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EXISTENCE AND GLOBAL ATTRACTIVITY POSITIVE
PERIODIC SOLUTIONS FOR A DISCRETE MODEL

ZHENG ZHOU, ZHENGQIU ZHANG

Abstract. Using a fixed point theorem in cones, we obtain conditions that

guarantee the existence and attractivity of the unique positive periodic solution
for a discrete Lasota-Wazewska model.

1. Introduction

Wazewska-Czyzewska and Lasota [10] investigated the delay differential equation

x′(t) = −αx(t) + βe−γx(t−τ), t ≥ 0.

as a model for the survival of red blood cells in an animal. The oscillation and global
attractivity of this equation have been studied by Kulenovic and Ladas [9]. A few
similar generalized model were investigated by many authors, see Xu and Li [12],
Graef et al. [4], Jiang and Wei [8], Gopalsamy and Trofimchuk [3]. Recently, Liu
[2] studied the existence and global attractivity of unique positive periodic solution
for the Lasota-Wazewska model

x′(t) = −a(t)x(t) +
m∑

i=1

pi(t)e−qi(t)x(t−τi(t)),

by using a fixed point theorem, and got some brief conditions to guarantee the
conclusions. In [7], the existence of one positive periodic solution was proved by
Mawhin’s continuation theorem. In [13], the existence of multiple positive periodic
solutions was studied by employing Krasnoselskii fixed point theorem in cones.

Though most models are described with differential equations, the discrete-time
models are more appropriate than the continuous ones when the size of the popu-
lation is rarely small or the population has non-overlapping generations [1]. To our
knowledge, studies on discrete models by using fixed point theorem are scarce, see
[13]. In this paper, we consider the Lasota-Wazewska difference equation

∆x(k) = −a(k)x(k) +
m∑

i=1

pi(k)e−qi(k)x(k−τi(k)). (1.1)

We will use the following hypotheses:
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(H1) a : Z → (0, 1) is continuous and ω-periodic function. i.e., a(k) = a(k + ω),
such that a(k) 6≡ 0, where ωis a positive constant denoting the common
period of the system.

(H2) pi and qi are positive continuous ω-periodic functions, τi are continuous
ω-periodic functions (i = 1, 2, . . . ).

For convenience, we shall use the notation:

h̄ = max
0≤k≤ω

{h(k)}, h = min
0≤k≤ω

{h(k)}.

where h is a continuous ω-periodic function. Also, we use

q = max
1≤i≤m

{q̄i}, τ = max
1≤i≤m

{τ̄i}, p = ω
m∑

i=1

pi(s), (k ≤ s ≤ k + ω − 1),

A =
∏ω−1

s=0 (1− a(s))

1−
∏ω−1

s=0 (1− a(s))
,

B =
1

1−
∏ω−1

s=0 (1− a(s))
, σ =

ω−1∏
s=0

(1− a(s)) =
A

B
< 1.

Considering the actual applications, we assume the solutions of (1.1) with initial
condition

x(k) = φ(k) > 0 for − τ ≤ k ≤ 0.

To prove our result, we state the following concepts and lemmas.
Definition. Let X be Banach space and P be a closed, nonempty subset, P is said
to be a cone if

(i) λx ∈ P for all x ∈ P and λ ≥ 0
(ii) x ∈ P,−x ∈ P implies x = θ.

The semi-order induced by the cone P is denoted by ” ≤ ”. That is, x ≤ y if and
y − x ∈ P .
Definition. A cone P of X is said to be normal if there exists a positive constant
δ, such that ‖x + y‖ ≥ δ for any x, y ∈ P . ‖x‖ = ‖y‖ = 1.
Definition. Let P be a cone of X and T : P → P an operator. T is called
decreasing, if θ ≤ x ≤ y implies Tx ≥ Ty.

