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EXISTENCE, MULTIPLICITY AND INFINITE SOLVABILITY OF

POSITIVE SOLUTIONS FOR p-LAPLACIAN DYNAMIC

EQUATIONS ON TIME SCALES

DA-BIN WANG

ABSTRACT. In this paper, by using Guo-Krasnosel’skii fixed point theorem in
cones, we study the existence, multiplicity and infinite solvability of positive
solutions for the following three-point boundary value problems for p-Laplacian

dynamic equations on time scales
[@p(u® ()7 +a(t)f(t,u(t) =0, t€0,T)r,
u(0) = Bo(u®(n)) =0, u™(T)=0.

By multiplicity we mean the existence of arbitrary number of solutions.

1. INTRODUCTION

Let T be a closed nonempty subset of R, and let T have the subspace topology
inherited from the Euclidean topology on R. In some of the current literature, T is
called a time scale (or measure chain). For notation, we shall use the convention

that, for each interval J of R,
Jr=JnNT.

The theory of dynamic equations on time scales has become a new important math-
ematical branch (see, for example [I}, [8 [16]) since it was initiated by Hilger [14]. At
the same time, boundary-value problems (BVPs) for scalar dynamic equations on
time scales has received considerable attention [2, 3], 4} [5] [6] [, 10, 11]. The purpose
of this paper is to investigate the existence, multiplicity and infinite solvability of

positive solutions for p-Laplacian dynamic equations on time scales
[@p(u®())]7 +alt) f(t,u(t)) =0, te[0,T]r,
satisfying the boundary conditions
w(0) = Bo(u®(m) =0, u(T) =0,

or

u®(0) =0, w(T)+ Bi(u®(n)) =0,
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where ®,(s) is p-Laplacian operator, i.e., ®,(s) = [s[P2s, p > 1,(®,)"! = ®,,
% + % =1, n € (0,p(T))r. Here, by multiplicity we mean the existence of m
solutions, where m is an arbitrary natural number.

In this paper we assume the following hypotheses:

(H1) f :[0,T]r x RT — R* is continuous (R denotes the nonnegative real
numbers)

(H2) a : T — RT is left dense continuous (i.e., a € Ciq(T,RT)) and does not
vanish identically on any closed subinterval of [0, T|r, where Ciq(T,R")
denotes the set of all left dense continuous functions from T to R*.

(H3) By(v) and By (v) are both continuous odd functions defined on R and satisfy
that there exist C, D > 0 such that

Dv < Bj(v) <Cv, forallv>0, j=0,1.
We remark that by a solution u of (1.1, (L.2)) (respectively (1.1)),(1.3])), we mean

u: T — R is delta differentiable, u® : T* — R is nabla differentiable on T* N T,
and v®Y : T* NT, — R is continuous, and u satisfies boundary conditions
(respectively (L.3)). If u®V(t) < 0 on [0,T]r<nr,, then we say u is concave on
[07 T]T

Anderson, Avery and Henderson [5] considered the problem

[, (u®(1))]7 + () f(ult)) =0, t€ (a,b)r,
u(a) = Bo(u®(v)) =0, u®(b) =0,

where v € (a,b)y, f € C(RT,RT), ¢ € Ca((a,b)7,RT) and K,,x < By(z) <
Kprx for some positive constants K,,,, Kj;. They established the existence result
of at least one positive solution by a fixed point theorem of cone expansion and
compression of functional type.

Very recently, in the case f(¢,1) = f(l), the existence of two positive solutions for
the problem , and 7 has been established by He [13] by using a
new double fixed-point theorem due to Avery, et al [7] in a cone.

In this paper, we shall apply the method arising in papers [I7, [I8] to problem
, . The main ingredient is the Guo-Krasnosel’skii fixed point theorem in
cone. By considering the properties of f on a bounded set of [0, T]p x RT, we shall
establish a basic existence criterion, that is theorem |3.1] Then, we shall prove the
existence of m positive solutions (in section 4) and the existence of infinitely many
positive solutions (in section 5).

In the remainder of this section we will provide without proof several founda-
tional definitions and results from the calculus on time scales so that the paper is
self-contained. For more details, one can see [, [6], 8] 14 [16].

