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STABLE TIME PERIODIC SOLUTIONS FOR DAMPED
SINE-GORDON EQUATIONS

JIANMIN ZHU, ZHIXIANG LI, YICHENG LIU

Abstract. We investigate existence and stability of time periodic solutions

for damped Sine-Gordon equations with delay under reasonable assumptions.
The key-step is constructing suitable Lyapunov functionals and establishing

the priori bound for all possible periodic solutions. We also use the Schaefer

fixed-point theorem.

1. Introduction

In this paper, we are interested in obtaining existence and stability of time
periodic solutions for the following damped Sine-Gordon equations with delay

∂2

∂t2
u(t, x) =

∂2

∂x2
u(t, x)− δ

∂

∂t
u(t, x)−

∫ t

t−τ

e−α(t−s) ∂

∂s
u(s, x)ds

+ β sin(u(t, x)) + g(t, x), 0 < x < 1, t > 0,

u(t, 0) = u(t, 1) = 0, t > 0,

where 0 < τ < +∞, β and δ are two constants. The Sine-Gordon equation appears
in a number of physical applications, including the propagation of junction between
two superconductors, the motion of rigid pendula attached to a stretched wire, and
the dislocations in crystals.

The existence of periodic solutions of nonlinear partial differential equations with
delay has been considered in several works, see for example [1, 2, 3, 4, 7, 8, 9, 10, 14]
and references listed therein. Most of these results are established by applying semi-
group theory [4, 7], Leray-Schauder continuation theorem [9], coincidence degree
theory [10] and so on. Hino, Naito et al. [7] investigated the existence of (almost)
periodic solutions for damped wave equations by using the key assumption that
there exists a bounded solution. Burton and Zhang [1] obtained the time periodic
solution to some evolution equations with infinity delay by means of Granas’s fixed
point theorem [13]. The theory of partial differential equations with delay(s) has
seen considerable development, see the monographs of Wu [8] and Hale [3, 5], where
numerous properties of their solutions are studied. For the more special work, we
can read the references therein [14, 2, 11, 6].
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The paper is organized as follows. In section 2 we will establish existence of time
periodic solution for abstract differential equation in a certain Banach space. Some
existence results for time periodic solutions are given in section 3. At last section,
the uniformly asymptotic stable time periodic solution will be shown.

For the remainder of the introduction, we state the following lemma which will
be used in the sequel.

Lemma 1.1 (Schaefer [12]). Let (X, ‖·‖) be a normed linear space, H a continuous
mapping of X into X which is compact on each bounded subset D of X. Then either

(i) x = λHx has a solution in X for λ = 1, or
(ii) the set of all such solutions, 0 < λ < 1, is unbounded.

2. Time periodic solutions for abstract equations

In this section, we obtain the existence results of periodic solutions for the wave
equation

∂2

∂t2
u(t, x) + δ

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + λC(t, u), 0 < x < 1, t > 0,

u(t, 0) = u(t, 1) = 0, t > 0,
(2.1)

where C(t + T, u) = C(t, u) for some T > 0, λ ∈ (0, 1). Let v(t, x) = ∂
∂tu(t, x), we

define a linear (unbounded) operator A by

A

(
u
v

)
=

(
v

∂2u
∂x2 − δv

)
,

(
u
v

)
∈ D(A) = (H2 ∩H1

0 )×H1
0 ,

where H1
0 = W 1,2

0 (0, 1), H2 = W 2,2(0, 1). Set

C̃(t, w) =
(

0
C(t, u)

)
for w =

(
u
v

)
∈ L2(0, 1;R)× L2(0, 1;R).

We rewrite (2.1) as an abstract equation in L2(0, 1;R)× L2(0, 1;R). That is,

w′(t) = Aw(t) + λC̃(t, w). (2.2)

Let
X = {w ∈ C(R,H1

0 ×H0)|w(t + T ) = w(t)},

‖w‖X = sup{(
∫ 1

0

(u2
x + v2)dx)1/2|0 ≤ t ≤ T}.

