Electronic Journal of Differential Equations, Vol. 2006(2006), No. 95, pp. 1–8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE AND GLOBAL ATTRACTIVITY POSITIVE PERIODIC SOLUTIONS FOR A DISCRETE MODEL

ZHENG ZHOU, ZHENGQIU ZHANG

ABSTRACT. Using a fixed point theorem in cones, we obtain conditions that guarantee the existence and attractivity of the unique positive periodic solution for a discrete Lasota-Wazewska model.

1. Introduction

Wazewska-Czyzewska and Lasota [10] investigated the delay differential equation

$$x'(t) = -\alpha x(t) + \beta e^{-\gamma x(t-\tau)}, \quad t \ge 0.$$

as a model for the survival of red blood cells in an animal. The oscillation and global attractivity of this equation have been studied by Kulenovic and Ladas [9]. A few similar generalized model were investigated by many authors, see Xu and Li [12], Graef et al. [4], Jiang and Wei [8], Gopalsamy and Trofimchuk [3]. Recently, Liu [2] studied the existence and global attractivity of unique positive periodic solution for the Lasota-Wazewska model

$$x'(t) = -a(t)x(t) + \sum_{i=1}^{m} p_i(t)e^{-q_i(t)x(t-\tau_i(t))},$$

by using a fixed point theorem, and got some brief conditions to guarantee the conclusions. In [7], the existence of one positive periodic solution was proved by Mawhin's continuation theorem. In [13], the existence of multiple positive periodic solutions was studied by employing Krasnoselskii fixed point theorem in cones.

Though most models are described with differential equations, the discrete-time models are more appropriate than the continuous ones when the size of the population is rarely small or the population has non-overlapping generations [1]. To our knowledge, studies on discrete models by using fixed point theorem are scarce, see [13]. In this paper, we consider the Lasota-Wazewska difference equation

$$\Delta x(k) = -a(k)x(k) + \sum_{i=1}^{m} p_i(k)e^{-q_i(k)x(k-\tau_i(k))}.$$
 (1.1)

We will use the following hypotheses:

²⁰⁰⁰ Mathematics Subject Classification. 39-99, 47H10.

Key words and phrases. Positive periodic solution; attractivity; fixed point; discrete model. ©2006 Texas State University - San Marcos.

Submitted June 14, 2006. Published August 18, 2006.

Supported by grant 10271044 from the NNSF of China.

- (H1) $a: Z \to (0,1)$ is continuous and ω -periodic function. i.e., $a(k) = a(k+\omega)$, such that $a(k) \not\equiv 0$, where ω is a positive constant denoting the common period of the system.
- (H2) p_i and q_i are positive continuous ω -periodic functions, τ_i are continuous ω -periodic functions $(i = 1, 2, \dots)$.

For convenience, we shall use the notation:

$$\bar{h} = \max_{0 < k < \omega} \{h(k)\}, \quad \underline{h} = \min_{0 < k < \omega} \{h(k)\}.$$

where h is a continuous ω -periodic function. Also, we use

$$q = \max_{1 \le i \le m} \{\bar{q}_i\}, \quad \tau = \max_{1 \le i \le m} \{\bar{\tau}_i\}, \quad p = \omega \sum_{i=1}^m p_i(s), \quad (k \le s \le k + \omega - 1),$$

$$A = \frac{\prod_{s=0}^{\omega - 1} (1 - a(s))}{1 - \prod_{s=0}^{\omega - 1} (1 - a(s))},$$

$$B = \frac{1}{1 - \prod_{s=0}^{\omega - 1} (1 - a(s))}, \quad \sigma = \prod_{s=0}^{\omega - 1} (1 - a(s)) = \frac{A}{B} < 1.$$

Considering the actual applications, we assume the solutions of (1.1) with initial condition

$$x(k) = \phi(k) > 0$$
 for $-\tau \le k \le 0$.

To prove our result, we state the following concepts and lemmas.

Definition. Let X be Banach space and P be a closed, nonempty subset, P is said to be a cone if

- (i) $\lambda x \in P$ for all $x \in P$ and $\lambda \ge 0$
- (ii) $x \in P, -x \in P$ implies $x = \theta$.

The semi-order induced by the cone P is denoted by " \leq ". That is, $x \leq y$ if and $y - x \in P$.

Definition. A cone P of X is said to be normal if there exists a positive constant δ , such that $||x+y|| \geq \delta$ for any $x, y \in P$. ||x|| = ||y|| = 1.

Definition. Let P be a cone of X and $T: P \to P$ an operator. T is called decreasing, if $\theta \le x \le y$ implies $Tx \ge Ty$.

