Electronic Journal of Differential Equations, Vol. 2007(2007), No. 02, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

# STRUCTURAL STABILITY FOR BRINKMAN-FORCHHEIMER EQUATIONS 

YAN LIU, CHANGHAO LIN


#### Abstract

In this paper, we obtain the continuous dependence and convergence results for the Brinkman and Forchheimer coefficients of a differential equation that models the flow of fluid in a saturated porous medium.


## 1. Introduction

The concept of structural stability in which the study of continuous dependence (or stability) is on changes in the model itself rather than the initial data, has been the subject of much recent study. Many references to the work of the nature are given in the monograph of Ames and Straughan [1], which stress that continuous dependence on the model itself, or structural stability, is every bit as important as stability with respect to perturbations of the initial data. In particularly, the stability of flow in porous media has attracted much more attention in the literature; see [3, 4, 5, 6, 6, 8, and their references.

In this paper, we are interested in the Brinkman-Forchheimer equations governing the flow of fluid in a saturated porous medium,

$$
\begin{gather*}
\frac{\partial u_{i}}{\partial t}=\lambda \Delta u_{i}-a u_{i}-b|u| u_{i}-p_{, i} \\
\frac{\partial u_{i}}{\partial x_{i}}=0 \tag{1.1}
\end{gather*}
$$

where $u_{i}$ is the average fluid velocity in the porous medium, a is the Darcy coefficient, $\lambda$ is the Brinkman coefficient, $b$ is the Forchheimer coefficient, and $p$ is the pressure. $\lambda, a$ and $b$ are positive constants. Here also $\Delta$ is the laplace operator, and $\|\cdot\|$ denotes the norm of $L^{2}$.

We assume that $\Omega$ is a bounded, simply connected domain with boundary $\partial \Omega$ in $R^{3}$. Associated with 1.1), we imposed the boundary condition

$$
\begin{equation*}
u_{i}=0 \quad \text { on } \partial \Omega \times\{t>0\} \tag{1.2}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
u_{i}(x, 0)=f_{i}(x) \tag{1.3}
\end{equation*}
$$

[^0]In this paper, the usual summation convection is employed with repeated Latin subscripts summed from 1 to 3 . The comma is used to indicated partial differentiation and the differentiation with respect to the direction $x_{k}$ is denoted as ", $k$ ".

## 2. Continuous dependence for the Brinkman coefficient

To study the continuous dependence on $\lambda$, we let $\left(u_{i}, p\right)$ and $\left(v_{i}, q\right)$ solve the following boundary initial-value problems for different Brinkman coefficients $\lambda_{1}$ and $\lambda_{2}$,

$$
\begin{gather*}
\frac{\partial u_{i}}{\partial t}=\lambda_{1} \Delta u_{i}-a u_{i}-b|u| u_{i}-p_{, i} \quad \text { in } \Omega \times\{t>0\} \\
\frac{\partial u_{i}}{\partial x_{i}}=0 \quad \text { in } \Omega \times\{t>0\}  \tag{2.1}\\
u_{i}=0 \quad \text { on } \partial \Omega \times\{t>0\} \\
u_{i}(x, 0)=f_{i}(x), \quad x \in \Omega
\end{gather*}
$$

and

$$
\begin{gather*}
\frac{\partial v_{i}}{\partial t}=\lambda_{2} \Delta v_{i}-a v_{i}-b|v| v_{i}-q_{, i} \quad \text { in } \Omega \times\{t>0\} \\
\frac{\partial v_{i}}{\partial x_{i}}=0 \quad \text { in } \Omega \times\{t>0\}  \tag{2.2}\\
v_{i}=0 \quad \text { on } \partial \Omega \times\{t>0\} \\
v_{i}(x, 0)=f_{i}(x), \quad x \in \Omega
\end{gather*}
$$