(2.3)

Then (X, ‖ · ‖X) is a Banach space.

Theorem 2.1. Suppose the following conditions hold:
(1) There exists D > 0 such that if w(t) is a T -periodic solution of (2.2) for

some λ ∈ (0, 1), then ‖w‖X < D;
(2) C : [0, T ] × X → H0 is continuous and takes bounded sets into bounded

sets. Then (2.1) has a T -periodic solution for λ = 1.

Proof. By the definition of the operator A, we see that A generates the strongly
continuous semigroup {T (t)}t≥0 and there exist c > 0, α > 0 such that α ∈ ρ(A)
and ‖T (t)‖ ≤ ceαt for t ≥ 0. Take S(t) = T (t)e−αt for t ≥ 0, then ‖S(t)‖ ≤ c
for t ≥ 0. Therefore, {S(t)}t≥0 is bounded strongly continuous semigroup with the
generator A− αI. For the constant T > 0, from the equality σ(S(T )) = eTσ(A−αI)

[7, Theorem 1.8], we conclude that 1 /∈ σ(S(T )). Thus there exists a positive
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number N such that ‖(I − S(T ))−1‖ ≤ N . We will complete the proof with using
the following two lemmas.

Lemma 2.2. If L : X → X is defined by

Lw(t) =
∫ t

t−T

S(t− s)[I − S(T )]−1[λC̃(s, w(s)) + αw(s)]ds

and if w is a fixed point of L then w satisfies (2.2).

Proof. For any w ∈ X, since

Lw(t + T ) =
∫ t+T

t

S(t + T − s)[I − S(T )]−1[λC̃(s, w(s)) + αw(s)]ds

=
∫ t

t−T

S(t− r)[I − S(T )]−1[λC̃(r + T,w(r + T )) + αw(r + T )]dr

=
∫ t

t−T

S(t− s)[I − S(T )]−1[λC̃(s, w(s)) + αw(s)]ds = Lw(t),

we see that L is well-defined. On the other hand, if w(t) is a fixed point of L, by
the well-known equality d

dtS(t)w = (A− αI)S(t)w for any w ∈ X, we have

d

dt
w(t) =

d

dt
Lw(t) = [I − S(T )]−1[λC̃(t, w(t)) + αw(t)]

− S(T )[I − S(T )]−1[λC̃(t− T,w(t− T )) + αw(t− T )]

+ (A− αI)
∫ t

t−T

S(t− s)[I − S(T )]−1[λC̃(s, w(s)) + αw(s)]ds

= Aw(t) + λC̃(t, w(t)).

This completes the proof. �

Lemma 2.3. The operator L is a compact operator in X.

Proof. Let E(w(s)) = λC̃(s, w(s))+αw(s), by assumption (2) of Theorem 2.1, E(·)
is continuous. Then, for any w1, w2 ∈ X, we obtain

Lw1(t)− Lw2(t) =
∫ t

t−T

S(t− s)[I − S(T )]−1[E(w1(s))− E(w2(s))]ds.

Thus

‖Lw1(t)− Lw2(t)‖H1
0×H0 ≤ cTN sup

s∈[0,T ]

‖E(w1(s))− E(w2(s))‖H1
0×H0 .

Then the continuity of E(·) implies that L is continuous.
Next, we show L maps the bounded sets into compact sets. Let B be any

bounded set in X and M = sup(t,w)∈[0,T ]×B |C(t, u(t))|H0 . Since C takes [0, T ]×B
into a bounded set, we see that

‖Lw‖X ≤ cTN [ sup
(t,w)∈[0,T ]×B

|C(t, u(t))|H0 + αK] ≤ cTN [M + αK],

where K is the boundedness of B. This implies that L(B) is uniformly bounded.
On the other hand, for any w ∈ B, and 0 ≤ t1 < t2 ≤ T , we have