Lemma 1.1 (Guo [5, 6]). Suppose that

- (i) P is normal cone of a real Banach space X and $T: P \rightarrow P$ is decreasing and completely continuous;
- (ii) $T\theta > \theta$, $T^2 \ge \varepsilon_0 T\theta$, where $\varepsilon_0 > 0$;
- (iii) For any $\theta < x \le T\theta$ and $0 < \lambda < 1$, there exists $\eta = \eta(x, \lambda) > 0$ such that

$$T(\lambda x) \le [\lambda(1+\eta)]^{-1} Tx. \tag{1.2}$$

Then T has exactly one positive fixed point $\tilde{x} > \theta$. Moreover, constructing the sequence $x_n = Tx_{n-1}$ (n = 1, 2, 3, ...) for any initial $x_0 \in P$, it follows that $||x_n - \tilde{x}|| \to 0$ as $n \to \infty$.

2. Positive periodic solutions

To apply Lemma 1.1, let $X = \{x(k) : x(k) = x(k+\omega)\}, ||x|| = \max\{|x(k)| : x \in X\}.$ Then X is a Banach space endowed with the norm $||\cdot||$.

Define the cone

$$P = \{ x \in X : x(k) \ge 0, \ x(k) \ge \sigma ||x|| \}.$$

Lemma 2.1. If x(k) is a positive ω -periodic solution of (1.1), then $x(k) \geq \sigma ||x||$.

Proof. It is clear that (1.1) is equivalent to

$$x(k+1) = (1 - a(k))x(k) + \sum_{i=1}^{m} p_i(k)e^{-q_i(k)x(k-\tau_i(k))}.$$

Multiplying the two sides by $\prod_{s=0}^{k} (1 - a(s))^{-1}$, we have

$$\Delta\left(x(k)\prod_{s=0}^{k-1}\frac{1}{1-a(s)}\right) = \prod_{s=0}^{k}\frac{1}{1-a(s)}\sum_{i=1}^{m}p_{i}(k)e^{-q_{i}(k)x(k-\tau_{i}(k))}.$$

Summing the two sides from k to $k + \omega - 1$,

$$x(k) = \sum_{s=k}^{k+\omega-1} G(k,s) \sum_{i=1}^{m} p_i(s) e^{-q_i(s)x(k-\tau_i(k))}.$$
 (2.1)

where

$$G(k,s) = \frac{\prod_{r=s+1}^{k+\omega-1} (1-a(r))}{1-\prod_{r=0}^{\omega-1} (1-a(r))}, \quad k \le s \le k+\omega-1.$$

Then, x(k) is an ω -periodic solution of (1.1) if and only if x(k) is ω -periodic solution of difference equation (2.1). It is easy to calculate that

$$A := \frac{\prod_{s=0}^{\omega-1} (1 - a(s))}{1 - \prod_{s=0}^{\omega-1} (1 - a(s))} \le G(k, s) \le \frac{1}{1 - \prod_{s=0}^{\omega-1} (1 - a(s))} =: B,$$

$$A = \frac{\sigma}{1 - \sigma}, \quad B = \frac{1}{1 - \sigma}, \quad \sigma = \frac{A}{B} < 1,$$

$$\|x\| \le B \sum_{s=k}^{k+\omega-1} \sum_{i=1}^{m} p_i(s) e^{-q_i(s)x(s - \tau_i(s))},$$

$$x(t) \ge A \sum_{s=k}^{k+\omega-1} \sum_{i=1}^{m} p_i(s) e^{-q_i(s)x(s - \tau_i(s))}.$$

Therefore, $x(k) \ge \frac{A}{B} ||x|| = \sigma ||x||$.

Define the mapping $T: X \to X$ by

$$(Tx)(k) = \sum_{s=k}^{k+\omega-1} G(k,s) \sum_{i=1}^{m} p_i(s) e^{-q_i(s)x(k-\tau_i(k))},$$
 (2.2)

for $x \in X$, $k \in Z$. It is not difficult to see that T is a completely continuous operator on X, and a periodic solution of (1.1) is the fixed point of operator T.

Lemma 2.2. Under the conditions above, $TP \subset P$.

Proof. For each $x \in P$, we have

$$||Tx|| \le B \sum_{s=k}^{k+\omega-1} G(k,s) \sum_{i=1}^{m} p_i(s) e^{-q_i(s)x(k-\tau_i(k))}$$

From (2.2), we obtain

$$Tx \ge A \sum_{s=k}^{k+\omega-1} G(k,s) \sum_{i=1}^{m} p_i(s) e^{-q_i(s)x(k-\tau_i(k))} \ge \frac{A}{B} \|Tx\| = \sigma \|Tx\|.$$

Therefore, $Tx \in P$, thus $TP \subset P$.