We define the difference variables $w_{i}, \pi$ and $\lambda$ by

$$
\begin{equation*}
w_{i}=u_{i}-v_{i}, \pi=p-q, \lambda=\lambda_{1}-\lambda_{2} \tag{2.3}
\end{equation*}
$$

and then $\left(w_{i}, \pi\right)$ satisfies the boundary initial-value problem

$$
\begin{gather*}
\frac{\partial w_{i}}{\partial t}=\lambda_{1} \Delta u_{i}-\lambda_{2} \Delta v_{i}-a w_{i}-b\left(|u| u_{i}-|v| v_{i}\right)-\pi_{, i} \quad \text { in } \Omega \times\{t>0\} \\
\frac{\partial w_{i}}{\partial x_{i}}=0 \quad \text { in } \Omega \times\{t>0\}  \tag{2.4}\\
w_{i}=0 \quad \text { on } \partial \Omega \times\{t>0\} \\
w_{i}(x, 0)=0, \quad x \in \Omega
\end{gather*}
$$

Multiplying 2.41 by $w_{i}$ and integrating over $\Omega$, we get

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\|w\|^{2} \\
& =-\int_{\Omega} \lambda_{1} \nabla u_{i} \nabla w_{i} d x+\int_{\Omega} \lambda_{2} \nabla v_{i} \nabla w_{i} d x-a\|w\|^{2}-b \int_{\Omega}\left(|u| u_{i}-|v| v_{i}\right) w_{i} d x  \tag{2.5}\\
& =-\int_{\Omega} \lambda \nabla u_{i} \nabla w_{i} d x+\int_{\Omega} \lambda_{2} \nabla w_{i} \nabla w_{i} d x-a\|w\|^{2}-b \int_{\Omega}\left(|u| u_{i}-|v| v_{i}\right) w_{i} d x
\end{align*}
$$

Since

$$
\begin{align*}
& \left(|u| u_{i}-|v| v_{i}\right) w_{i} \\
& =\frac{1}{2}|u|\left(u_{i}-v_{i}+v_{i}\right) w_{i}-\frac{1}{2}|v| v_{i} w_{i}+\frac{1}{2}|u| u_{i} w_{i}+\frac{1}{2}|v| w_{i}\left(u_{i}-v_{i}-u_{i}\right)  \tag{2.6}\\
& =\frac{1}{2}(|u|+|v|) w_{i} w_{i} d x+\frac{1}{2}(|u|-|v|)^{2}(|u|+|v|)
\end{align*}
$$

Combining 2.5 and 2.6, using the Cauchy-Schwarz inequality and dropping some negative items, we obtain

$$
\frac{d}{d t}\|w\|^{2} \leq \frac{\lambda^{2}}{2 \lambda_{2}}\|\nabla u\|^{2}
$$

Integrating from 0 to $t$, we obtain

$$
\begin{equation*}
\|w\|^{2} \leq \frac{\lambda^{2}}{2 \lambda_{2}} \int_{0}^{t}\|\nabla u\|^{2} d \eta \tag{2.7}
\end{equation*}
$$

Our next step is to bound $\int_{0}^{t}\|\nabla u\|^{2} d \eta$. Multiplying 2.1) by $u_{i}$ and integrating over $\Omega$, we see that

$$
\frac{d}{d t}\|u\|^{2}+2 \lambda_{1}\|\nabla u\|^{2} \leq 0
$$

Integrating from 0 to $t$, we obtain

$$
\begin{equation*}
\|u\|^{2}+2 \lambda_{1} \int_{0}^{t}\|\nabla u\|^{2} d \eta \leq\|f\|^{2} \tag{2.8}
\end{equation*}
$$

thus

$$
\begin{equation*}
\int_{0}^{t}\|\nabla u\|^{2} d \eta \leq \frac{\|f\|^{2}}{2 \lambda_{1}} \tag{2.9}
\end{equation*}
$$

Combining 2.7 and 2.9, we obtain

$$
\begin{equation*}
\|w\|^{2} \leq \frac{\lambda^{2}}{4 \lambda_{1} \lambda_{2}}\|f\|^{2} \tag{2.10}
\end{equation*}
$$