Lemma 1.1 (Guo [5, 6]). Suppose that
(i) P is normal cone of a real Banach space X and T : P → P is decreasing

and completely continuous;
(ii) Tθ > θ, T 2 ≥ ε0Tθ, where ε0 > 0;
(iii) For any θ < x ≤ Tθ and 0 < λ < 1, there exists η = η(x, λ) > 0 such that

T (λx) ≤ [λ(1 + η)]−1Tx. (1.2)

Then T has exactly one positive fixed point x̃ > θ. Moreover, constructing the
sequence xn = Txn−1 (n = 1, 2, 3, . . . ) for any initial x0 ∈ P , it follows that
‖xn − x̃‖ → 0 as n →∞.

2. Positive periodic solutions

To apply Lemma 1.1, let X = {x(k) : x(k) = x(k +ω)}, ‖x‖ = max{| x(k) |: x ∈
X}. Then X is a Banach space endowed with the norm ‖ · ‖.
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Define the cone

P = {x ∈ X : x(k) ≥ 0, x(k) ≥ σ‖x‖}.

Lemma 2.1. If x(k) is a positive ω-periodic solution of (1.1),then x(k) ≥ σ‖x‖.

Proof. It is clear that (1.1) is equivalent to

x(k + 1) = (1− a(k))x(k) +
m∑

i=1

pi(k)e−qi(k)x(k−τi(k)).

Multiplying the two sides by
∏k

s=0(1− a(s))−1, we have

∆
(
x(k)

k−1∏
s=0

1
1− a(s)

)
=

k∏
s=0

1
1− a(s)

m∑
i=1

pi(k)e−qi(k)x(k−τi(k)).

Summing the two sides from k to k + ω − 1,

x(k) =
k+ω−1∑

s=k

G(k, s)
m∑

i=1

pi(s)e−qi(s)x(k−τi(k)). (2.1)

where

G(k, s) =
∏k+ω−1

r=s+1 (1− a(r))

1−
∏ω−1

r=0 (1− a(r))
, k ≤ s ≤ k + ω − 1.

Then, x(k) is an ω-periodic solution of (1.1) if and only if x(k) is ω-periodic solution
of difference equation (2.1). It is easy to calculate that

A :=
∏ω−1

s=0 (1− a(s))

1−
∏ω−1

s=0 (1− a(s))
≤ G(k, s) ≤ 1

1−
∏ω−1

s=0 (1− a(s))
=: B,

A =
σ

1− σ
, B =

1
1− σ

, σ =
A

B
< 1,

‖x‖ ≤ B

k+ω−1∑
S=k

m∑
i=1

pi(s)e−qi(s)x(s−τi(s)),

x(t) ≥ A
k+ω−1∑

S=k

m∑
i=1

pi(s)e−qi(s)x(s−τi(s))).

Therefore, x(k) ≥ A
B ‖x‖ = σ‖x‖. �

Define the mapping T : X → X by

(Tx)(k) =
k+ω−1∑

s=k

G(k, s)
m∑

i=1

pi(s)e−qi(s)x(k−τi(k)), (2.2)

for x ∈ X, k ∈ Z. It is not difficult to see that T is a completely continuous
operator on X, and a periodic solution of (1.1) is the fixed point of operator T .

Lemma 2.2. Under the conditions above, TP ⊂ P .

Proof. For each x ∈ P , we have

‖Tx‖ ≤ B
k+ω−1∑

s=k

G(k, s)
m∑

i=1

pi(s)e−qi(s)x(k−τi(k))
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From (2.2), we obtain

Tx ≥ A
k+ω−1∑

s=k

G(k, s)
m∑

i=1

pi(s)e−qi(s)x(k−τi(k)) ≥ A

B
‖Tx‖ = σ‖Tx‖.

Therefore, Tx ∈ P , thus TP ⊂ P . �

Lemma 2.3. x(k) is positive and bounded on [0,∞).

Proof. Obviously, x(k) is defined on [−τ,+∞) and positive on [0,+∞). Now, we
prove that every solution of (1.1) is bounded, otherwise, there exists an unbounded
solution x(k). Thus, for arbitrary M > Bmωp/eqM , there exists N = N(M), when
k > N, x(k) > M . From (2.1), we have

x(k) ≤ B
k+ω−1∑

s=k

m∑
i=1

pe−qM = Bmωp/eqM < M.

where

q = min
1≤i≤m

{qi}, p = max
1≤i≤m

{p̄i},

which is a contradiction. Consequently, x(k) is bounded. �

Now, we are in position to state the main results in this section.

