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POSITIVE SOLUTIONS FOR SINGULAR NONLINEAR BEAM
EQUATION

RUHAO SONG, HAISHEN LÜ

Abstract. In paper, we study the existence of solutions for the singular p-

Laplacian equation`
|u′′|p−2u′′

´′′ − f(t, u) = 0, t ∈ (0, 1)

u(0) = u(1) = 0,

u′′(0) = u′′(1) = 0,

where f(t, u) is singular at t = 0, 1 and at u = 0. We prove the existence of at

least one solution.

1. Introduction

In this paper, we establish the existence of solutions to the singular boundary-
value problem (

|u′′|p−2u′′
)′′ − f(t, u) = 0, t ∈ (0, 1)

u(0) = u(1) = 0,

u′′(0) = u′′(1) = 0,

(1.1)

where p > 1 and f(t, u) has singularity at t = 0, 1 and at u = 0. For convenience,
we denote ϕp(s) = |s|p−2s, for p > 1.

Equation (1.1) occurs in the following models of beams [4]: Beams with small
deformations (also called geometric linearity); beams of a material which satisfies
a nonlinear power-like stress-strain law; beams with two-sided links (for example,
springs) which satisfy a nonlinear power-like elasticity law. The best known setting
is the boundary-value problem, for p = 2,

u(4) − f(t, u(t)) = 0, t ∈ (0, 1) .

This model describes deformations of an elastic beams with the boundary conditions
reflecting both ends simply supported, also for one end simply supported and the
other end clamped by sliding clamps. Vanishing moments and shear forces at the
tail ends are frequently included in the boundary conditions; see for example Gupta
[7] and its references. One derivation of lines is used in the description over regions
of certain partial differential equations describing the deflection of an elastic beam.
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Agarwal et al. [2, 3] consider the boundary-value problem

(−1)nx(2n)(t) = µf(t, x(t), . . . , x(2n−2)(t)),

x(2j)(0) = x(2j)(T ) = 0, 0 ≤ j ≤ n− 1

under the critical condition:
(A) For a.e. t ∈ [0, T ] and for each (x0, . . . , x2n−2) ∈ D (defined in [2])

f(t, x0, . . . , x2n−2) ≤ φ(t) +
2n−2∑
j=0

qj(t)ωj(|xj |) +
2n−2∑
j=0

hj(t)|xj |αj

where φ, hj ∈ L1(0, T ) and qj ∈ L∞(0, T ) are nonnegative, ωj : (0,∞) →
(0,∞) are nonincreasing, αj ∈ (0, 1) and∫ T

0

ωj(s)ds <∞, ωj(uv) ≤ Λωj(u)ωj(v)

for 0 ≤ j ≤ 2n− 2 and u, v ∈ (0,∞) with a positive constant Λ.
Closely related to the results of this paper is the recent work by Agarwal, Lü and

O’Regan [1]. There the authors consider positive solutions for the boundary-value
problem (

|u′′|p−2u′′
)′′ − λq(t)f(u(t)) = 0,

where the nonlinearity f is nonsingular. In this paper consider nonlinearity f may
be singular. We point out a sufficient condition for problem (1.1) has a positive
solution, but it doesn’t satisfies the condition (A), for example

f(t, u) =
tα(1 + t)α

uβ

where α+ 1 > β > 0.
Singular nonlinear two point boundary-value problems arise naturally in appli-

cations and usually, only positive solutions are meaningful. By a positive solution
of (1.1), we mean a function u ∈ C(2)[0, 1] with ϕp(u′′) ∈ C(2)(0, 1) satisfying (1.1).

We next give definitions and some properties of cones in Banach spaces. After
that, we state a fixed point theorem for operators that are decreasing with respect
to a cone [5, 6].

Let B be a Banach space, and K a closed, nonempty subset of B. K is a cone
provided (i) αu + βv ∈ K, for all u, v ∈ K and all α, β ≥ 0 and (ii) u,−u ∈ K
imply u = 0.