Definition 1.1. For ¢t < sup T and r > inf T, define the forward jump operator o
and the backward jump operator p, respectively,

ot)=inf{r €T|lr >t} €T, p(r)=sup{reT|r<r}eT

for all ¢, r € T. If o(t) > t, t is said to be right scattered, and if p(r) < r, r is said
to be left scattered. If o(t) = ¢, t is said to be right dense, and if p(r) = r, r is
said to be left dense. If T has a right scattered minimum m, define T, =T — {m};
otherwise set T, = T. If T has a left scattered maximum M, define T* = T — {M };
otherwise set T" = T.
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Definition 1.2. For z : T —R and ¢t € T", we define the delta derivative of x(t),
22 (t), to be the number (when it exists), with the property that, for any £ > 0,
there is a neighborhood U of t such that

[2(a(t)) — z(s)] = 22 (t)[o(t) — ]| < elo(t) — s,

for all s € U. For z : T —R and ¢ € T,, we define the nabla derivative of x(t),
zV(t), to be the number (when it exists), with the property that, for any € > 0,
there is a neighborhood V of ¢ such that

|[z(p(t) = =(5)] — 2V (t)[p(t) = s]| < elp(t) — ],
forall s € V.

If T = R, then 22(t) = 2V (t) = 2/(t). If T = Z, then 22(t) = z(t + 1) — z(2)
is the forward difference operator while zV(t) = x(t) — 2(t — 1) is the backward
difference operator.

Definition 1.3. If F2(t) = f(t), then we define the delta integral by

/ f(s)As=F(t) — F(a).

If ®V(t) = f(t), then we define the nabla integral by

/ F(5)Vs = B(t) — ®(a).

Throughout this paper, we assume T is a nonempty closed subset of R with
0eT,, TeT".

2. PRELIMINARIES

Consider the Banach space E = Ciq([0, T]t, R) with norm [lu|| = sup,c(o 7y, [u(t)]-
Then define the cone by

K ={u€ E| wuis concave and nonnegative valued on [0, 7]y, and u”(T) =0} .
From [13], we know that if v € K, then

inf  w(t) > (n/T)|ull.
teff,l,T]T“()—("/ M|

We define a operator F': K — E by

T t T
(Fu)(t) = Bo(q)q(/ a(r) f(ryu(r))Vr)) +/0 @Q(/ a(r) f(r,u(r))Vr)As,

and from [I3], we also know F' : K — K is completely continuous. We denote the
constants

A= {Cq)q(/T a(r)Vr)+/OT qu(/ST a(r)Vr)As]_l, B= {D%(/ﬁ

n

T

a(r)VT)} _1.
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Clearly, 0 < A < B. The following symbols are used in this paper:
a(l) = max{f(t,c) : (t,¢) € [0, T]r x [0, 1]},
6(1) = min{f(tv C) : (t’c) € [naT]'ﬂ‘ X [(U/T)l’l}h

— T p—1
o lllin_:gofoz(l)/l ;

By = limsup B(1)/1*~!, B = limsup B(1)/1P~1;
1—0

l—+oc0

ay = 1i1lri)i51foz(l)/lp_1, @

max f, = 1irfljélpt$%>§hf(t,l)/lp‘l, max f, = I%I_I,I_Eipten[%)?i)‘{]qrf(tJ)/lp_l’

miniozlillriiglf mig 0Pt min f = liminf min f,0 /Pt

ten,T]r l—+oo te[n,Tr
— i p—1 — i p—1
max fo llg%té?%j(t,l)/l , max fo l_l}glooter%?;fhf(t,l)/l ;

in fo = li i t, 1)/~ min foo = i i t,0) /1P~
min fo = liny min f(t,0)/ min foo = lim  min f(i,0)/

Lemma 2.1. (1) If max f, < AP™!, then a, < AP™'.

(2) Ifmax f,, < AP, then a,, < AP™L.

(3) If min f > (TBP~")/n, then By > BP~'.