Lw(t2)− Lw(t1)
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=
∫ t2

t2−T

S(t2 − s)[I − S(T )]−1[λC̃(s, w(s)) + αw(s)]ds

−
∫ t1

t1−T

S(t1 − s)[I − S(T )]−1[λC̃(s, w(s)) + αw(s)]ds

=
∫ t2

t1

S(t2 − s)[I − S(T )]−1[λC̃(s, w(s)) + αw(s)]ds

−
∫ t2−T

t1−T

S(t1 − s)[I − S(T )]−1[λC̃(s, w(s)) + αw(s)]ds

+ [S(t2 − t1)− I]
∫ t1

t2−T

S(t1 − s)[I − S(T )]−1[λC̃(s, w(s)) + αw(s)]ds.

Since limt2→t1 S(t2 − t1)w = w for w ∈ X, we conclude that the right-hand side of
above equality tends to zero as t2 → t1. This implies L(B) is equicontinuous. By
Ascoli’s lemma, L(B) is a compact set. This completes the proof. �

From Assumption (1) in Theorem 2.1, we see that the set {x ∈ X : x = λLx,
for some λ ∈ (0, 1)} is bounded. Then from Lemma 2.2, Lemma 2.3 and Lemma
1.1, we see that equation (2.2) has a T -periodic solution w(t, x) for λ = 1. That is,
(2.1) has a T -periodic solution u(t, x) for λ = 1. Then the proof of Theorem 2.1 is
complete. �

3. Time periodic solutions for Sine-Gordon equations

In this section, we consider the existence of periodic solutions for the Sine-Gordon
equations with delay:

∂2

∂t2
u(t, x) =

∂2

∂x2
u(t, x)− δ

∂

∂t
u(t, x)−

∫ t

t−τ

e−α(t−s) ∂

∂s
u(s, x)ds

+ β sin(u(t, x)) + g(t, x), 0 < x < 1, t > 0,

u(t, 0) = u(t, 1) = 0, t > 0,

(3.1)

where g is continuous. We assume that there exist positive constants K and T
satisfying

(A1) a =
∫ 0

−τ
eαsds < δ;

(A2) δ < π2

3 and 0 < |β| <
√

(2δ − (2+δ)δ
π2 − a)(2δ − δ(5δ+a)

π2 );
(A3) g 6= 0, g(t + T, x) = g(t, x) and |g(t, x)| ≤ K.
First, we consider the homotopy equation of (3.1),

utt + δut = uxx +λ[β sin(u)+ g(t, x)−
∫ t

t−τ

e−α(t−s)us(s, x)ds], 0 < λ < 1. (3.2)

Lemma 3.1. Suppose that (A1), (A2) and (A3) hold. Then there is a constant
C1 > 0 such that all T -periodic solution u(t) of (3.2) satisfy

sup
0≤t≤T

∫ 1

0

(u2
x + u2

t )dx ≤ C1.

Proof. Let u(t, x) be a T -periodic solution of (3.2) and define

V (t) =
∫ 1

0

[v2 + 2kuv + u2
x]dx,
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where v = ut, k = δ
π2 . Since

∫ 1

0
π2u2dx ≤

∫ 1

0
u2

xdx for u ∈ H1
0 , we obtain

(1− k)
∫ 1

0

[u2
x + v2]dx ≤ V (t) ≤ (1 + k)

∫ 1

0

[u2
x + v2]dx. (3.3)

Noting the assumptions (A2) and (A3), we see that |β sin(u)+g(t, x)| ≤ |β‖u|+K.
On the other hand, since

0 < |β| <
√

(2δ − (2 + δ)δ
π2

− a)(2δ − δ(5δ + a)
π2

),

then we choose positive constant ε1 such that

|β|
2δ − (2+δ)δ

π2 − a
< ε1 <

2δ − δ(5δ+a)
π2

|β|
.

Thus we have
(2 + δ)δ

π2
+ a + |β|ε−1

1 < 2δ

and (since |β| < 2δ)

δ

π2
(δ + 2|β|+ a) + |β|ε1 <

δ(5δ + a)
π2

+ |β|ε1 < 2δ.