Given a cone K, a partial order, ≤, is induced on B by x ≤ y, for x, y ∈ B
if y − x ∈ K. (For clarity, we may sometimes write x ≤ y (wrt K). If x, y ∈ B
with x ≤ y, let 〈x, y〉 denote the closed order interval between x and y given by,
〈x, y〉 = {z ∈ B|x ≤ z ≤ y}. A cone K is normal in B provided, there exists δ > 0,
such that ‖e1 + e2‖ ≥ δ, for all e1, e2 ∈ K, with ‖e1‖ = ‖e2‖ = 1.

The following fixed point theorem can be found in [5, 6].

Theorem 1.1. Let B be a Banach space, K a normal cone in B, E ⊆ K such that,
if x, y ∈ E with x ≤ y, then 〈x, y〉 ⊆ E, and let T : E → K be a continuous mapping
that is decreasing with respect to K, and which is compact on any closed order
interval contained in E. Suppose there exists x0 ∈ E such that T 2(x0) = T (Tx0) is
defined, and furthermore, Tx0, T 2x0 are order comparable to x0. If, either

(I) Tx0 ≤ x0 and T 2x0 ≤ x0, or x0 ≤ Tx0 and x0 ≤ T 2x0, or
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(II) The complete sequence of iterates {Tnx0}∞n=0 is defined, and there exists
y0 ∈ E such that Ty0 ∈ E and y0 ≤ Tnx0, for all n ≥ 0, then T has a fixed
point in E.

2. Main Theorem

Theorem 2.1. Assume the following conditions hold:
(a) f(t, u) : (0, 1)× (0,∞) → (0,∞) is continuous,
(b) f(t.u) is decreasing in u, for each fixed t ∈ (0, 1),
(c)

∫ 1

0
f(t, u)dt <∞, for each fixed u,

(d) limu→0+ f(t, u) = ∞ uniformly on compact subsets of (0, 1),
(e) limu→∞ f(t, u) = 0 uniformly on compact subsets of (0, 1).
(f) for each τ > 0, 0 <

∫ 1

0
f(t, gτ (t))dt <∞, where gτ (x) = τg(x) and

g(t) =

{
t, 0 ≤ t ≤ 1

2 ,

(1− t), 1
2 ≤ t ≤ 1.

Then the boundary-value problem (1.1) has a positive solution u ∈ C(2)[0, 1] with
ϕp(u′′) ∈ C(2)(0, 1).

Before the proof of Theorem 2.1, We give some Lemmas which we will uses in
its proof.

Lemma 2.2. If u ∈ C(2)[0, 1], ϕp(u′′) ∈ C(2)(0, 1) such that (|u′′|p−2u′′)′′ > 0 on
(0, 1), and u(0) = u(1) = u′′(0) = u′′(1) = 0, then

u(t) ≥ 1
4

max
0≤t≤1

|u(t)|, 1
4
≤ t ≤ 3

4
. (2.1)

The proof of the above lemma is easy; so we omit it.
Recall that the Green function for the problem

u′′(t) = 0, 0 ≤ t ≤ 1,

u(0) = u(1) = 0

is defined as

G(t, s) =

{
(1− s)t, 0 ≤ t ≤ s ≤ 1,
(1− t)s, 0 ≤ s ≤ t ≤ 1.

(2.2)

A direct calculation shows that

G(t, s) ≤ G(s, s) for (t, s) ∈ [0, 1]× [0, 1],

G(t, s) ≤ 1
4

for (t, s) ∈ [0, 1]× [0, 1], (2.3)

G(t, s) ≥ 1
4
G(s, s) ≥ 3

64
for (t, s) ∈ [

1
4
,
3
4
]× [

1
4
,
3
4
] (2.4)

Lemma 2.3. If u ∈ C(2)[0, 1], ϕp(u′′) ∈ C(2)(0, 1) such that (|u′′|p−2u′′)′′ > 0 on
(0, 1), and u(0) = u(1) = u′′(0) = u′′(1) = 0, then u(t) ≥ 0 on [0, 1].