Inequality 2.10 shows the continuous dependence on $\lambda$. However, the convergence result can't follow from 2.10 as $\lambda_{1} \rightarrow 0, \lambda_{2}=0$.
3. Convergence as $\lambda_{1} \rightarrow 0, \lambda_{2}=0$

Let $\left(u_{i}, p\right)$ be a solution of (2.1) with $\lambda_{1} \rightarrow 0,\left(v_{i}, p\right)$ be a solution of 2.1) with $\lambda_{1} \rightarrow 0, w_{i}, \pi$ are defined the same as in section 2 .

$$
\begin{gather*}
\frac{\partial w_{i}}{\partial t}=\lambda_{1} \Delta u_{i}-a w_{i}-b\left(|u| u_{i}-|v| v_{i}\right)-\pi_{, i} \quad \text { in } \Omega \times\{t>0\} \\
\frac{\partial w_{i}}{\partial x_{i}}=0 \quad \text { in } \Omega \times\{t>0\}  \tag{3.1}\\
w_{i}=0 \quad \text { on } \partial \Omega \times\{t>0\} \\
w_{i}(x, 0)=0, \quad x \in \Omega
\end{gather*}
$$

Multiplying $3.11_{1}$ by $w_{i}$ and integrating over $\Omega$, we find

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\|w\|^{2} \\
& =-\lambda_{1} \int_{\Omega} \nabla u_{i} \nabla w_{i} d x-a\|w\|^{2}-b \int_{\Omega}\left(|u| u_{i}-|v| v_{i}\right) w_{i} d x \\
& =-\lambda_{1} \int_{\Omega} \nabla u_{i} \nabla u_{i} d x+\lambda_{1} \int_{\Omega} \nabla u_{i} \nabla v_{i} d x-a\|w\|^{2}-b \int_{\Omega}\left(|u| u_{i}-|v| v_{i}\right) w_{i} d x  \tag{3.2}\\
& \leq \frac{\lambda_{1}}{4} \int_{\Omega} \nabla v_{i} \nabla v_{i} d x-a\|w\|^{2}
\end{align*}
$$

The next step is to bound $\int_{\Omega} v_{i, j} v_{i, j} d x$. We know

$$
\begin{equation*}
\int_{\Omega} v_{i, j} v_{i, j} d x=\int_{\Omega} v_{i, j}\left(v_{i, j}-v_{j, i}\right) d x \tag{3.3}
\end{equation*}
$$

Using 2.2$)_{1}$ with $\lambda_{2}=0$, we get

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega} v_{i, j}\left(v_{i, j}-v_{j, i}\right) d s d \eta \\
& =\frac{1}{a} \int_{0}^{t} \int_{\Omega}\left(v_{i, j}-v_{j, i}\right)\left(-v_{i, j t}-b\left(|v| v_{i}\right)_{, j}-q_{, i j}\right) d x d \eta \\
& =-\frac{1}{a} \int_{0}^{t} \int_{\Omega}\left(v_{i, j}-v_{j, i}\right) v_{i, j t} d s d \eta-\frac{b}{a} \int_{0}^{t} \int_{\Omega}\left(v_{i, j}-v_{j, i}\right) \\
& \quad \times\left(\frac{v_{k} v_{k, j}}{|v|} v_{i}+|v| v_{i, j}\right) d s d \eta+\frac{1}{a} \int_{0}^{t} \int_{\Omega} v_{i, i j} q_{, j} d s d \eta \\
& \quad-\frac{1}{a} \int_{0}^{t} \int_{\Omega} v_{j, j i} q_{, i} d s d \eta-\frac{1}{a} \int_{0}^{t} \int_{\partial \Omega} v_{i, j} q_{, j} n_{i} d s d \eta+\frac{1}{a} \int_{0}^{t} \int_{\partial \Omega} v_{j, i} q_{, i} n_{j} d s d \eta \\
& = \\
& -\left.\frac{1}{2 a} \int_{\Omega} v_{i, j} v_{i, j} d x\right|_{\eta=t}+\frac{1}{2 a} \int_{\Omega} f_{i, j} f_{i, j} d x  \tag{3.4}\\
& \\
& \quad-\frac{b}{a} \int_{0}^{t} \int_{\Omega} \frac{v_{k} v_{k, j} v_{i} v_{i, j}}{|v|} d s d \eta-\frac{b}{a} \int_{0}^{t} \int_{\Omega} v_{i, j}|v| v_{i, j} d s d \eta
\end{align*}
$$