Lemma 2.3. x(k) is positive and bounded on $[0, \infty)$.

Proof. Obviously, x(k) is defined on $[-\tau, +\infty)$ and positive on $[0, +\infty)$. Now, we prove that every solution of (1.1) is bounded, otherwise, there exists an unbounded solution x(k). Thus, for arbitrary $M > Bm\omega \bar{p}/e^{\underline{q}M}$, there exists N = N(M), when k > N, x(k) > M. From (2.1), we have

$$x(k) \le B \sum_{s=k}^{k+\omega-1} \sum_{i=1}^{m} \overline{p}e^{-\underline{q}M} = Bm\omega \overline{p}/e^{\underline{q}M} < M.$$

where

$$\underline{q} = \min_{1 \le i \le m} \{\underline{q_i}\}, \quad \overline{p} = \max_{1 \le i \le m} \{\overline{p_i}\},$$

which is a contradiction. Consequently, x(k) is bounded.

Now, we are in position to state the main results in this section.

Theorem 2.4. Assume that (H1)-(H2) hold and $Bpq \leq 1$. Then (1.1) has a unique ω -periodic positive solution $\tilde{x}(t)$. Moreover,

$$||x(k) - \tilde{x}|| \to 0 (k \to \infty) m$$

where x(k) = Tx(k-1)(k=1,2,...) for any initial $x_0 \in P$.

Proof. Firstly, it is clear that the cone P is normal. By an easy calculation, we know that T is decreasing, in fact

$$(Tx)(k) - (Ty)(k)$$

$$= \sum_{s=k}^{k+\omega-1} G(k,s) \sum_{i=1}^{m} p_i(s) (e^{-q_i(s)x(s-\tau_i(s))} - e^{-q_i(s)y(s-\tau_i(s))})$$

$$= \sum_{s=k}^{k+\omega-1} G(k,s) \sum_{i=1}^{m} p_i(s) e^{-q_i(s)x(s-\tau_i(s))} [1 - e^{-q_i(s)(y(s-\tau_i(s))-x(s-\tau_i(s)))}] \ge 0$$

when $\theta \le x \le y$, i.e., $y(s - \tau_i(s)) - x(s - \tau_i(s)) \ge 0$.

Secondly, we will show that the condition (ii) of Lemma 1.1 is satisfied. From (2.2), we have

$$Bp \ge (T\theta)(k) = \sum_{s=k}^{k+\omega-1} G(k,s) \sum_{i=1}^{m} p_i(s) \ge Ap > 0.$$

Thus, $T\theta > \theta$, and

$$(T^{2}\theta)(k) = \sum_{s=k}^{k+\omega-1} G(k,s) \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s)(T\theta)(s-\tau_{i}(s))}$$

$$\geq e^{-Bpq} \sum_{s=k}^{k+\omega-1} G(k,s) \sum_{i=1}^{m} p_{i}(s)$$

$$= e^{-Bpq}(T\theta)(k).$$

So that $T^2\theta \geq \varepsilon_0 T\theta$, where $\varepsilon_0 = e^{-Bpq} > 0$.

Finally, we prove that the condition (iii) of Lemma 1.1 is also satisfied. For any $\theta < x < T\theta$ and $0 < \lambda < 1$, we have $||x|| \le ||T\theta|| \le Bp$ and

$$T(\lambda x)(k) = \sum_{s=k}^{k+\omega-1} G(k,s) \sum_{i=1}^{m} p_i(s) e^{-\lambda q_i(s)x(s-\tau_i(s))}$$

$$= \sum_{s=k}^{k+\omega-1} G(k,s) \sum_{i=1}^{m} p_i(s) e^{-q_i(s)x(s-\tau_i(s))} e^{(1-\lambda)q_i(s)x(s-\tau_i(s))}$$

$$\leq e^{(1-\lambda)Bpq}(Tx)(k)$$

$$= \lambda^{-1} \lambda e^{(1-\lambda)Bpq}(Tx)(k).$$
(2.3)

Set $f(\lambda) = \lambda e^{Bpq(1-\lambda)}$; therefore, $f'(\lambda) = (1 - Bpq\lambda)e^{Bpq(1-\lambda)} > 0$ for $\lambda \in (0,1)$. Thus $0 < f(\lambda) < f(1) = 1$. so set $f(\lambda) = (1 + \eta)^{-1}$, where $\eta = \eta(\lambda) > 0$. From (2.3), we have

$$T(\lambda x) \le \lambda^{-1} f(\lambda) Tx = \lambda^{-1} (1+\eta)^{-1} Tx = [\lambda(1+\eta)]^{-1} Tx.$$

By Lemma 1.1, we see that T has exactly one positive fixed point $\tilde{x} > \theta$. Moreover, $||x(k) - \tilde{x}|| \to 0 (n \to \infty)$, where $x(k) = Tx(k-1)(k=1,2,\ldots)$ for any initial $x_0 \in P$ for $k \in N$.

