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EXISTENCE OF SOLUTIONS FOR AN ELLIPTIC EQUATION
INVOLVING THE p(x)-LAPLACE OPERATOR

MARIA-MAGDALENA BOUREANU

Abstract. In this paper we study an elliptic equation involving the p(x)-
Laplace operator on the whole space RN . For that equation we prove the

existence of a nontrivial weak solution using as main argument the mountain

pass theorem of Ambrosetti and Rabinowitz.

1. Introduction

In this paper we discuss the existence of solutions for the problem

−∆p(x)u(x) + b(x)|u(x)|p(x)−2u = f(x, u), for x ∈ RN

u ∈ W
1,p(x)
0 (RN ),

(1.1)

where N ≥ 3, p : RN → R is Lipschitz continuous with 2 ≤ ess infRN p(x) <
ess supRN p(x) < N , b : RN → R and f : RN × R → R are two functions which
satisfy certain conditions. We denoted by ∆p(x) the p(x)-Laplace operator given by

∆p(x)u = div
(
|∇u(x)|p(x)−2∇u(x)

)
.

The study of equations involving p(x)-growth conditions, such as (1.1), has captured
a special attention since there are some physical phenomena which can be modelled
by such kind of equation. In that context we just remember their applications
to the study of electrorheological fluids and in elastic mechanics (see Diening [3],
Halsey [8], Ruzicka [15], Zhikov [16]).

On the other hand, we point out that equation (1.1) is related with stationary
non-linear Schrödinger equations (see Rabinowitz [14] and Mihăilescu-Rădulescu
[10] for more details).

Existence results for p(x)-Laplacian Dirichlet problems on bounded domains were
studied in [6, 11, 12] while for the study of p(x)-Laplacian problems in RN we refer
to [4, 1].
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2. Preliminary results

We recall in what follows some definitions and basic properties of the generalized
Lebesgue-Sobolev spaces Lp(x)(Ω), W 1,p(x)(Ω) and W

1,p(x)
0 (Ω), where Ω is an open

subset of RN . In that context we refer to the book of Musielak [13] and the papers
of Kovacik and Rakosnik [9] and Fan et al. [4, 5, 7].

Set

L∞+ (Ω) = {h; h ∈ L∞(Ω), ess inf
x∈Ω

h(x) > 1 for all x ∈ Ω}.

For any h ∈ L∞+ (Ω) we define

h+ = ess sup
x∈Ω

h(x) and h− = ess inf
x∈Ω

h(x).

For any p(x) ∈ L∞+ (Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u : is a measurable real-valued function such that∫
Ω

|u(x)|p(x) dx < ∞}.

We define a norm, the so-called Luxemburg norm, on this space by the formula

|u|p(x) = inf
{
µ > 0;

∫
Ω

∣∣u(x)
µ

∣∣p(x)
dx ≤ 1

}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many
respects: they are Banach spaces [9, Theorem 2.5], the Hölder inequality holds [9,
Theorem 2.1], they are reflexive if and only if 1 < p− ≤ p+ < ∞ [9, Corollary 2.7]
and continuous functions are dense if p+ < ∞ [9, Theorem 2.11]. The inclusion
between Lebesgue spaces also generalizes naturally [9, Theorem 2.8]: if 0 < |Ω| < ∞
and r1, r2 are variable exponents so that r1(x) ≤ r2(x) almost everywhere in Ω then
there exists the continuous embedding Lr2(x)(Ω) ↪→ Lr1(x)(Ω), whose norm does not
exceed |Ω|+ 1.

We denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1/p(x)+1/p′(x) =
1. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the Hölder type inequality∣∣ ∫

Ω

uv dx
∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|p(x)|v|p′(x) (2.1)

holds true.
An important role in manipulating the generalized Lebesgue-Sobolev spaces

is played by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) :
Lp(x)(Ω) → R defined by

ρp(x)(u) =
∫

Ω

|u|p(x) dx.