thus

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega} v_{i, j} v_{i, j} d s d \eta \leq \frac{1}{2 a} \int_{\Omega} f_{i, j} f_{i, j} d x \tag{3.5}
\end{equation*}
$$

Combining (3.2), (3.3) and (3.5), we get

$$
\|w\|^{2} \leq \frac{\lambda_{1}}{8 a} \int_{\Omega} f_{i, j} f_{i, j} d s d \eta
$$

This inequality demonstrates the convergence $u \rightarrow v$ when $\lambda_{1} \rightarrow 0, \lambda_{2}=0$.

## 4. Continuous dependence for the Forchheimer coefficient b

To study continuous dependence on $b$, we let $\left(u_{i}, p\right)$ and $\left(v_{i}, q\right)$ solve the following boundary initial-value problem for different coefficients $b_{1}$ and $b_{2}$.

$$
\begin{gather*}
\frac{\partial u_{i}}{\partial t}=\lambda \Delta u_{i}-a u_{i}-b_{1}|u| u_{i}-p_{, i} \quad \text { in } \Omega \times\{t>0\} \\
\frac{\partial u_{i}}{\partial x_{i}}=0 \quad \text { in } \Omega \times\{t>0\}  \tag{4.1}\\
u_{i}=0 \quad \text { on } \partial \Omega \times\{t>0\} \\
u_{i}(x, 0)=f_{i}(x), \quad x \in \Omega
\end{gather*}
$$

and

$$
\begin{gather*}
\frac{\partial v_{i}}{\partial t}=\lambda \Delta v_{i}-a v_{i}-b_{2}|v| v_{i}-q_{, i} \quad \text { in } \Omega \times\{t>0\} \\
\frac{\partial v_{i}}{\partial x_{i}}=0 \quad \text { in } \Omega \times\{t>0\}  \tag{4.2}\\
v_{i}=0 \quad \text { on } \partial \Omega \times\{t>0\} \\
v_{i}(x, 0)=f_{i}(x), \quad x \in \Omega
\end{gather*}
$$

We define the difference variables

$$
\begin{equation*}
w_{i}=u_{i}-v_{i}, \quad \pi=p-q, \quad b=b_{1}-b_{2} . \tag{4.3}
\end{equation*}
$$

Then $\left(w_{i}, \pi\right)$ satisfy the boundary initial-value problem

$$
\begin{gather*}
\frac{\partial w_{i}}{\partial t}=\lambda \Delta w_{i}-a w_{i}-\left(b_{1}|u| u_{i}-b_{2}|v| v_{i}\right)-\pi_{, i} \quad \text { in } \Omega \times\{t>0\} \\
\frac{\partial w_{i}}{\partial x_{i}}=0 \quad \text { in } \Omega \times\{t>0\}  \tag{4.4}\\
w_{i}=0 \quad \text { on } \partial \Omega \times\{t>0\} \\
w_{i}(x, 0)=0, \quad x \in \Omega
\end{gather*}
$$

Multiplying $4.1_{1}$ by $w_{i}$ and integrating over $\Omega$, we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|w\|^{2}=-\lambda \int_{\Omega}|\nabla w|^{2} d x-a\|w\|^{2}-\int_{\Omega}\left(b_{1}|u| u_{i}-b_{2}|v| v_{i}\right) w_{i} d x \tag{4.5}
\end{equation*}
$$

