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EXISTENCE, MULTIPLICITY AND INFINITE SOLVABILITY OF
POSITIVE SOLUTIONS FOR p-LAPLACIAN DYNAMIC

EQUATIONS ON TIME SCALES

DA-BIN WANG

Abstract. In this paper, by using Guo-Krasnosel’skii fixed point theorem in

cones, we study the existence, multiplicity and infinite solvability of positive
solutions for the following three-point boundary value problems for p-Laplacian

dynamic equations on time scales

[Φp(u4(t))]O + a(t)f(t, u(t)) = 0, t ∈ [0, T ]T,

u(0)−B0(u4(η)) = 0, u4(T ) = 0.

By multiplicity we mean the existence of arbitrary number of solutions.

1. Introduction

Let T be a closed nonempty subset of R, and let T have the subspace topology
inherited from the Euclidean topology on R. In some of the current literature, T is
called a time scale (or measure chain). For notation, we shall use the convention
that, for each interval J of R,

JT = J ∩ T.

The theory of dynamic equations on time scales has become a new important math-
ematical branch (see, for example [1, 8, 16]) since it was initiated by Hilger [14]. At
the same time, boundary-value problems (BVPs) for scalar dynamic equations on
time scales has received considerable attention [2, 3, 4, 5, 6, 9, 10, 11]. The purpose
of this paper is to investigate the existence, multiplicity and infinite solvability of
positive solutions for p-Laplacian dynamic equations on time scales

[Φp(u4(t))]O + a(t)f(t, u(t)) = 0, t ∈ [0, T ]T, (1.1)

satisfying the boundary conditions

u(0)−B0(u4(η)) = 0, u4(T ) = 0, (1.2)

or
u4(0) = 0, u(T ) + B1(u4(η)) = 0, (1.3)
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where Φp(s) is p-Laplacian operator, i.e., Φp(s) = |s|p−2s, p > 1, (Φp)−1 = Φq,
1
p + 1

q = 1, η ∈ (0, ρ(T ))T. Here, by multiplicity we mean the existence of m

solutions, where m is an arbitrary natural number.
In this paper we assume the following hypotheses:

(H1) f : [0, T ]T × R+ → R+ is continuous (R+ denotes the nonnegative real
numbers)

(H2) a : T → R+ is left dense continuous (i.e., a ∈ Cld(T, R+)) and does not
vanish identically on any closed subinterval of [0, T ]T, where Cld(T, R+)
denotes the set of all left dense continuous functions from T to R+.

(H3) B0(v) and B1(v) are both continuous odd functions defined on R and satisfy
that there exist C,D > 0 such that

Dv ≤ Bj(v) ≤ Cv, for all v ≥ 0, j = 0, 1.

We remark that by a solution u of (1.1), (1.2) (respectively (1.1),(1.3)), we mean
u : T → R is delta differentiable, u4 : Tκ → R is nabla differentiable on Tκ ∩ Tκ

and u4∇ : Tκ ∩ Tκ → R is continuous, and u satisfies boundary conditions (1.2)
(respectively (1.3)). If u4∇(t) ≤ 0 on [0, T ]Tκ∩Tκ

, then we say u is concave on
[0, T ]T.

Anderson, Avery and Henderson [5] considered the problem

[Φp(u4(t))]O + c(t)f(u(t)) = 0, t ∈ (a, b)T,

u(a)−B0(u4(v)) = 0, u4(b) = 0,

where v ∈ (a, b)T, f ∈ C(R+, R+), c ∈ Cld((a, b)T, R+) and Kmx ≤ B0(x) ≤
KMx for some positive constants Km, KM . They established the existence result
of at least one positive solution by a fixed point theorem of cone expansion and
compression of functional type.

Very recently, in the case f(t, l) = f(l), the existence of two positive solutions for
the problem (1.1), (1.2) and (1.1), (1.3) has been established by He [13] by using a
new double fixed-point theorem due to Avery, et al [7] in a cone.