Proof. Let v = u′′. Then

(ϕp(v))′′(t) > 0,

v(0) = v(1) = 0.
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This implies

(ϕp(v))′′(t) > 0,

(ϕp(v))(0) = (ϕp(v))(1) = 0.

By the convexity of ϕp(v), we obtain (ϕp(v))(t) ≤ 0, for 0 ≤ t ≤ 1. So v(t) ≤ 0, i.e.

u′′ ≤ 0 on [0, 1],

u(0) = u(1) = 0.

Then by the concavity of u, we have u ≥ 0 on [0, 1]. �

It follows from Lemma 2.3 and Rolle’s theorem, that u(t) has an extreme point,
say at t0 ∈ [0, 1]. Then we define a piecewise polynomial function,

p(t) =

{ |u|∞
t0

t, 0 ≤ t ≤ t0,

|u|∞
1−t0

(1− t), t0 ≤ t ≤ 1,
(2.5)

where |u|∞ = sup0≤t≤1 |u(t)| = u(t0). Then we have the following Lemma.

Lemma 2.4. Assume u ∈ C(2)[0, 1]. Let ϕp(u′′) be a function in C(2)(0, 1) such
that (ϕp(u′′(t)))′′ > 0, 0 < t < 1, and u(0) = u(1) = u′′(0) = u′′(1) = 0. Then
u(t) ≥ p(t), on [0, 1], where p(t) is defined by (2.5).

Lemma 2.5. Assume u ∈ C(2)[0, 1]. Let ϕp(u′′) be a function in C(2)(0, 1) be such
that (|u′′|p−2u′′)′′ > 0 on (0, 1) and u(0) = u(1) = u′′(0) = u′′(1) = 0. Then, there
exists τ > 0 such that u(t) ≥ gτ (t) on [0, 1].

The proof of the above lemma is easy; so we omit it. Our next work is applying
Theorem 1.1 to a sequence of operators that are decreasing with respect to a cone.
The obtained fixed points provide a sequence of iterates which converges to a solu-
tion of (1.1). Positivity of solutions and Lemmas 2.2–2.4 are fundamental in this
construction.

Let B be the Banach space C[0, 1] with the norm ‖u‖ = |u|∞. Let

K = {u ∈ B : u(t) ≥ 0, on [0, 1]},
which is a normal cone in B. Let D ⊆ K be defined by

D = {ϕ ∈ B : there exist τ(ϕ) > 0 such that gτ (t) ≤ ϕ(t) on [0, 1]}.
Define T : D → K by

Tϕ(t) =
∫ 1

0

G(t, x)ϕ−1
p (

∫ 1

0

G(x, s)f(s, ϕ(s))ds)dx, 0 ≤ t ≤ 1.

If ϕ(t) > 0 for t ∈ [0, 1], by assumption (a), we know f(t, ϕ(t)) > 0. If ϕ(t) ∈ D,
then

(ϕp((Tϕ)′′(t)))′′ = f(t, ϕ(t)) > 0.
Note that Tϕ(t) satisfies the boundary condition of (1.1). Lemma 2.5 yields that
Tϕ(t) ∈ D. So T : D → D. Moreover, if ϕ(t) is a positive solution of (1.1), then
by Lemma 2.5 ϕ(t) ∈ D and Tϕ(t) = ϕ(t). Next we prove that all of the solutions
of (1.1) which belong to D have a priori bounds.