For we have

$$
\begin{equation*}
b_{1}|u| u_{i}-b_{2}|v| v_{i}=\frac{b}{2}\left(|u| u_{i}+|v| v_{i}\right)+\tilde{b}\left(|u| u_{i}-|v| v_{i}\right) \tag{4.6}
\end{equation*}
$$

where $\tilde{b}=\frac{b_{1}+b_{2}}{2}$. Combining (4.5, (4.6) and 2.6), we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\|w\|^{2} \\
& =-\lambda \int_{\Omega}|\nabla w|^{2} d x-a\|w\|^{2}-\frac{b}{2} \int_{\Omega}\left(|u| u_{i}+|v| v_{i}\right) w_{i} d x-\tilde{b}\left(|u| u_{i}-|v| v_{i}\right) w_{i} d x \\
& \leq-a\|w\|^{2}-\frac{b}{2} \int_{\Omega}\left(|u| u_{i}+|v| v_{i}\right) w_{i} d x-\frac{\tilde{b}}{2} \int_{\Omega}(|u|+|v|) w_{i} w_{i} d x \tag{4.7}
\end{align*}
$$

We then use the Cauchy-Schwarz and arithmetic geometric mean inequalities as follows

$$
\begin{equation*}
\frac{b}{2}\left|\int_{\Omega}\left(|u| u_{i}+|v| v_{i}\right) w_{i} d x\right| \leq \frac{b^{2}}{8 \tilde{b}} \int_{\Omega}\left(|u|^{3}+|v|^{3}\right) d x+\frac{1}{2} \tilde{b} \int_{\Omega}(|u|+|v|) w_{i} w_{i} d x \tag{4.8}
\end{equation*}
$$

We now employ 4.8 in 4.7, after an integration, that

$$
\begin{equation*}
\frac{1}{2}\|w\|^{2}+a \int_{0}^{t}\|w\|^{2} d \eta \leq \frac{b^{2}}{8 \tilde{b}} \int_{0}^{t} \int_{\Omega}\left(|u|^{3}+|v|^{3}\right) d s d \eta \tag{4.9}
\end{equation*}
$$

From 4.1 $1_{1}$, one deduce that

$$
\begin{equation*}
\frac{1}{2}\|u\|^{2}+a \int_{0}^{t}\|u\|^{2} d \eta+b_{1} \int_{0}^{t} \int_{\Omega}|u|^{3} d s d \eta+\lambda \int_{0}^{t} \int_{\Omega} u_{i, j} u_{i, j} d s d \eta=\frac{1}{2}\|f\|^{2} \tag{4.10}
\end{equation*}
$$

and so

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega}|u|^{3} d s d \eta \leq \frac{1}{2 b_{1}}\|f\|^{2} \tag{4.11}
\end{equation*}
$$

Similarly, from 4.2$)_{1}$, we can also get

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega}|v|^{3} d s d \eta \leq \frac{1}{2 b_{1}}\|f\|^{2} \tag{4.12}
\end{equation*}
$$

Inserting (4.11, (4.12) in 4.10), we find

$$
\begin{equation*}
\|w\|^{2}+2 a \int_{0}^{t}\|w\|^{2} d \eta \leq \frac{b^{2}}{4 b_{1} b_{2}}\|f\|^{2} \tag{4.13}
\end{equation*}
$$

This inequality establish continuous dependence on $b$, we note, however, that convergence as $b_{1} \rightarrow 0, b_{2}=0$ is not established from 4.13).
5. Convergence as the Forchheimer coefficient $b_{1} \rightarrow 0$ and $b_{2}=0$

Now, let $\left(u_{i}, p\right)$ be the solution of 4.1), and $\left(v_{i}, q\right)$ be the solution of 4.2 with $b_{2}=0$. The object of this section is to demonstrate convergence of the solution $u_{i}$ to the solution $v_{i}$ as $b_{1} \rightarrow 0$. We also define the variables $w_{i}$ and $\pi$ by

$$
\begin{equation*}
w_{i}=u_{i}-v_{i}, \quad \pi=p-q \tag{5.1}
\end{equation*}
$$

and then $\left(w_{i}, \pi\right)$ satisfy the boundary initial-value problems

$$
\begin{gather*}
\frac{\partial w_{i}}{\partial t}=\lambda \Delta w_{i}-a w_{i}-b_{1}|u| u_{i}-\pi_{, i} \quad \text { in } \Omega \times\{t>0\} \\
\frac{\partial w_{i}}{\partial x_{i}}=0 \quad \text { in } \Omega \times\{t>0\}  \tag{5.2}\\
w_{i}=0 \quad \text { on } \partial \Omega \times\{t>0\} \\
w_{i}(x, 0)=0, \quad x \in \Omega
\end{gather*}
$$