Remark 2.5. Theorem 2.4 not only gives the sufficient conditions for the existence of unique positive periodic solution of (1.1), but also contains the conclusion of convergence of x(k) to \tilde{x} .

Remark 2.6. From the statements above, we have

$$\tilde{x}(k) = (T\tilde{x})(k) = \sum_{s=k}^{k+\omega-1} G(k,s) \sum_{i=1}^{m} p_i(s) e^{-q_i(s)\tilde{x}(s-\tau_i(s))} \ge Ape^{-q\|\tilde{x}\|} > 0, \quad (2.4)$$

$$Ape^{-Bpq} \le \tilde{x}(k) \le Bp \ge 0. \quad (2.5)$$

which will be used in the following section.

3. Global attractivity of the solution to (1.1)

Theorem 3.1. Assume that (H1)-(H2) hold and $Bpq \leq 1$. Then the unique ω -periodic solution $\tilde{x}(k)$ of (1.1) is a global attractor of all other positive solutions of (1.1).

Proof. Let $y(k) = x(k) - \tilde{x}(k)$, where x(k) is arbitrary solution of (1.1), Then it is easy to obtain

$$\Delta y(k) = \Delta(x(k) - \tilde{x}(k))
= \Delta x(k) - \Delta \tilde{x}(k)
= -a(k)y(k) + \sum_{i=1}^{m} p_i(s)e^{-q_i(s)\tilde{x}(s-\tau_i(s))}(e^{-q_i(s)y(s-\tau_i(s))} - 1).$$
(3.1)

Now, we shall prove $\lim_{k\to\infty} y(k) = 0$ in the following three cases:

Case 1. Suppose that y(t) is eventually positive solution of (3.1). It is easy to see that $\triangle y(k) < 0$ for all sufficiently large k, so $\lim_{k \to \infty} y(k) = l \ge 0$. we claim that l = 0. If l > 0, then there exists N > 0 such that $\triangle y(k) < -la(k), k \ge N$. Summing the two sides of the inequality from N to ∞ , we have

$$l - y(N) = \sum_{k=N}^{\infty} \Delta y(k) < -l \sum_{k=N}^{\infty} a(k) = -\infty.$$

which is a contradiction, so l = 0.

Case 2. Suppose that y(k) is eventually negative. By similar proof as above we obtain that l=0.

Case 3. Suppose that y(k) is oscillatory, from Lemma 2.3, we know y(k) is bounded. We set

$$\lim_{k\to\infty}\sup y(k)=c\geq 0\quad\text{and}\quad \lim_{k\to\infty}\inf y(k)=d\leq 0. \tag{3.2}$$

For arbitrarily small positive constant ϵ , $d - \epsilon < 0$ and $c + \epsilon > 0$. In view of (3.2), there exists $N_{\epsilon} > 0$, such that

$$d - \epsilon < y(k) < c + \epsilon \quad \text{for all } k \ge N_{\epsilon} - \tau.$$
 (3.3)

From (3.1) and (3.3), we have

$$y(k+1) - (1 - a(k))y(k) = \sum_{i=1}^{m} p_i(s)e^{-q_i(s)\tilde{x}(s - \tau_i(s))} (e^{-q_i(s)y(s - \tau_i(s))} - 1).$$

Multiplying the two sides by $\prod_{s=0}^{k} (1 - a(s))^{-1}$, we have

$$\triangle(y(k) \prod_{s=0}^{k-1} \frac{1}{1 - a(s)})$$

$$= \prod_{s=0}^{k} \frac{1}{1 - a(s)} \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s)\tilde{x}(s - \tau_{i}(s))} (e^{-q_{i}(s)y(s - \tau_{i}(s))} - 1)$$

$$\leq (e^{-q(d - \epsilon)} - 1) \prod_{s=0}^{k} \frac{1}{1 - a(s)} \sum_{i=1}^{m} p_{i}(s) e^{-q_{i}(s)\tilde{x}(s - \tau_{i}(s))}$$

$$= (e^{-q(d - \epsilon)} - 1) \triangle(\tilde{x}(k) \prod_{s=0}^{k-1} \frac{1}{1 - a(s)}).$$
(3.4)