Therefore, there exist constants ε2 and ε3 such that

(2 + δ)δ
π2

+ a + |β|ε−1
1 + ε2 < 2δ

and
δ

π2
(δ + 2|β|+ a + ε3) + |β|ε1 < 2δ.

Hence, by choosing k = δ/π2, we have

(2δ − 2k)− (kδ + |β|ε−1
1 + ε2 + a) > 0, (3.4)

2k − 1
π2

[k(δ + 2|β|+ ε3 + a) + |β|ε1] > 0. (3.5)

So that

V ′(t)

= 2
∫ 1

0

[vvt + uxuxt + k(utv + uvt)]dx (since
∫ 1

0

uxuxtdx = −
∫ 1

0

vuxxdx)

= 2
∫ 1

0

[vutt − vuxx + k(uttu + v2)]dx

= 2
∫ 1

0

[−δv2 + λv[β sin(u) + g(t, x)−
∫ t

t−τ

e−α(t−s)v(s, x)ds]]dx

+ 2k

∫ 1

0

[v2 + uxxu− δvu + λu[β sin(u) + g(t, x)−
∫ t

t−τ

e−α(t−s)v(s, x)ds]]dx

≤ 2
∫ 1

0

[−(δ − k)v2 − ku2
x − δkuv]dx

+ 2
∫ 1

0

(ku + v)(|β‖u|+ K +
∫ t

t−τ

e−α(t−s)|v(s, x)|ds)dx
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≤
∫ 1

0

[−(2δ − 2k)v2 − 2ku2
x + kδ(u2 + v2)]dx

+
∫ 1

0

(2|β|ku2 + ε3ku2 + k
K2

ε3
+ aku2 + k

∫ t

t−τ

e−α(t−s)v2(s, x)ds)dx

+
∫ 1

0

(|β|ε1u
2 +

|β|
ε1

v2 + ε2v
2 +

K2

ε2
+ av2 +

∫ t

t−τ

e−α(t−s)v2(s, x)ds)dx

=
∫ 1

0

[−(2δ − 2k) + kδ + |β|ε−1
1 + ε2 + a]v2dx

+
∫ 1

0

−2ku2
x + [k(δ + 2|β|+ ε3 + a) + |β|ε1]u2dx

+
K2

ε2
+ k

K2

ε3
+ (1 + k)

∫ 1

0

∫ t

t−τ

e−α(t−s)v2(s, x)dsdx

(since
∫ 1

0

π2u2dx ≤
∫ 1

0

u2
xdx)

≤ −c1

∫ 1

0

v2 + u2
xdx + c2

∫ 1

0

∫ t

t−τ

e−α(t−s)v2(s, x)dsdx + c3,

where c2 = 1 + k, c3 = K2

ε2
+ k K2

ε3
and (by (3.4) and (3.5))

c1 = min
{
(2δ − 2k)− (kδ + |β|ε−1

1 + ε2 + a),

2k − 1
π2

[k(δ + 2|β|+ ε3 + a) + |β|ε1]
}

> 0.

By (3.3), we see that there exist three positive constants r1, r2 and r3 such that

V ′(t) ≤ −r1V (t) + r2

∫ 1

0

∫ t

t−τ

e−α(t−s)v2(s, x)ds dx + r3. (3.6)

Since V (t) and v are T -periodic, we have∫ T

0

V (t)dt ≤ r2

r1

∫ T

0

∫ 1

0

∫ t

t−τ

e−α(t−s)v2(s, x)dsdxdt + r3T/r1

=
r2a

r1

∫ T

0

∫ 1

0

v2(t, x)dx dt + r3T/r1.

(3.7)

To obtain the boundedness of
∫ T

0

∫ 1

0
v2dxdt, we introduce the function

V1(t) =
∫ 1

0

[v2 + u2
x + 2λ cos(u)]dx.