Multiplying by $w_{i}$ and integrating over $\Omega$, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|w\|^{2}=-\lambda\|\nabla w\|^{2}-a\|w\|^{2}-b_{1} \int_{\Omega}|u| u_{i} w_{i} d x \tag{5.3}
\end{equation*}
$$

Using the Hölder inequality, we get

$$
\begin{equation*}
\frac{d}{d t}\|w\|^{2} \leq 2 b_{1}\left(\int_{\Omega}|u|^{3} d x\right)^{2 / 3}\left(\int_{\Omega}|w|^{3} d x\right)^{1 / 3}-2 \lambda\|\nabla w\|^{2}-2 a\|w\|^{2} \tag{5.4}
\end{equation*}
$$

For a function $F$ such that $F=0$ on $\partial \Omega$ (see for example [2]), we have the Sobolev inequality

$$
\int_{\Omega}|F|^{4} d x \leq c_{1}\left(\int_{\Omega}|F|^{2} d x\right)^{1 / 2}\left(\int_{\Omega} F_{i, j} F_{i, j} d x\right)^{3 / 2}
$$

Then, we use the Cauchy-Schwarz inequality, to get

$$
\begin{align*}
\int_{\Omega}|w|^{3} d x & \leq\left(\int_{\Omega}|w|^{2} d x\right)^{1 / 2}\left(\int_{\Omega}|w|^{4} d x\right)^{1 / 2}  \tag{5.5}\\
& \leq c_{1}\left(\int_{\Omega} w_{i} w_{i} d x\right)^{3 / 4}\left(\int_{\Omega} w_{i, j} w_{i, j} d x\right)^{3 / 4}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\int_{\Omega}|u|^{3} d x \leq c_{1}\left(\int_{\Omega} u_{i} u_{i} d x\right)^{3 / 4}\left(\int_{\Omega} u_{i, j} u_{i, j} d x\right)^{3 / 4} \tag{5.6}
\end{equation*}
$$

In view of 5.4 and 5.5, 5.3 can be rewritten as

$$
\begin{aligned}
\|w\|^{2} \leq & 2 b_{1} c_{1} \int_{0}^{t}\left[\left(\int_{\Omega} w_{i} w_{i} d x\right)^{1 / 4}\left(\int_{\Omega} w_{i, j} w_{i, j} d x\right)^{1 / 4}\left(\int_{\Omega} u_{i} u_{i} d x\right)^{1 / 2}\right. \\
& \left.\times\left(\int_{\Omega} u_{i, j} u_{i, j} d x\right)^{1 / 2}\right] d \eta-2 \lambda \int_{0}^{t}\|\nabla w\|^{2} d \eta-2 a \int_{0}^{t} w^{2} d s d \eta \\
\leq & 2 \lambda \int_{0}^{t}\|\nabla w\|^{2} d \eta-2 a \int_{0}^{t}\|w\|^{2} d \eta-2 b_{1} c_{1} \int_{0}^{t}\left[\left(\varepsilon_{1} \int_{\Omega} w_{i} w_{i} d x\right)^{1 / 4}\right. \\
& \left.\times\left(\varepsilon_{2} \int_{\Omega} w_{i, j} w_{i, j} d x\right)^{1 / 4}\left(\max \int_{\Omega} u_{i} u_{i} d x \cdot \int_{\Omega}\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1 / 2} u_{i, j} u_{i, j} d x\right)^{1 / 2}\right] d \eta \\
\leq & \frac{1}{4} \varepsilon_{1} \int_{0}^{t} \int_{\Omega} w_{i} w_{i} d s d \eta+\frac{1}{4} \varepsilon_{2} \int_{0}^{t} \int_{\Omega} w_{i, j} w_{i, j} d s d \eta \\
& +\frac{4}{2}\left(b_{1} c_{1}\right)^{2} \cdot\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1 / 2} \int_{0}^{t} \int_{\Omega} u_{i, j} u_{i, j} d s d \eta \\
& -2 a \max \int_{\Omega} u_{i} u_{i} d x \int_{0}^{t} \int_{\Omega} w^{2} d s d \eta-2 \lambda \int_{0}^{t}|\nabla w|^{2} d \eta-2 a \int_{0}^{t}\|w\|^{2} d \eta
\end{aligned}
$$