(4) Ifminf > (TBP~')/n, then Bo, > BP~".
Proof. 1t is easy to show that the following inequalities hold:

limsup max f(¢,1)/I1P~' > liminf max{f(t,c) : (t,c) € [0, Ty x [0,1]}/1P71,

1—0 t€[0,T]r 1—0

limsup max f(t,1)/IP~! > liminf max{f(¢,¢) : (t,c) € [0,T]r x [0,1]}/1P~,
=400 t€[0,T]r l—+o00

liminf mi t, 1)/t
minf min S0/

< lirlnjélpmin{f(t,C) (t,¢) € [, Tle > [(n/T)1, 10}/ (1P~ 'n) /T),

liminf mi t,0)/rt
im inf min f(t.0)/

< limsupmin{f(t,c) : (t,c) € [, T)r x [(n/T), 0}/ (P~ 'n)/T).

l—+4oc0

The statements of the lemma follow from these inequalities. O

The following Lemma is crucial in our argument, which is the well-known Guo-
Krasnosel’skii fixed point theorem in cone.

Lemma 2.2 ([I2} [15]). Let X be a Banach space and K C E be a cone in X.
Assume Qq1, Qo are bounded open subsets of K with 0 € Q1 C Q1 C Qs and
T: K — K is a completely continuous operator such that either:

(1) |ITw| < ||wl, w € I, and ||Tw| > ||w|, w € dNa; or
2) 1 Tw]l = [[w]l, w € 091, and |Tw|| < [Jw]], w € OQs.

Then T has a fized point in Q2\;.

3. EXISTENCE RESULTS

Theorem 3.1. Assume that there exist two positive numbers a, b such that a(a) <
(aA)P~1, B(b) > (bB)P~1. Then problem (L.1)), (1.2) has at least one positive
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solution u* € K satisfying
min{a, b} < u* < max{a,b}.
Proof. First of all, we claim a # b. If not, a = b. Noticing that A < B, then
max{ f(t,1): (¢,1) € [0,T)r x [0,a]}
=a(a) < (aA)P™?
< (@B < B(a)
=min{f (¢ ¢) : (t,¢) € [n, Tz x [(n/T)a, al}.
This is impossible.
Without loss of generality, we may assume a < b. We denote Q. = {u € K :
lul| < c}, Qe = {u: |lul] = c}. If u € 9Q,, then 0 <u < a, t € [0,T]r. So,

ft,u(t) < ala) < (aA)Pt, t€[0,T]r.
It follows that

[Full = Bo(® /n (r))Vr)) + /OT ‘Pq(/ST a(r)f(r,u(r))Vr)As

T T T
< aACD,( / a(r)Vr) +aA/ <I>q(/ a(r)Vr)As
n 0 s

/WT a(r /T <I>q(/ST a(r)Vr)As]

—a = ul.

If w € O, then (n/T)b = (n/T)|ul < min,ep,, ), u(t) <u(t) <b,t€ 0 T]r. So
F(t,u(t) > AB) > BB, te n, T

It follows that

| Ful| = B0(<I>q(/ a(r)f(r,u(r))Vr)) —l—/o <I>q(/ a(r)f(r,u(r))Vr)As

=b=|[u
By Lemma F has a fixed point u* € Q,\Q,. O

Corollary 3.2. Assume inf;soa(l) /1P~ < AP™! and sup;sq B(1)/1P~1 > BP~L.
Then problem (1.1] , ) has at least one positive solution.

By Theorem [3.1] and Lemma [2.1] we have the following results.

Corollary 3.3. Assume that one of the following conditions holds:
(1) ay < A=Y and B, > BP~! (in particular, ap =0 and B, = +o0,
(2) By > BP~! and a, < AP~ (in particular, By = +oo and a,, = 0).
Then problem , has at least one positive solution.