Then

V ′1(t) = 2
∫ 1

0

[
− δv2 + λv[β sin(u) + g(t, x)

−
∫ t

t−τ

e−α(t−s)v(s, x)ds]− λβ sin(u)v
]
dx

≤
∫ 1

0

[
− (2δ − a− ε4)v2 +

∫ t

t−τ

e−α(t−s)v2(s, x)ds
]
dx +

K

ε4
,

(3.8)
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where 0 < ε4 < 2(δ − a). Therefore,∫ T

0

∫ 1

0

v2(t, x)dxdt ≤ KT

ε4(2δ − 2a− ε4)
:= K1.

By (3.7), we obtain ∫ T

0

V (t)dt ≤ r2a

r1
K1 + r3T/r1.

Since v and ux are continuous, there is a t0 ∈ [0, T ] with

V (t0) ≤
r2a
r1

K1 + r3T/r1

T
:= K2.

Hence, if t0 ≤ t ≤ t0 + T , then by (3.6), we obtain

V (t) = V (t0) +
∫ t

t0

V ′(s)ds

≤ K2 + r2

∫ t0+T

t0

∫ 1

0

∫ t

t−τ

e−α(t−s)v2(s, x)dsdxdt + r3T

≤ K2 + r2aK1 + r3T.

Note that (3.3) yields∫ 1

0

(u2
x + v2)dx ≤ K2 + r2aK1 + r3T

1− δ
π2

:= C1.

Thus

sup
0≤t≤T

∫ 1

0

(u2
x + v2)dx ≤ C1.

This completes the proof. �

Theorem 3.2. Suppose that (A1)–(A3) hold. Then (3.1) admits a nontrivial T -
periodic solution.

Proof. Let C(t, u) = β sin(u) + g(t, x)−
∫ t

t−τ
e−α(t−s)us(s)ds. Since∫ t

t−τ

e−α(t−s)us(s)ds =
∫ 0

−τ

eαsus(t + s)ds

= u(t)− u(t− τ)e−ατ − α

∫ 0

−τ

eαsu(t + s)ds,

from the assumptions (A1)–(A3), we see that C is continuous and takes bounded
sets into bounded sets. By Lemma 3.1 and Theorem 2.1, we see that (3.1) has a
T -periodic solution. Since g 6= 0, we see that the T -periodic solution is nontrivial.
This completes the proof. �

4. Stable periodic solutions for Sine-Gordon equations

In this section, we investigate the uniformly asymptotic stability of time periodic
solutions for Sine-Gordon equation

∂2u(t, x)
∂t2

=
∂2u(t, x)

∂x2
− δ

∂u(t, x)
∂t

+ β sin(u(t, x)) + g(t, x), 0 < x < 1, t > 0,

u(t, 0) = u(t, 1) = 0, t > 0,

(4.1)
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where g is continuous. We assume that

(H1) 0 < δ < 2π2

5 and 0 < |β| < δ
√

(2− (2+δ)
π2 )(2− 5δ

π2 ).

Theorem 4.1. Assume that (H1) and (A3) hold. Then (4.1) admits a nontrivial
uniformly asymptotic stable T -periodic solution.

Proof. By applying Theorem 3.2 and assumptions (H1) and (A3), we conclude that
(4.1) admits a nontrivial T -periodic solution ū(t). Let u(t) be a solution for (4.1),
and define