In this paper, we shall apply the method arising in papers [17, 18] to problem
(1.1), (1.2). The main ingredient is the Guo-Krasnosel’skii fixed point theorem in
cone. By considering the properties of f on a bounded set of [0, T ]T×R+, we shall
establish a basic existence criterion, that is theorem 3.1. Then, we shall prove the
existence of m positive solutions (in section 4) and the existence of infinitely many
positive solutions (in section 5).

In the remainder of this section we will provide without proof several founda-
tional definitions and results from the calculus on time scales so that the paper is
self-contained. For more details, one can see [1, 6, 8, 14, 16].

Definition 1.1. For t < sup T and r > inf T, define the forward jump operator σ
and the backward jump operator ρ, respectively,

σ(t) = inf{τ ∈ T|τ > t} ∈ T, ρ(r) = sup{τ ∈ T|τ < r} ∈ T

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered, and if ρ(r) < r, r is said
to be left scattered. If σ(t) = t, t is said to be right dense, and if ρ(r) = r, r is
said to be left dense. If T has a right scattered minimum m, define Tκ = T− {m};
otherwise set Tκ = T. If T has a left scattered maximum M , define Tκ = T−{M};
otherwise set Tκ = T.
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Definition 1.2. For x : T →R and t ∈ Tκ, we define the delta derivative of x(t),
x4(t), to be the number (when it exists), with the property that, for any ε > 0,
there is a neighborhood U of t such that

|[x(σ(t))− x(s)]− x4(t)[σ(t)− s]| < ε|σ(t)− s|,

for all s ∈ U . For x : T →R and t ∈ Tκ, we define the nabla derivative of x(t),
x∇(t), to be the number (when it exists), with the property that, for any ε > 0,
there is a neighborhood V of t such that

|[x(ρ(t))− x(s)]− x∇(t)[ρ(t)− s]| < ε|ρ(t)− s|,

for all s ∈ V .

If T = R, then x4(t) = x∇(t) = x′(t). If T = Z, then x4(t) = x(t + 1) − x(t)
is the forward difference operator while x∇(t) = x(t) − x(t − 1) is the backward
difference operator.

Definition 1.3. If F4(t) = f(t), then we define the delta integral by∫ t

a

f(s)4s = F (t)− F (a).

If Φ∇(t) = f(t), then we define the nabla integral by∫ t

a

f(s)∇s = Φ(t)− Φ(a).

Throughout this paper, we assume T is a nonempty closed subset of R with
0 ∈ Tκ, T ∈ Tκ.

2. Preliminaries

Consider the Banach space E = Cld([0, T ]T, R) with norm ‖u‖ = supt∈[0,T ]T |u(t)|.
Then define the cone by

K =
{
u ∈ E| u is concave and nonnegative valued on [0, T ]T, and u4(T ) = 0

}
.

From [13], we know that if u ∈ K, then

inf
t∈[η,T ]T

u(t) ≥ (η/T )‖u‖.

We define a operator F : K → E by

(Fu)(t) = B0(Φq(
∫ T

η

a(r)f(r, u(r))∇r)) +
∫ t

0

Φq(
∫ T

s

a(r)f(r, u(r))∇r)4s,

and from [13], we also know F : K → K is completely continuous. We denote the
constants

A =
[
CΦq(

∫ T

η

a(r)∇r)+
∫ T

0

Φq(
∫ T

s

a(r)∇r)4s
]−1

, B =
[
DΦq(

∫ T

η

a(r)∇r)
]−1

.
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Clearly, 0 < A < B. The following symbols are used in this paper:

α(l) = max{f(t, c) : (t, c) ∈ [0, T ]T × [0, l]},
β(l) = min{f(t, c) : (t, c) ∈ [η, T ]T × [(η/T )l, l]},
α0 = lim inf

l→0
α(l)/lp−1, α∞ = lim inf

l→+∞
α(l)/lp−1,

β0 = lim sup
l→0

β(l)/lp−1, β∞ = lim sup
l→+∞

β(l)/lp−1;