Corollary 3.4. Assume that one of the following conditions holds:
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(1) max f, < AP~1 and min f_ > (TBP~Y)/n (in particular, max fo = 0 and
min fo, = 400)
(2) minf > (TBP~Y)/n and max f ., < AP~ (in particular, min fo = +o0o and
max foo = 0).
Then problem , has at least one positive solution.
The special case of Corollary [3.4] is a useful result for superlinear and sublinear
problems.
Corollary 3.5. Assume that
(1) infjsoa(l)/IP~t < AP=L (in particular, there exists a > 0 such that a(a) <
(ad)P~1),
(2) max{min f ,min f_} > (TBP~Y)/n (in particular when min fo = +oo or
min fo, = +00).
Then problem , has at least one positive solution.
Corollary 3.6. Assume that:

(1) sup;sq B(1)/1P~1 > B~ (in particular, there exists b > 0 such that B(b) >
(bB)P~),
(2) min{max f,, max f_} < AP~! (in particular, max fo = 0 or max f, = 0).
Then problem , has at least one positive solution.

4. MULTIPLICITY
Let [¢] be the integer part of c.

Theorem 4.1. Let 0 < a1 < ag < -+ < Ayp1- If one of the following conditions
holds:

(1) a(a2k—1) < (a2k—1A)p_17 k = 17"'; [mTH]; ﬂ(a/Qk) > (a/QkB)p_17 k =
1,..., [2H]

(2) Blagk-1) > (agk_lB)p_l, k=1,..., [mTJrQ], alagy) < (agkA)p_l, k =
1,..., [

Then problem (L.1)), (1.2]) has at least m positive solutions uf, ul, ..., ul, satisfying

ap < ||up|l < ag+1, k=1,2,...,m.
Proof. We prove only Case (2). The proof of Case (1) is similar. By the continuity
of o and 3, there exist
0<b <a;<cp <by<ag<co<- - <cm<bpy1 <amer <400
such that

_ _ m+ 2
B(bar—1) = (bax—1B)P",  Blear—1) = (cor—1 B, k=1,..., [T]’
— _ m+1
Oé(ka) < (kaA)p 1, Oé(CQk) < (CQkA)p 1, k=1,..., [T]
Applying Theorem for each pair of numbers {cg,bp+1}, & = 1,2,...,m, we
complete the proof. O

By Theorem [4.1] and Lemma [2.2] we have the following existence results of two
or three positive solutions.

Corollary 4.2. Assume that
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(1) infyso (1) /1P~ < AP=L (in particular, there exists a > 0 such that a(a) <
(ad)P~1)
(2) min{min f , minf_} > (TBP~Y/n (in particular, min fy = min f, =
+00).
Then problem , has at least two positive solutions.
Corollary 4.3. Assume that:

(1) sup;sq B(1)/1P~1 > BP~1 (in particular, there exists b > 0 such that B(b) >
(bB)P~t)
(2) max{max f,, max f. } < AP~ (in particular, max fo = max fo, = 0).
Then problem (1.1)), (1.2) has at least two positive solutions.

Corollary 4.4. Let 0 < a1 < ag < 4o0. If
(1) min f > (TBP~1)/n and max f., < AP~ (in particular, min fo = +oo
and max foo = 0)
(2) alay) < (a1 AP~ and B(az) > (axB)P~1.
Then problem , has at least three positive solutions.
Corollary 4.5. Let 0 < a; < az < 4o00. If
(1) max fy < AP~ and minf > (TBP~1)/n (in particular, max fo = 0 and
min foo = 400)
(2) Blar) > (e B)P~! and afaz) < (agA)P~L.
Then problem , has at least three positive solutions.

Obviously, analogous results still hold for arbitrary number m. Also we have the
following result.

Theorem 4.6. Let 0 < a1 < ag < -+ < agy < +00. If one of the following
conditions holds:

(1) a(agr-1) < (agk—1 AP, Blagk) > (axB)P ™, k=1,..., m
(2) Blagk—1) > (agx—1B)P~", alagy) < (ag AP~ k=1,..., m;
then problem (1.1), (1.2) has at least m positive solutions uf,u3,...,uk, satisfying
a1 < [Jugl] < fluzl] < -+ <lup,|l < azm.

Proof. Applying Theorem for each pair of numbers {agk_1,a2:}, k =1,..., m,
the proof is completed. O

5. INFINITE SOLVABILITY

Theorem 5.1. Assume that ay < AP~! and B, > BP~! (in particular, ay = 0 and

B = +00). Then problem (L.1)), (1.2) has a sequence of positive solutions {u}}?,
satisfying ||uf|| — 0 as k — oo.