Summing the two sides from N_{ϵ} to ∞ , for $k \geq N_{\epsilon}$, we have

$$y(k+1) \prod_{s=0}^{k} \frac{1}{1-a(s)} - y(N_{\epsilon}) \prod_{s=0}^{N_{\epsilon}-1} \frac{1}{1-a(s)}$$

$$\leq (e^{-q(d-\epsilon)} - 1) \left[\tilde{x}(k+1) \prod_{s=0}^{k} \frac{1}{1-a(s)} - \tilde{x}(N_{\epsilon}) \prod_{s=0}^{N_{\epsilon}-1} \frac{1}{1-a(s)} \right].$$
(3.5)

Thus

$$y(k+1) \le y(N_{\epsilon}) \prod_{s=N_{\epsilon}}^{k} (1-a(s)) + (e^{-q(d-\epsilon)} - 1) [\tilde{x}(k+1) - \tilde{x}(N_{\epsilon}) \prod_{s=N_{\epsilon}}^{k} (1-a(s))]. \quad (3.6)$$

From (3.2), (3.6) and Remark 2.6, we have

$$c \leq Bp(e^{-q(d-\epsilon)}-1).$$

As ϵ is arbitrary small, we have that

$$c \le Bp(e^{-qd} - 1). \tag{3.7}$$

By the similar method as above, we obtain

$$d > Bp(e^{-qc} - 1). (3.8)$$

From results in [2, 12], $Bpq \le 1$ implies that (3.7), (3.8) have a unique solution c = d = 0. Therefore,

$$\lim_{k \to \infty} y(k) = \lim_{k \to \infty} [x(k) - \tilde{x}(k)] = 0.$$

The proof is complete.

References

- R. P. Agarwal; Difference Equations and Inequalities. Theory, Methods, and Applications, 2nd ed., Monographs and Textbooks in Pure and Applied Mathematics, vol. 228, Marcel Dekker, New York, 2000.
- [2] G. Liu, A. Zhao, J. Yan; Existence and global attractivity of unique positive periodic solution for a Lasota-Wazewska model, Nonlinear Analysis 64 (2006), 1737-1746.
- [3] K. Gopalsamy, S. T. Trofimchuk; Almost periodic solutions of Lasota-Wazewska type differential equation, J.Math. Anal. Appl. 237 (1999) 106-127.
- [4] J. R. Graef, C. Qian, P. W. Spikes; Oscillation and global attractivity in a periodic delay equation, Can. Math. Bull. 38 (1996), 275-283.
- [5] D. Guo; Some fixed point theorems and applications, Nonlinear Anal. TMA10 (1986), 1293-1302.
- [6] D. Guo; Nonlinear Functional Analysis, Shandong Science and Technology Press, Jinan, 2001 (in Chinese).
- [7] D.Q. Jiang, R. P. Agarwal; Existence of positive periodic solutions for a class of difference equations with several deviating arguments, Advance in Difference Equation IV, Computers and Mathematics with Applications, 45 (2003), 1303-1309.
- [8] D. Jiang, J. Wei; Existence of positive periodic solutions for nonautonomous delay differential equations, Chinese Ann. Math. Ser. A20 (1999), 715-720 (in Chinese).
- [9] M. R. S. Kulenovic, G. Ladas; Linearized oscillations in population dynamics, Bull. Mth. Biol. 49 (1987), 615-627.
- [10] M. Wazewska-Czyzewska, A. Lasota; Mathematical problems of the dynamics of red blood cells system, Ann. Polish Math. Soc. Ser. III Appl. Math. 17 (1998), 23-40.
- [11] L. Wang, W. T. Li; Periodic solutions and stability for a delayed discrete ratio-dependent predator-prey system with Holling-type functional response, Discrete Dynamics in Nature and Society 2004:2 (2004), 325-343.

- [12] W. Xu, J. Li; Global attractivity of the model for the survival of red blood cells with several delays, Ann. Differential Equations 14 (1998) 257-263.
- [13] Z. Zeng; Existence of positive periodic solutions for a class of nonautonomous difference equations, Eletronic Journal of Differential Equations, Vol. 2006 (2006), No. 03, pp. 1-18.

ZHENG ZHOU

DEPARTMENT OF APPLIED MATHEMATICS, HUNAN UNIVERSITY, CHANGSHA 410082, CHINA $E\text{-}mail\ address$: zzzzhhhoou@yahoo.com.cn

Zhengqiu Zhang

DEPARTMENT OF APPLIED MATHEMATICS, HUNAN UNIVERSITY, CHANGSHA 410082, CHINA E-mail address: z_q_zhang@sina.com