If u ∈ Lp(x)(Ω) and p+ < ∞ then the following relations hold

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x); (2.2)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x); (2.3)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0. (2.4)
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We also consider the weighted variable exponent Lebesgue spaces. Let b : RN → R
be a measurable real function such that b(x) > 0 a.e. x ∈ Ω. We define

L
p(x)
b(x)(Ω) = {u : u is a measurable real-valued function such that∫

Ω

b(x)|u(x)|p(x)dx < ∞}.

The space L
p(x)
b(x)(Ω) endowed with the above norm is a Banach space which has

similar properties with the usual variable exponent Lebesgue spaces. The modular
of this space is ρb(x);p(x) : L

p(x)
b(x)(Ω) → R defined by

ρb(x);p(x)(u) =
∫

Ω

b(x)|u|p(x)dx.

If u ∈ L
p(x)
b(x)(Ω), then the following relations hold

|u|(b(x),p(x)) > 1 ⇒ |u|p
−

(b(x),p(x)) ≤ ρb(x);p(x)(u) ≤ |u|p
+

(b(x),p(x)),

|u|(b(x),p(x)) < 1 ⇒ |u|p
+

(b(x),p(x)) ≤ ρb(x);p(x)(u) ≤ |u|p
−

(b(x),p(x)).

We define also the variable Sobolev space

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}.

On W 1,p(x)(Ω) we may consider one of the following equivalent norms

‖u‖p(x) = |u|p(x) + |∇u|p(x)

or

|‖u‖| = inf
{
µ > 0;

∫
Ω

(∣∣∇u(x)
µ

∣∣p(x) +
∣∣u(x)

µ

∣∣p(x))
dx ≤ 1

}
.

We define also W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(x)(Ω). Assuming p− > 1
the spaces W 1,p(x)(Ω) and W

1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

Set

Ip(x)(u) =
∫

Ω

(
|∇u|p(x) + |u|p(x)

)
dx.

For all u ∈ W
1,p(x)
0 (Ω) the following relations hold

|‖u‖| > 1 ⇒ |‖u‖|p
−
≤ Ip(x)(u) ≤ |‖u‖|p

+
; (2.5)

|‖u‖| < 1 ⇒ |‖u‖|p
+
≤ Ip(x)(u) ≤ |‖u‖|p

−
. (2.6)

Finally, we remember some embedding results regarding variable exponent Lebesgue-
Sobolev spaces. For the continuous embedding between variable exponent Lebesgue-
Sobolev spaces we refer to [5, Theorem 1.1]: if p : Ω → R is Lipschitz continuous and
p+ < N , then for any q ∈ L∞+ (Ω) with p(x) ≤ q(x) ≤ Np(x)

N−p(x) , there is a continuous
embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω). In what concerns the compact embedding we
refer to [5, Theorem 1.3]: if Ω is a bounded domain in RN , p(x) ∈ C(Ω), p+ > N ,
then for any q(x) ∈ L∞+ (Ω) with ess infx∈Ω

( Np(x)
N−p(x) − q(x)

)
> 0 there is a compact

embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).
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3. Main result

In this paper we assume that b and f satisfy the hypotheses:

(B1) b ∈ L∞loc(RN ) and there exists b0 > 0 such that b(x) ≥ b0, for any x ∈ RN ;

(F1) f ∈ C1(RN × R), with f = f(x, z), f(x, 0) = 0 and limz→0
fz(x,z)

|z|p+−2 = 0, for

all x ∈ RN ;
(F2) p+ < Np−

N−p− and there exist a1, a2 > 0 and s ∈ (p+− 1, Np−/(N − p−)− 1)
such that

|fz(x, z)| ≤ a1|z|p
+−2 + a2|z|s−1, ∀ x ∈ RN ,∀ z ∈ R;

(F3) there exists µ > p+ such that

0 < µF (x, z) := µ

∫ z

0

f(x, t)dt ≤ zf(x, z), ∀ x ∈ RN ,∀ z ∈ R \ {0}.

Let E be the space defined as the completion of C∞
0 (RN ) with respect to the

norm

‖u‖1 = |∇u|p(x) + |u|(b(x),p(x)).