Theorem 2.4. Assume that (H1)-(H2) hold and Bpq ≤ 1. Then (1.1) has a unique
ω-periodic positive solution x̃(t). Moreover,

‖x(k)− x̃‖ → 0(k →∞)m

where x(k) = Tx(k − 1)(k = 1, 2, . . . ) for any initial x0 ∈ P .

Proof. Firstly, it is clear that the cone P is normal. By an easy calculation, we
know that T is decreasing, in fact

(Tx)(k)− (Ty)(k)

=
k+ω−1∑

s=k

G(k, s)
m∑

i=1

pi(s)(e−qi(s)x(s−τi(s)) − e−qi(s)y(s−τi(s)))

=
k+ω−1∑

s=k

G(k, s)
m∑

i=1

pi(s)e−qi(s)x(s−τi(s))[1− e−qi(s)(y(s−τi(s))−x(s−τi(s)))] ≥ 0

when θ ≤ x ≤ y, i.e., y(s− τi(s))− x(s− τi(s)) ≥ 0.
Secondly, we will show that the condition (ii) of Lemma 1.1 is satisfied. From

(2.2), we have

Bp ≥ (Tθ)(k) =
k+ω−1∑

s=k

G(k, s)
m∑

i=1

pi(s) ≥ Ap > 0.
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Thus, Tθ > θ, and

(T 2θ)(k) =
k+ω−1∑

s=k

G(k, s)
m∑

i=1

pi(s)e−qi(s)(Tθ)(s−τi(s))

≥ e−Bpq
k+ω−1∑

s=k

G(k, s)
m∑

i=1

pi(s)

= e−Bpq(Tθ)(k).

So that T 2θ ≥ ε0Tθ, where ε0 = e−Bpq > 0.
Finally, we prove that the condition (iii) of Lemma 1.1 is also satisfied. For any

θ < x < Tθ and 0 < λ < 1, we have ‖x‖ ≤ ‖Tθ‖ ≤ Bp and

T (λx)(k) =
k+ω−1∑

s=k

G(k, s)
m∑

i=1

pi(s)e−λqi(s)x(s−τi(s))

=
k+ω−1∑

s=k

G(k, s)
m∑

i=1

pi(s)e−qi(s)x(s−τi(s))e(1−λ)qi(s)x(s−τi(s))

≤ e(1−λ)Bpq(Tx)(k)

= λ−1λe(1−λ)Bpq(Tx)(k).

(2.3)

Set f(λ) = λeBpq(1−λ); therefore, f ′(λ) = (1−Bpqλ)eBpq(1−λ) > 0 for λ ∈ (0, 1).
Thus 0 < f(λ) < f(1) = 1. so set f(λ) = (1 + η)−1, where η = η(λ) > 0. From
(2.3), we have

T (λx) ≤ λ−1f(λ)Tx = λ−1(1 + η)−1Tx = [λ(1 + η)]−1Tx.

By Lemma 1.1, we see that T has exactly one positive fixed point x̃ > θ. Moreover,
‖x(k) − x̃‖ → 0(n → ∞), where x(k) = Tx(k − 1)(k = 1, 2, . . . ) for any initial
x0 ∈ P for k ∈ N . �

Remark 2.5. Theorem 2.4 not only gives the sufficient conditions for the existence
of unique positive periodic solution of (1.1), but also contains the conclusion of
convergence of x(k) to x̃.

Remark 2.6. From the statements above, we have

x̃(k) = (T x̃)(k) =
k+ω−1∑

s=k

G(k, s)
m∑

i=1

pi(s)e−qi(s)x̃(s−τi(s)) ≥ Ape−q‖x̃‖ > 0, (2.4)

Ape−Bpq ≤ x̃(k) ≤ Bp ≥ 0. (2.5)

which will be used in the following section.