Proof. Since liminf;_oa(l)/IP~* < AP~! and limsup,_,,B8(1)/IP~! > BP~!, there
exist two sequences of positive numbers ax — 0 and by — 0 such that

a(ar) < (axA)P~Y, 0 Blbr) = (kB)P™', k=1, 2,...
Without loss of generality, we may assume

a1 >by >ag>by > >ap >b > ...
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Now applying Theorem [3.1] to each pair of numbers {by,ax}, k =1,2,..., problem
(1.1), (L.2) has a sequence of positive solutions {ujt}7° | satisfying by < ||uj| < ak.
The proof is complete. O

Corollary 5.2. Assume that there exists an ly such that

f t,1 >k >0, n)/T)/B(1) < ko < +00.
odnf, ter[?f%hf( )/a(l) = ka Oilllgloter%a%(hf( (In)/T)/B(1) < ka2 < 400

If max f, > (koTBP~Y)/n and min f, < k1 AP=L (in particular, max f, = +00 and
min f = 0), then problem (1.1)), (1.2)) has a sequence of positive solutions {uj }3%,

satisfying ||uj|| — 0 as k — oo.

Proof. Clearly, o(l) < mingep, 71, f(t,0)/k1, B(1) > maxcjo,7, f(t, (I1n)/T)/ks, for
1 €(0,lp]. Then

gozli?l)iglfa(l)/lpfl (1/k1)hrn1nf mln f(t 1)/1P1

te[n,T]

= (1/k1) min f, < (1/k1) (ki AP"Y) = AP 1,

By = limsup B(1)/1P~ > (1/kg) limsup max f(t, (in)/T) /1P~
1—0 1—0 t€[0,T]r

=n/(Tkz) lirlnjélpt max [, Un)/T)/(In/T)
= n/(Tks) max fo > n/(Tks)(ksTBP~" /n) = B"~".

Now the conclusion follows from Theorem [5.1] O

Similarly, we have the following statement.

Theorem 5.3. Assume that o, < AP~' and 3., > BP™' (in particular, a,, =0
and B, = +o0). Then problem (L.1), (1.2) has a sequence of positive solutions
{up}ee, satisfying ||ui]| — 400 as k — cc.

Corollary 5.4. Assume that

f >
o<t oyl T/ 2 >0

sup max f(t In/T)/6(1) < ky < +00.
0<i<+o0 t€[0,T

If max f > (koTBP~1)/n and mlnf < klAp L (in particular, max f_ = 400
and mini = 0), then problem (1.1 , ) has a sequence of positive solutions
{up e, satisfying ||ui|| — 400 as k — 0.

6. EXAMPLES

Example 6.1. Let T = {1 — (3)M} U {1}, where Ny denotes the set of all non-
negative integers. Consider the p-Laplacian dynamic equation

[, (u™ ()]Y + f(u(t)) = 0,t € [0, 1]r, (6.1)
satisfying the boundary conditions

u(0) — 2u”(1/2) =0, w(1) =0, (6.2)
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where p=3/2,¢q=3,a(t)=1,C=D=2,T=1and

1, 0<u<l,
du—3 1<u<3,

flu)=143 3 <wu <10,
2u—17 10<u <12,
7 12<u<24.

Then problem (6.1)), (6.2)) has at least two positive solutions.

To proof the statement of the above example, choose a; = 1, ay = 3, ag = 10,
aq = 24. Tt is easy to see that A =6/5, B =2, and

afar) =max{f(u) v e(0,1]} =1< \/E = (a1 AP,

alaz) = max{f(u) : u € [0,10]} =3 < \/? = (az AP,

Blas) = min{f(u) : u [g, 3} = 3> V6 = (asB)P,

B(asg) = min{f(u): u € [12,24]} =7 > V48 = (a4 B)P~*.

Therefore, by Theorem problem (6.1]), (6.2]) has at least two positive solutions
uf, ujp satisfying 1 < |luj| < |lu3]| < 24.
The methods in this paper can also be used for studying problem (1.1f), (1.3).
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