Remark 3.1. Condition (B1) implies that E ⊂ W
1,p(x)
0 (RN ).

A simple calculation shows that the above norm is equivalent to

‖u‖ = inf
{
µ > 0;

∫
Ω

(∣∣∇u(x)
µ

∣∣p(x) + b(x)
∣∣u(x)

µ

∣∣p(x))
dx ≤ 1

}
.

Set

J(u) :=
∫

RN

(
|∇u|p(x) + b(x)|u|p(x)

)
dx.

Then, for all u ∈ E the following relations hold:

‖u‖ > 1 ⇒ ‖u‖p− ≤ J(u) ≤ ‖u‖p+
,

‖u‖ < 1 ⇒ ‖u‖p+
≤ J(u) ≤ ‖u‖p− .

(3.1)

We say that u ∈ E is a weak solution of (1.1) if∫
RN

(
|∇u|p(x)−2∇u∇v + b(x)|u|p(x)−2uv

)
dx =

∫
RN

f(x, u)vdx,

for any v ∈ C∞
0 (RN ).

The main result of this paper is given by the following theorem.

Theorem 3.2. Assume conditions (B1) and (F1)-(F3) are fulfilled. Then problem
(1.1) has a non-trivial weak solution.

We point out the fact that the result of Theorem 3.2 extends the results from
[14] and [10] where similar equations are studied in the linear case.
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4. Proof of Main Theorem

The energy functional corresponding to problem (1.1) is defined as I : E → R,

I(u) :=
∫

RN

1
p(x)

(
|∇u|p(x) + b(x)|u|p(x)

)
dx−

∫
RN

F (x, u)dx.

Similar arguments as those used in [4, Lemmas 3.1 and 3.2] assure that I ∈ C1(E, R)
with

〈I ′(u), v〉 =
∫

RN

(
|∇u|p(x)−2∇u∇v + b(x)|u|p(x)−2uv

)
dx−

∫
RN

f(x, u)vdx,

for any u, v ∈ E. Thus, we observe that the critical points of functional I are the
weak solutions for equation (1.1).

Our idea is to prove Theorem 3.2 applying the mountain pass theorem (see e.g.
[2]). With that end in view, we prove some auxiliary results which show that the
functional I has a mountain pass geometry.

Lemma 4.1. If (B1) and (F1)-(F3) hold, then there exist τ > 0 and a > 0 such
that for all u ∈ E with ‖u‖ = τ

I(u) ≥ a > 0.

Proof. Using (F1) and L’Hospital Theorem, we have

lim
z→0

F (x, z)
zp+ = lim

z→0

f(x, z)
p+ · zp+−1

= lim
z→0

fz(x, z)
p+(p+ − 1) · zp+−2

= 0,

for all x ∈ RN . Thus,

lim
z→0

F (x, z)
zp+ = 0. (4.1)

Using (F2) we have

fz(x, z) ≤ |fz(x, z)| ≤ a1|z|p
+−2 + a2|z|s−1.

By integrating, we obtain

f(x, z) ≤ a1

p+ − 1
|z|p

+−1 +
a2

s
|z|s.

We integrate again:

0 < F (x, z)| ≤ A1|z|p
+

+ A2|z|s+1, (4.2)

where A1, A2 are positive constants. Then

0 ≤ lim
z→∞

F (x, z)
zNp−/(N−p−)

≤ lim
z→∞

A1|z|p
+

+ A2|z|s+1

zNp−/(N−p−)
= 0,

since s ∈ (p+ − 1, Np−/(N − p−)− 1). Therefore,

lim
z→∞

F (x, z)
zNp−/(N−p−)

= 0. (4.3)

Using relations (4.1) and (4.3), we obtain

∀ ε > 0, ∃ δ1 > 0 such that
∣∣F (x, z)

zp+

∣∣ < ε for all z with |z| < δ1;

∀ ε > 0, ∃ δ2 > 0 such that
∣∣ F (x, z)
zNp−/(N−p−)

∣∣ < ε for all z with |z| > δ2.
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Thus, for ε > 0 there exist δ1, δ2 > 0 such that

F (x, z) < ε · |z|p
+
, |z| < δ1

and
F (x, z) < ε · |z|Np−/(N−p−), |z| > δ2.