3. Global attractivity of the solution to (1.1)

Theorem 3.1. Assume that (H1)-(H2) hold and Bpq ≤ 1. Then the unique ω-
periodic solution x̃(k) of (1.1) is a global attractor of all other positive solutions of
(1.1).
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Proof. Let y(k) = x(k)− x̃(k), where x(k) is arbitrary solution of (1.1), Then it is
easy to obtain

4y(k) = 4(x(k)− x̃(k))

= 4x(k)−4x̃(k)

= −a(k)y(k) +
m∑

i=1

pi(s)e−qi(s)x̃(s−τi(s))(e−qi(s)y(s−τi(s)) − 1).
(3.1)

Now, we shall prove limk→∞ y(k) = 0 in the following three cases:
Case 1. Suppose that y(t) is eventually positive solution of (3.1). It is easy to
see that 4y(k) < 0 for all sufficiently large k, so limk→∞ y(k) = l ≥ 0. we claim
that l = 0. If l > 0, then there exists N > 0 such that 4y(k) < −la(k), k ≥ N .
Summing the two sides of the inequality from N to ∞, we have

l − y(N) =
∞∑

k=N

4y(k) < −l
∞∑

k=N

a(k) = −∞.

which is a contradiction, so l = 0.
Case 2. Suppose that y(k) is eventually negative. By similar proof as above we
obtain that l = 0.
Case 3. Suppose that y(k) is oscillatory, from Lemma 2.3, we know y(k) is bounded.
We set

lim
k→∞

sup y(k) = c ≥ 0 and lim
k→∞

inf y(k) = d ≤ 0. (3.2)

For arbitrarily small positive constant ε, d− ε < 0 and c + ε > 0. In view of (3.2),
there exists Nε > 0, such that

d− ε < y(k) < c + ε for all k ≥ Nε − τ. (3.3)

From (3.1)and (3.3),we have

y(k + 1)− (1− a(k))y(k) =
m∑

i=1

pi(s)e−qi(s)x̃(s−τi(s))(e−qi(s)y(s−τi(s)) − 1).

Multiplying the two sides by
∏k

s=0(1− a(s))−1, we have

4(y(k)
k−1∏
s=0

1
1− a(s)

)

=
k∏

s=0

1
1− a(s)

m∑
i=1

pi(s)e−qi(s)x̃(s−τi(s))(e−qi(s)y(s−τi(s)) − 1)

≤ (e−q(d−ε) − 1)
k∏

s=0

1
1− a(s)

m∑
i=1

pi(s)e−qi(s)x̃(s−τi(s))

= (e−q(d−ε) − 1)4(x̃(k)
k−1∏
s=0

1
1− a(s)

).

(3.4)
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Summing the two sides from Nε to∞, for k ≥ Nε, we have

y(k + 1)
k∏

s=0

1
1− a(s)

− y(Nε)
Nε−1∏
s=0

1
1− a(s)

≤ (e−q(d−ε) − 1)[x̃(k + 1)
k∏

s=0

1
1− a(s)

− x̃(Nε)
Nε−1∏
s=0

1
1− a(s)

].

(3.5)

Thus

y(k+1) ≤ y(Nε)
k∏

s=Nε

(1−a(s))+(e−q(d−ε)−1)[x̃(k+1)−x̃(Nε)
k∏

s=Nε

(1−a(s))]. (3.6)

From (3.2), (3.6) and Remark 2.6, we have

c ≤ Bp(e−q(d−ε) − 1).

As ε is arbitrary small, we have that

c ≤ Bp(e−qd − 1). (3.7)

By the similar method as above, we obtain

d ≥ Bp(e−qc − 1). (3.8)

From results in [2, 12], Bpq ≤ 1 implies that (3.7), (3.8) have a unique solution
c = d = 0. Therefore,

lim
k→∞

y(k) = lim
k→∞

[x(k)− x̃(k)] = 0.

The proof is complete. �
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