survival of red blood cells with several delays, Ann. Differential Equations 14 (1998) 257-263.
[13] Z. Zeng; Existence of positive periodic solutions for a class of nonautonomous difference equations, Eletronic Journal of Differential Equations,Vol. 2006 (2006), No. 03, pp. 1-18.

Zheng Zhou
Department of Applied Mathematics, Hunan University, Changsha 410082, China
E-mail address: zzzzhhhoou@yahoo.com.cn
Zhengqiu Zhang
Department of Applied Mathematics, Hunan University, Changsha 410082, China
E-mail address: z_q-zhang@sina.com

[^0]: 2000 Mathematics Subject Classification. 39-99, 47H10.
 Key words and phrases. Positive periodic solution; attractivity; fixed point; discrete model. (C) 2006 Texas State University - San Marcos.

 Submitted June 14, 2006. Published August 18, 2006.
 Supported by grant 10271044 from the NNSF of China.