Relation (4.2) implies that there exists a constant c > 0 such that

F (x, z) ≤ c for all z with |z| ∈ [δ1, δ2].

We conclude that for all ε > 0 there exists cε > 0 such that

F (x, z) ≤ ε|z|p
+

+ cε|z|Np−/(N−p−). (4.4)

Let us assume that ‖u‖ < 1. Then, using relations (3.1) and (4.4), we have

I(u) ≥ 1
p+

J(u)−
∫

RN

F (x, u)dx

≥ 1
p+
‖u‖p+ −

∫
RN

F (x, u)dx

≥ 1
p+
‖u‖p+ − ε

∫
RN

|u|p
+
dx− cε

∫
RN

|u|Np−/(N−p−)dx.

For p(x) ≤ q(x) ≤ Np(x)
N−p(x) we have W 1,p(x)(RN ) ↪→ Lq(x)(RN ) continuous, so

E ↪→ Lq(x)(RN ) continuous, thus |u|Lq(x) ≤ c‖u‖E . Choosing q(x) = p+ and then
q(x) = Np−

N−p− we obtain

|u|p+ ≤ c1‖u‖ ⇔
( ∫

RN

|u|p
+
dx

) 1
p+

≤ c1‖u‖;

|u|Np−/(N−p−) ≤ c2‖u‖ ⇔
( ∫

RN

|u|Np−/(N−p−)dx
)N−p−

Np− ≤ c2‖u‖ .

Therefore,

I(u) ≥ 1
p+
‖u‖p+ − εc1‖u‖p+ − c2 · cε‖u‖Np−/(N−p−)

≥ ‖u‖p+

[
(

1
p+

− εc1)− c2 · cε‖u‖Np−/(N−p−)−p+
]
≥ a > 0,

for some fixed ε ∈ (0, 1
c1p+ ) and a, ‖u‖ sufficiently small. �

Lemma 4.2. Assume conditions (B1), (F1)-(F3) hold. Then there exists e ∈ E
with ‖e‖ > τ (τ given in Lemma 4.1) such that I(e) < 0.

Proof. Denote

h(t) =
F (x, tz)

tµ
, ∀ t > 0.

Then using (F3) we get

h′(t) =
1

tµ+1
[tzf(x, tz)− µF (x, tz)] ≥ 0, ∀ t > 0.

Thus, we deduce that for any t ≥ 1, F (x, tz) ≥ tµF (x, z).
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Choosing u ∈ E with ‖u‖ > 1 and
∫

RN F (x, u)dx > 0 fixed and t > 1, we have

I(tu) =
∫

RN

1
p(x)

(
|∇(tu)|p(x) + b(x)|tu|p(x)

)
dx−

∫
RN

F (x, tu)dx

=
∫

RN

1
p(x)

tp(x)
(
|∇u|p(x) + b(x)|u|p(x)

)
dx−

∫
RN

F (x, tu)dx

≤ tp
+

p−

∫
RN

(
|∇u|p(x) + b(x)|u|p(x)

)
dx−

∫
RN

F (x, tu)dx

≤ tp
+

p−
‖u‖p+

− tµ
∫

RN

F (x, u)dx.

But µ > p+, therefore I(tu) → −∞ when t approaches +∞, which concludes our
lemma. �

Proof of Theorem 3.2. We set

Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e},
where e ∈ E is determined by Lemma 4.2, and

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)).