max f0 = lim sup
l→0

max
t∈[0,T ]T

f(t, l)/lp−1, max f∞ = lim sup
l→+∞

max
t∈[0,T ]T

f(t, l)/lp−1,

min f
0

= lim inf
l→0

min
t∈[η,T ]T

f(t, l)/lp−1, min f∞ = lim inf
l→+∞

min
t∈[η,T ]T

f(t, l)/lp−1,

max f0 = lim
l→0

max
t∈[0,T ]T

f(t, l)/lp−1, max f∞ = lim
l→+∞

max
t∈[0,T ]T

f(t, l)/lp−1,

min f0 = lim
l→0

min
t∈[η,T ]T

f(t, l)/lp−1, min f∞ = lim
l→+∞

min
t∈[η,T ]T

f(t, l)/lp−1.

Lemma 2.1. (1) If max f0 < Ap−1, then α0 < Ap−1.
(2) If max f∞ < Ap−1, then α∞ < Ap−1.
(3) If min f

0
> (TBp−1)/η, then β0 > Bp−1.

(4) If min f∞ > (TBp−1)/η, then β∞ > Bp−1.

Proof. It is easy to show that the following inequalities hold:

lim sup
l→0

max
t∈[0,T ]T

f(t, l)/lp−1 ≥ lim inf
l→0

max{f(t, c) : (t, c) ∈ [0, T ]T × [0, l]}/lp−1,

lim sup
l→+∞

max
t∈[0,T ]T

f(t, l)/lp−1 ≥ lim inf
l→+∞

max{f(t, c) : (t, c) ∈ [0, T ]T × [0, l]}/lp−1,

lim inf
l→0

min
t∈[η,T ]T

f(t, l)/lp−1

≤ lim sup
l→0

min{f(t, c) : (t, c) ∈ [η, T ]T × [(η/T )l, l]}/((lp−1η)/T ),

lim inf
l→+∞

min
t∈[η,T ]T

f(t, l)/lp−1

≤ lim sup
l→+∞

min{f(t, c) : (t, c) ∈ [η, T ]T × [(η/T )l, l]}/((lp−1η)/T ).

The statements of the lemma follow from these inequalities. �

The following Lemma is crucial in our argument, which is the well-known Guo-
Krasnosel’skii fixed point theorem in cone.

Lemma 2.2 ([12, 15]). Let X be a Banach space and K ⊂ E be a cone in X.
Assume Ω1, Ω2 are bounded open subsets of K with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and
T : K → K is a completely continuous operator such that either:

(1) ‖Tw‖ ≤ ‖w‖, w ∈ ∂Ω1, and ‖Tw‖ ≥ ‖w‖, w ∈ ∂Ω2; or
(2) ‖Tw‖ ≥ ‖w‖, w ∈ ∂Ω1, and ‖Tw‖ ≤ ‖w‖, w ∈ ∂Ω2.

Then T has a fixed point in Ω2\Ω1.

3. Existence results

Theorem 3.1. Assume that there exist two positive numbers a, b such that α(a) ≤
(aA)p−1, β(b) ≥ (bB)p−1. Then problem (1.1), (1.2) has at least one positive
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solution u∗ ∈ K satisfying

min{a, b} ≤ u∗ ≤ max{a, b}.

Proof. First of all, we claim a 6= b. If not, a = b. Noticing that A < B, then

max{f(t, l) : (t, l) ∈ [0, T ]T × [0, a]}
= α(a) ≤ (aA)p−1

< (aB)p−1 ≤ β(a)

= min{f(t, c) : (t, c) ∈ [η, T ]T × [(η/T )a, a]}.
This is impossible.

Without loss of generality, we may assume a < b. We denote Ωc = {u ∈ K :
‖u‖ < c}, ∂Ωc = {u : ‖u‖ = c}. If u ∈ ∂Ωa, then 0 ≤ u ≤ a, t ∈ [0, T ]T. So,

f(t, u(t)) ≤ α(a) ≤ (aA)p−1, t ∈ [0, T ]T.