Lemma 2.6. Assume that conditions (a)-(f) are satisfied. Then there exist an
R > 0 such that ‖ϕ‖ = |ϕ|∞ ≤ R, for all solutions, ϕ, of (1.1) that belong to D.
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Proof. Suppose that the conclusion is false. Then there exists a sequence, {ϕn} ⊂
D, of solutions of (1.1) such that limn→∞ |ϕn| = ∞. Without out loss of generality,
we may assume that, for each n ≥ 1,

|ϕn|∞ ≤ |ϕn+1|∞. (2.6)

For each n ≥ 1, let tn ∈ (0, 1) be the unique point such that

0 < ϕn(tn) = |ϕn|∞.

Then we have ϕn(tn) ≥ ϕn−1(tn−1) ≥ · · · ≥ ϕ1(t1). Let τ = 1
4ϕ1(t1) and

gτ (t) =

{
τt for t ∈ [0, 1

2 ],
τ(1− t) for t ∈ [ 12 , 1].

(2.7)

By the inequality (2.1), we obtain

ϕn(t) ≥ |ϕn|∞
4

=
ϕn(tn)

4
≥ 1

4
ϕ1(t1) ≥ gτ (t) for t ∈ [

1
4
,
3
4
].

Next, we claim that

ϕn(t) ≥ gτ (t) for t ∈ [0,
1
4
].

Let pn be the corresponding piecewise polynomial defined by (2.5) relative to ϕn

and tn. There two case for tn
Case 1. tn ≥ 1

4 . Then, for 0 ≤ t ≤ 1
4 ,

pn(t) =
|ϕn|∞
tn

t ≥ |ϕn|∞t ≥
|ϕ1|∞

4
t ≥ gτ (t).

Case 2. tn < 1
4 . Then, for 0 ≤ t ≤ tn, as the proof of Case 1, we have

pn(t) ≥ gτ (t) for t ∈ [0, tn].

On the other hand, on [tn, 1
4 ],

pn(t) =
|ϕn|∞
1− tn

(1− t) ≥ |ϕn|∞(1− t) ≥ |ϕ1|∞t ≥ gτ (t).

Thus, again for 0 ≤ t ≤ 1
4 ,

pn(t) ≥ gτ (t).
Using analogous methods, we have pn(t) ≥ gτ (t) for t ∈ [ 34 , 1]. In conclusion,

pn(t) ≥ gτ (t) for t ∈ [0, 1]

which implies
ϕn(t) ≥ gτ (t) for t ∈ [0, 1] and n ≥ 1. (2.8)

Assumptions (b) and (f) yield, for 0 ≤ t ≤ 1 and all n ≥ 1,

ϕn(t) = (Tϕn)(t)

=
∫ 1

0

G(t, x)ϕ−1
p

( ∫ 1

0

G(x, s)f(s, ϕn(s))ds
)
dx

≤
∫ 1

0

1
4
ϕ−1

p

( ∫ 1

0

1
4
f(s, ϕn(s))ds

)
dx

≤
∫ 1

0

1
4
ϕ−1

p

( ∫ 1

0

1
4
f(s, gτ (s))ds

)
dx = N
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for some 0 < N < ∞. In particular, |ϕn|∞ ≤ N for all n ≥ 1 which contradicts
limn→∞ |ϕn|∞ = ∞. The proof is complete. �

Our next step in obtaining solutions of (1.1) is to construct a sequence of non-
singular perturbations of f . For each n ≥ 1, define ψn : [0, 1] → [0, 1] by

ψn(t) =
∫ 1

0

G(t, x)ϕ−1
p

( ∫ 1

0

G(x, s)f(s, n)ds
)
dx.

Because ϕ−1
p is increasing and conditions (a)–(g), for n ≥ 1,

0 < ψn+1(t) ≤ ψn(t) for t ∈ (0, 1),

and
lim

n→∞
ψn(t) = 0 uniformly on [0, 1]. (2.9)

Now define a sequence of functions fn : (0, 1)× [0,∞) → (0,∞), n ≥ 1, by

fn(t, u) = f(t,max{u, ψn(t)}). (2.10)

Then, for each n ≥ 1, fn is continuous, nonsingular and satisfies (b). Furthermore,
for n ≥ 1,

fn(t, u) ≤ f(t, u) on (0, 1)× (0,∞),

fn(t, u) ≤ f(t, ψn) on (0, 1)× (0,∞) (2.11)

Proof of Theorem 2.1. We begin by defining a sequence of operators Tn : K → K,
n ≥ 1 by

Tnϕ(t) =
∫ 1

0

G(t, x)ϕ−1
p

( ∫ 1

0

G(x, s)fn(s, ϕ(s))ds
)
dx.