If we choose $\varepsilon_{1}=8 a, \varepsilon_{2}=8 \lambda$, the above expression can be rewritten as

$$
\begin{equation*}
\|w\|^{2} \leq \frac{b_{1}^{2} c_{1}^{2}}{4(a \lambda)^{1 / 2}} \max \int_{\Omega} u_{i} u_{i} d x \cdot \int_{0}^{t} \int_{\Omega} u_{i, j} u_{i, j} d s d \eta \tag{5.7}
\end{equation*}
$$

From 4.10, we have

$$
\max \int_{\Omega} u_{i} u_{i} d x \leq\|f\|^{2}, \quad \int_{0}^{t} \int_{\Omega} u_{i, j} u_{i, j} d s d \eta \leq \frac{1}{2 \lambda}\|f\|^{2}
$$

therefore, from (5.7), we have

$$
\|w\|^{2} \leq \frac{\left(b_{1} c_{1}\right)^{2}}{8 a^{1 / 2} \lambda^{3 / 2}}\|f\|^{4}
$$

which shows the desired result.
Acknowledgments. The authors would like to express their gratitude to Professor Hongliang Tu for his advice when in writing parts of this article.

## References

[1] K. A. Ames and B. Straughan, Non-standard and improperly posed problems, Academic. Press.
[2] J. N. Flavin and S. Rionero, Qualitative Estimates for Partial Differential Equtions:An Introduction, CRC Press, Boca Raton (1996).
[3] J. Guo and P. N. Kaloni, Double diffusive convection in a porous medium, nonlinear stability and the Brinkman effect, Stud. Appl. Math. 94 (1995), 341-358.
[4] L. E. Payne and B. Straughan, Convergence and continuous dependence for the BrinkmanForchheimer equations, Stud. Appl. Math. 102 (1999), 419-439.
[5] L. E. Payne and B. Straughan, Structural stability for the Darcy equations of flow in porous media, Proc, Roy, Soc, London A 454 (1998), 1691-1698.
[6] L. E. Payne, J. C. Song and B. Straughan, Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity, Proc. R. Soc. Lond. A (1999)45S, 2173-2190.
[7] B. Straughan, Effect of property variation and modeling on convection in a fluid overlying a porous layer,Int. J. num. Anal. Meth. Geomech, 26 (2002)75-97.
[8] B. Straughan and K. Hutter, A priori bounds and structure stability for double-diffusive convection in corporating the soret effect, Proc. R. Soc. lond. A(1999)455, 767-777.

Yan Liu
Department of Applied Mathematics, Guangdong University of Finance, Guangzhou, 510520, China

E-mail address: liuyan99021324@tom.com
Changhao Lin
School of Mathematical Sciences, South China Normal University, 510631, China
E-mail address: linchh@scnu.edu.cn


[^0]:    2000 Mathematics Subject Classification. 35B40, 35K50,35K45.
    Key words and phrases. Continuous dependence; Brinkman-Forchheimer equations;
    Brinkman coefficient; Forcheimer coefficient; structural stability.
    (C) 2007 Texas State University - San Marcos.

    Submitted December 7, 2006. Published January 2, 2007.