It follows that

‖Fu‖ = B0(Φq(
∫ T

η

a(r)f(r, u(r))∇r)) +
∫ T

0

Φq(
∫ T

s

a(r)f(r, u(r))∇r)4s

≤ aACΦq(
∫ T

η

a(r)∇r) + aA

∫ T

0

Φq(
∫ T

s

a(r)∇r)4s

= aA[CΦq(
∫ T

η

a(r)∇r) +
∫ T

0

Φq(
∫ T

s

a(r)∇r)4s]

= a = ‖u‖.
If u ∈ ∂Ωb, then (η/T )b = (η/T )‖u‖ ≤ mint∈[η,T ]T u(t) ≤ u(t) ≤ b, t ∈ [η, T ]T. So

f(t, u(t)) ≥ β(b) ≥ (bB)p−1, t ∈ [η, T ]T.

It follows that

‖Fu‖ = B0(Φq(
∫ T

η

a(r)f(r, u(r))∇r)) +
∫ T

0

Φq(
∫ T

s

a(r)f(r, u(r))∇r)4s

≥ B0(Φq(
∫ T

η

a(r)f(r, u(r))∇r))

≥ DbBΦq(
∫ T

η

a(r)∇r)

= b = ‖u‖.

By Lemma 2.2, F has a fixed point u∗ ∈ Ωb\Ωa. �

Corollary 3.2. Assume inf l>0 α(l)/lp−1 < Ap−1 and supl>0 β(l)/lp−1 > Bp−1.
Then problem (1.1), (1.2) has at least one positive solution.

By Theorem 3.1 and Lemma 2.1 we have the following results.

Corollary 3.3. Assume that one of the following conditions holds:
(1) α0 < Ap−1 and β∞ > Bp−1 (in particular, α0 = 0 and β∞ = +∞,
(2) β0 > Bp−1 and α∞ < Ap−1 (in particular, β0 = +∞ and α∞ = 0).

Then problem (1.1), (1.2) has at least one positive solution.

Corollary 3.4. Assume that one of the following conditions holds:
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(1) max f0 < Ap−1 and min f∞ > (TBp−1)/η (in particular, max f0 = 0 and
min f∞ = +∞)

(2) min f
0

> (TBp−1)/η and max f∞ < Ap−1(in particular, min f0 = +∞ and
max f∞ = 0).

Then problem (1.1), (1.2) has at least one positive solution.

The special case of Corollary 3.4 is a useful result for superlinear and sublinear
problems.

Corollary 3.5. Assume that
(1) inf l>0 α(l)/lp−1 < Ap−1 (in particular, there exists a > 0 such that α(a) <

(aA)p−1),
(2) max{min f

0
,min f∞} > (TBp−1)/η (in particular when min f0 = +∞ or

min f∞ = +∞).
Then problem (1.1), (1.2) has at least one positive solution.

Corollary 3.6. Assume that:
(1) supl>0 β(l)/lp−1 > Bp−1 (in particular, there exists b > 0 such that β(b) >

(bB)p−1),
(2) min{max f0,max f∞} < Ap−1 (in particular, max f0 = 0 or max f∞ = 0).

Then problem (1.1), (1.2) has at least one positive solution.

4. Multiplicity

Let [c] be the integer part of c.

Theorem 4.1. Let 0 < a1 < a2 < · · · < am+1. If one of the following conditions
holds:

(1) α(a2k−1) < (a2k−1A)p−1, k = 1, . . . , [m+2
2 ], β(a2k) > (a2kB)p−1, k =

1, . . . , [m+1
2 ]

(2) β(a2k−1) > (a2k−1B)p−1, k = 1, . . . , [m+2
2 ], α(a2k) < (a2kA)p−1, k =

1, . . . , [m+1
2 ].

Then problem (1.1), (1.2) has at least m positive solutions u∗1, u∗2, . . . , u∗m satisfying

ak < ‖u∗k‖ < ak+1, k = 1, 2, . . . ,m.

Proof. We prove only Case (2). The proof of Case (1) is similar. By the continuity
of α and β, there exist

0 < b1 < a1 < c1 < b2 < a2 < c2 < · · · < cm < bm+1 < am+1 < +∞
such that

β(b2k−1) ≥ (b2k−1B)p−1, β(c2k−1) ≥ (c2k−1B)p−1, k = 1, . . . , [
m + 2

2
],

α(b2k) ≤ (b2kA)p−1, α(c2k) ≤ (c2kA)p−1, k = 1, . . . , [
m + 1

2
].