V2(t) =
∫ 1

0

[(ut − ūt)2 + 2k(u− ū)(ut − ūt) + (u− ū)2x]dx,

where k = δ
π2 . By the similar arguments as in Lemma 3.1, we have

V ′2(t) = 2
∫ 1

0

[(ut − ūt)(ut − ūt)t + (u− ū)x(u− ū)xt]dx

+ 2k

∫ 1

0

[(ut − ūt)2 + (u− ū)(ut − ūt)t]dx

= 2
∫ 1

0

[−δ(ut − ūt)2 + β[(ut − ūt) + k(u− ū)](sin(u)− sin(ū))]dx

+ 2k

∫ 1

0

[(ut − ūt)2 + (u− ū)xx(u− ū)− δ(ut − ūt)(u− ū)]dx

≤ 2
∫ 1

0

[−(δ − k)(ut − ūt)2 − k(u− ū)2x − kδ(u− ū)(ut − ūt)]dx

+ 2|β|
∫ 1

0

(k(u− ū) + (ut − ūt))|u− ū|dx

≤
∫ 1

0

[−(2δ − 2k)(ut − ūt)2 − 2k(u− ū)2x + kδ((u− ū)2 + (ut − ūt)2)]dx

+
∫ 1

0

(2|β|k(u− ū)2 + |β|ε(u− ū)2 +
|β|
ε

(ut − ūt)2dx

=
∫ 1

0

[−(2δ − 2k) + kδ + |β|ε−1](ut − ūt)2dx

+
∫ 1

0

−2k(u− ū)2x + [k(δ + 2|β|) + |β|ε](u− ū)2dx

≤ −c̃

∫ 1

0

(ut − ūt)2 + (u− ū)2xdx,

where
|β|

2δ − 2δ+δ2

π2

< ε <
2δ − 5δ2

π2

|β|
and

c̃ = min{2δ − (
2 + |β|

π2
+ |β|ε−1),

1
π2

[2δ − (
δ

π2
(δ + 2|β|) + |β|ε)]}.

Since
1
2

∫ 1

0

(ut − ūt)2 + (u− ū)2xdx ≤ V2(t) ≤ 2
∫ 1

0

(ut − ūt)2 + (u− ū)2xdx,



EJDE-2006/99 STABLE TIME PERIODIC SOLUTIONS 9

we obtain that

V ′2(t) ≤ − c̃

2
V2(t).

This implies that for any t > t0,

‖u(t)− ū(t)‖H1
0

+ ‖ut(t)− ūt(t)‖H0

≤ 2e−
c̃
2 (t−t0)[‖u(t0)− ū(t0)‖H1

0
+ ‖ut(t0)− ūt(t0)‖H0 ].

Thus the T -periodic solution ū(t) is uniformly asymptotic stable. Then the proof
of Theorem 4.1 is complete. �

Especially, in above arguments, let u(t) be any T -periodic solution of (4.1).
Then, for any positive integer n, we have

‖u(t)− ū(t)‖H1
0

+ ‖ut(t)− ūt(t)‖H0

= ‖u(t + nT )− ū(t + nT )‖H1
0

+ ‖ut(t + nT )− ūt(t + nT )‖H0

≤ 2e−
c̃
2 (t+nT−t0)[‖u(t0)− ū(t0)‖H1

0
+ ‖ut(t0)− ūt(t0)‖H0 ].

Let n → +∞, we obtain ‖u(t) − ū(t)‖H1
0

= 0 and ‖ut(t) − ūt(t)‖H0 = 0, which
implies that u(t) = ū(t) a.e. in [0,T]. Thus we have the following result.

Corollary 4.2. Suppose that (H1) and (A3) hold. Then (4.1) admits a unique
uniformly asymptotic stable T -periodic solution.

Note that in Theorem 4.1, the assumption 0 < |β| < δ
√

(2− (2+δ)
π2 )(2− 5δ

π2 )
is necessary. If this condition is omitted, the time periodic solution maybe not
uniformly asymptotic stable. Now, we show an example to explain this case.
Example Consider the equation

∂2u(t, x)
∂t2

+ 2
∂u(t, x)

∂t
=

∂2u(t, x)
∂x2

+ 4π2u(t, x), 0 < x < 1, t > 0,

u(t, 0) = u(t, 1) = 0, t > 0.
(4.2)

It is easy to see that u(t, x) = sin(2πx) is a time periodic solution of (4.2). On the
other hand, when p =

√
3π2 + 1−1, u(t, x) = sin(2πx)+ ept sin(πx) is a solution of

(4.2) too, but unbounded. Meanwhile u(t, x) ≡ 0 is time periodic solution of (4.2).
Hence both u(t, x) ≡ 0 and u(t, x) = sin(2πx) are not uniformly asymptotic stable
time periodic solutions.
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