According to Lemma 4.2 we know that ‖e‖ > τ , so every path γ ∈ Γ intersects the
sphere ‖w‖ = τ . Then Lemma 4.1 implies

c ≥ inf
‖u‖=τ

I(u) ≥ a, (4.5)

with the constant a > 0 in Lemma 4.1, thus c > 0.
By the mountain-pass theorem (see, e.g., [2]) we obtain a sequence (un)n ⊂ E

such that
I(un) → c, I ′(un) → 0. (4.6)

We claim that (un)n is bounded in E. Arguing by contradiction and passing to a
subsequence, we have ‖un‖ → ∞. Using (4.6) it follows that for n large enough,
we have

c + 1 + ‖un‖ ≥ I(un)− 1
µ
〈I ′(un), un〉. (4.7)

Since

I(un) =
∫

RN

1
p(x)

(
|∇un|p(x) + b(x)|un|p(x)

)
dx−

∫
RN

F (x, un)dx,

〈I ′(un), un〉 =
∫

RN

(
|∇un|p(x) + b(x)|un|p(x)

)
dx−

∫
RN

f(x, un)undx,

using (4.7) we obtain

c + 1 + ‖un‖ ≥
( 1
p+

− 1
µ

)
J(un)−

∫
RN

[
F (x, un)− 1

µ
f(x, un)un

]
dx.

By (F3) we have ∫
RN

[
F (x, un)− 1

µ
f(x, un)un

]
dx ≤ 0.

The above inequalities combined with relation (3.1) yield

c + 1 + ‖un‖ ≥
( 1
p+

− 1
µ

)
J(un) ≥

( 1
p+

− 1
µ

)
‖un‖p− .
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We obtain
c + 1 + ‖un‖ ≥

( 1
p+

− 1
µ

)
‖un‖p− . (4.8)

Now dividing by ‖un‖ in (4.8) and passing to the limit as n → ∞ we obtain a
contradiction. So, up to a subsequence, (un)n converges weakly in E to some u ∈ E.

If Ω is bounded then there exists a compact embedding E(Ω) ↪→ L
Np−

N−p− (Ω). Then

(un)n converges strongly in L
Np−

N−p− (Ω), for all Ω bounded domains in RN . If we
prove that

〈I ′(un), ϕ〉 → 〈I ′(u), ϕ〉, ∀ϕ ∈ C∞
0 (RN ). (4.9)

Then, by (4.6), u is a weak solution of (1.1), since C∞
0 (Ω) is dense in E. To do

this, let ϕ ∈ C∞
0 (RN ) be fixed. We set Ω = supp(ϕ).

To prove (4.9), first we prove that

lim
n→∞

∫
RN

f(x, un)ϕdx =
∫

RN

f(x, u)ϕdx.

A simple calculation implies∣∣ ∫
Ω

(f(x, un)− f(x, u))ϕ(x)dx
∣∣ ≤ ∫

Ω

|f(x, un)− f(x, u)| · |ϕ(x)|dx

≤ ‖ϕ‖L∞(Ω)

∫
Ω

|f(x, un)− f(x, u)|dx

= ‖ϕ‖L∞(Ω)

∫
Ω

∣∣f(x, un)− f(x, u)
un − u

∣∣ · |un − u|dx

≤ ‖ϕ‖L∞(Ω)

∫
Ω

|fz(x, vn)| · |un − u|dx,

where vn ∈ [un, u] (or [u, un]). Using (F2), we obtain∣∣∣ ∫
Ω

(f(x, un)− f(x, u))ϕ(x)dx
∣∣∣

≤ ‖ϕ‖L∞(Ω)

∫
Ω

|a1|vn|p
+−2 + a2|vn|s−1| · |un − u|dx

≤ ‖ϕ‖L∞(Ω) ·
[
a1

∫
Ω

|vn|p
+−2 · |un − u|dx + a2

∫
Ω

|vn|s−1 · |un − u|dx
]
.

We have 1
p+−1 + p+−2

p+−1 = 1 and 1
s + s−1

s = 1. Using Hölder inequality,∣∣∣ ∫
Ω

(f(x, un)− f(x, u))ϕ(x)dx
∣∣∣

≤ ‖ϕ‖L∞(Ω) · [a1‖vn‖p+−2

Lp+−1(Ω)
· ‖un − u‖Lp+−1(Ω) + a2‖vn‖s−1

Ls(Ω) · ‖un − u‖Ls(Ω)].