Applying Theorem 3.1 for each pair of numbers {ck, bk+1}, k = 1, 2, . . . ,m, we
complete the proof. �

By Theorem 4.1 and Lemma 2.2 we have the following existence results of two
or three positive solutions.

Corollary 4.2. Assume that
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(1) inf l>0 α(l)/lp−1 < Ap−1 (in particular, there exists a > 0 such that α(a) <
(aA)p−1)

(2) min{min f
0
, min f∞} > (TBp−1)/η (in particular, min f0 = min f∞ =

+∞).
Then problem (1.1), (1.2) has at least two positive solutions.

Corollary 4.3. Assume that:
(1) supl>0 β(l)/lp−1 > Bp−1 (in particular, there exists b > 0 such that β(b) >

(bB)p−1)
(2) max{max f0, max f∞} < Ap−1 (in particular, max f0 = max f∞ = 0).

Then problem (1.1), (1.2) has at least two positive solutions.

Corollary 4.4. Let 0 < a1 < a2 < +∞. If
(1) min f

0
> (TBp−1)/η and max f∞ < Ap−1 (in particular, min f0 = +∞

and max f∞ = 0)
(2) α(a1) < (a1A)p−1 and β(a2) > (a2B)p−1.

Then problem (1.1), (1.2) has at least three positive solutions.

Corollary 4.5. Let 0 < a1 < a2 < +∞. If
(1) max f0 < Ap−1 and minf∞ > (TBp−1)/η (in particular, max f0 = 0 and

min f∞ = +∞)
(2) β(a1) > (a1B)p−1 and α(a2) < (a2A)p−1.

Then problem (1.1), (1.2) has at least three positive solutions.

Obviously, analogous results still hold for arbitrary number m. Also we have the
following result.

Theorem 4.6. Let 0 < a1 < a2 < · · · < a2m < +∞. If one of the following
conditions holds:

(1) α(a2k−1) ≤ (a2k−1A)p−1, β(a2k) ≥ (a2kB)p−1, k = 1, . . . , m
(2) β(a2k−1) ≥ (a2k−1B)p−1, α(a2k) ≤ (a2kA)p−1, k = 1, . . . , m;

then problem (1.1), (1.2) has at least m positive solutions u∗1, u
∗
2, . . . , u

∗
m satisfying

a1 ≤ ‖u∗1‖ < ‖u∗2‖ < · · · < ‖u∗m‖ ≤ a2m.

Proof. Applying Theorem 3.1 for each pair of numbers {a2k−1, a2k}, k = 1, . . . , m,
the proof is completed. �

5. Infinite Solvability

Theorem 5.1. Assume that α0 < Ap−1 and β0 > Bp−1 (in particular, α0 = 0 and
β0 = +∞). Then problem (1.1), (1.2) has a sequence of positive solutions {u∗k}∞k=1

satisfying ‖u∗k‖ → 0 as k →∞.

Proof. Since lim inf l→0 α(l)/lp−1 < Ap−1 and lim supl→0 β(l)/lp−1 > Bp−1, there
exist two sequences of positive numbers ak → 0 and bk → 0 such that

α(ak) ≤ (akA)p−1, β(bk) ≥ (bkB)p−1, k = 1, 2, . . .

Without loss of generality, we may assume

a1 > b1 > a2 > b2 > · · · > ak > bk > . . . .
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Now applying Theorem 3.1 to each pair of numbers {bk, ak}, k = 1, 2, . . . , problem
(1.1), (1.2) has a sequence of positive solutions {u∗kt}∞k=1 satisfying bk ≤ ‖u∗k‖ ≤ ak.
The proof is complete. �

Corollary 5.2. Assume that there exists an l0 such that

inf
0<l≤l0

min
t∈[η,T ]T

f(t, l)/α(l) ≥ k1 > 0, sup
0<l≤l0

max
t∈[0,T ]T

f(t, (lη)/T )/β(l) ≤ k2 < +∞.

If max f0 > (k2TBp−1)/η and min f
0

< k1A
p−1 (in particular, max f0 = +∞ and

min f
0

= 0), then problem (1.1), (1.2) has a sequence of positive solutions {u∗k}∞k=1

satisfying ‖u∗k‖ → 0 as k →∞.

Proof. Clearly, α(l) ≤ mint∈[η,T ]T f(t, l)/k1, β(l) ≥ maxt∈[0,T ]T f(t, (lη)/T )/k2, for
l ∈ (0, l0]. Then

α0 = lim inf
l→0

α(l)/lp−1 ≤ (1/k1) lim inf
l→0

min
t∈[η,T ]T

f(t, l)/lp−1

= (1/k1) min f
0

< (1/k1)(k1A
p−1) = Ap−1,

β0 = lim sup
l→0

β(l)/lp−1 ≥ (1/k2) lim sup
l→0

max
t∈[0,T ]T

f(t, (lη)/T )/lp−1

= η/(Tk2) lim sup
l→0

max
t∈[0,T ]T

f(t, (lη)/T )/(lη/T )

= η/(Tk2) max f0 > η/(Tk2)(k2TBp−1/η) = Bp−1.

Now the conclusion follows from Theorem 5.1. �

Similarly, we have the following statement.

Theorem 5.3. Assume that α∞ < Ap−1 and β∞ > Bp−1 (in particular, α∞ = 0
and β∞ = +∞). Then problem (1.1), (1.2) has a sequence of positive solutions
{u∗k}∞k=1 satisfying ‖u∗k‖ → +∞ as k →∞.

Corollary 5.4. Assume that

inf
0<l≤+∞

min
t∈[η,T ]T

f(t, l)/α(l) ≥ k1 > 0,

sup
0<l≤+∞

max
t∈[0,T ]T

f(t, lη/T )/β(l) ≤ k2 < +∞.

If max f∞ > (k2TBp−1)/η and min f∞ < k1A
p−1 (in particular, max f∞ = +∞

and min f∞ = 0), then problem (1.1), (1.2) has a sequence of positive solutions
{u∗k}∞k=1 satisfying ‖u∗k‖ → +∞ as k →∞.

6. Examples

Example 6.1. Let T = {1 − ( 1
2 )N0} ∪ {1}, where N0 denotes the set of all non-

negative integers. Consider the p-Laplacian dynamic equation

[Φp(u4(t))]O + f(u(t)) = 0, t ∈ [0, 1]T, (6.1)

satisfying the boundary conditions

u(0)− 2u4(1/2) = 0, u4(1) = 0, (6.2)
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where p = 3/2, q = 3, a(t) ≡ 1, C = D = 2, T = 1 and

f(u) =



1, 0 ≤ u ≤ 1,

4u− 3 1 ≤ u ≤ 3
2 ,

3 3
2 ≤ u ≤ 10,

2u− 17 10 ≤ u ≤ 12,

7 12 ≤ u ≤ 24.

Then problem (6.1), (6.2) has at least two positive solutions.

To proof the statement of the above example, choose a1 = 1, a2 = 3, a3 = 10,
a4 = 24. It is easy to see that A = 6/5, B = 2, and

α(a1) = max{f(u) : u ∈ [0, 1]} = 1 <

√
6
5

= (a1A)p−1,

α(a3) = max{f(u) : u ∈ [0, 10]} = 3 <

√
60
5

= (a3A)p−1,

β(a2) = min{f(u) : u ∈ [
3
2
, 3]} = 3 >

√
6 = (a2B)p−1,

β(a4) = min{f(u) : u ∈ [12, 24]} = 7 >
√

48 = (a4B)p−1.

Therefore, by Theorem 4.6, problem (6.1), (6.2) has at least two positive solutions
u∗1, u∗2 satisfying 1 ≤ ‖u∗1‖ < ‖u∗2‖ ≤ 24.

The methods in this paper can also be used for studying problem (1.1), (1.3).
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