Taking into account that un → u strongly in Li(Ω), for all i ∈ [p+ − 1, Np−

N−p− ] and
remarking that for all x ∈ Ω and for all n ≥ 1 there exists λn(x) ∈ [0, 1] such that
vn(x) = λn(x)un(x) + [1− λn(x)]u(x) we deduce∫

Ω

|vn − u|sdx =
∫

Ω

|λn(x)|s · |un − u|sdx ≤
∫

Ω

|un − u|sdx → 0, as n →∞.

It results that ∫
Ω

|vn|sdx →
∫

Ω

|u|sdx , as n →∞.
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From the above considerations, we obtain∣∣∣ ∫
Ω

(f(x, un)− f(x, u))ϕ(x)dx
∣∣∣ → 0, as n →∞.

Since C∞
0 (RN ) is dense in E, the above relation implies

lim
n→∞

∫
Ω

(f(x, un)− f(x, u))(un − u)dx = 0.

Next, since (un)n converges weakly to u in E, it follows that

lim
n→∞

∫
Ω

f(x, u)(un − u)dx = 0.

Thus, actually we find

lim
n→∞

∫
Ω

f(x, un)(un − u)dx = 0.

On the other hand, we have

lim
n→∞

〈I ′(un), un − u〉 = 0.

Combining the last two relations we deduce that

lim
n→∞

∫
RN

(
|∇un|p(x)−2∇un∇(un − u) + b(x)|un|p(x)−2un(un − u)

)
dx = 0. (4.10)

Since relation (4.10) holds true and (un)n converges weakly to u in E, by [4, Lemma
3.1], we deduce that (un)n converges strongly to u in E. Then since I ∈ C1(E, R)
we conclude

I ′(un) → I ′(u), (4.11)
as n →∞.

Relations (4.6) and (4.11) show that I ′(u) = 0 and thus u is a weak solution for
(1.1). Moreover, by relation (4.6) it follows that I(u) > 0 and thus, u is a nontrivial
weak solution for (1.1). The proof of Theorem 3.2 is complete. �
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Corrigendum posted December 1, 2006

The author would like to thank Professor Xianling Fan for pointing out an error
that occurred in the original paper. More exactly, condition (F2) must be replaced
by

(F2) p+ < Np−

N−p− and there exist s ∈ (p+−1, Np−/(N−p−)−1), θ ∈ (s,Np−/(N−
p−)) and g1 ∈ L∞(RN ) ∩ Lθ/(θ−p++1)(RN ), g2 ∈ L∞(RN ) ∩ Lθ/(θ−s)(RN ),
with g1(x), g2(x) ≥ 0 such that

|fz(x, z)| ≤ g1(x)|z|p
+−2 + g2(x)|z|s−1, ∀x ∈ RN , ∀ z ∈ R.

This new condition was inspired from the paper by Fan and Han [4], and implies
the old condition.
Remark. Condition (F2) implies that there exist a1, a2 > 0 and s ∈ (p+ −
1, Np−/(N − p−)− 1) such that

|fz(x, z)| ≤ a1|z|p
+−2 + a2|z|s−1, ∀x ∈ RN , ∀ z ∈ R.

After this correction, the proof of Theorem 3.2 will change as well. At the end of
the proof, from “If Ω is bounded . . . ” on page 8, line 5, to “limn→∞

∫
Ω

f(x, un)(un−
u)dx = 0.”, page 9, line 8, will be replaced by:

Next, since (un)n converges weakly to u in E, it follows that

lim
n→∞

∫
RN

f(x, u)(un − u)dx = 0.

Using condition (F2) and [4, Lemma 3.2], we find

lim
n→∞

∫
RN

f(x, un)(un − u)dx = 0.

Combining the above two relations we obtain

lim
n→∞

∫
RN

(f(x, un)− f(x, u))(un − u)dx = 0.

End of corrigendum.
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