Note that, for n ≥ 1 and ϕ ∈ K, we have

(ϕp((Tnϕ)′′))′′ = fn(t, ϕ(t)) > 0 for t ∈ (0, 1),

Tnϕ(0) = Tnϕ(1) = 0,

(Tnϕ)′′(0) = (Tnϕ)′′(1) = 0.

and Tnϕ > 0 on (0, 1). In particular, Tnϕ ∈ D. Since each fn satisfies (b), it follows
that if ϕ1, ϕ2 ∈ K with ϕ1 ≤ ϕ2, then for n ≥ 1, Tnϕ2 ≤ Tnϕ1; that is, each Tn

is decreasing with respect to K. It is also clear that 0 ≤ Tn(0) and 0 ≤ T 2
n(0), for

each n.
By Theorem 1.1, for each n, there exists a ϕn ∈ K, satisfies Tnϕn = ϕn, and ϕn

satisfies the boundary condition of (1.1).
In addition, by (2.11) we have Tnϕ ≤ TΨn, for each ϕ ∈ K and n ≥ 1. Thus

ϕn = Tnϕn ≤ TΨn, n ≥ 1. (2.12)

By essentially the same argument as in Lemma 2.6, there exist an R > 0, such
that, for each n ≥ 1

ϕn ≤ R (2.13)
Our next claim is that there exist a κ > 0 such that κ ≤ |ϕn|∞ for all n ≥ 1. We
assume this claim to be false. Then, by passing to a subsequence and relabelling,
we assume with no loss of generality that

lim
n→∞

ϕn(t) = 0, uniformly on [0, 1]. (2.14)
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By condition (d), there exists a δ > 0 such that, for t ∈ [ 14 ,
3
4 ] and 0 < u < δ,

f(t, u) > 1. By (2.14), there exist an n0 ≥ 1 such that for n ≥ n0,

0 < ϕn(t) <
δ

2
for t ∈ (0, 1).

Also from (2.9), there exist an n1 ≥ n0 such that, for n ≥ n1,

0 < ψn(t) <
δ

2
, for t ∈ (0, 1).

Thus for n ≥ n1 and 1
4 ≤ t ≤ 3

4 ,

ϕn(t) = Tnϕn(t)

=
∫ 1

0

G(t, x)ϕ−1
p

( ∫ 1

0

G(x, s)fn(s, ϕn(s))ds
)
dx

≥
∫ 3/4

1
4

G(t, x)ϕ−1
p

( ∫ 3/4

1
4

G(x, s)fn(s, ϕn(s))ds
)
dx

≥ 1
2
× 3

64
ϕ−1

p

( ∫ 3/4

1/4

3
64
f(s,max{ϕn(s), ψn(s)})ds

)
≥ 1

2
× 3

64
ϕ−1

p

( ∫ 3/4

1/4

3
64
f(s,

δ

2
)ds

)
≥ κ > 0.

This contradicts the uniform limit (2.14). Our claim is verified. That is there exists
a κ > 0 such that

κ ≤ |ϕn|∞ ≤ R for all n

Applying Lemma 2.2,

ϕn(t) ≥ 1
4
|ϕn|∞ ≥ κ

4
, t ∈ [

1
4
,
3
4
], n ≥ 1.

Let τ = κ/4. Using a mimic methods in the proof of Lemma 2.6, we have

gτ (t) ≤ ϕn(t) on [0, 1], for n ≥ 1

By (2.13), we now have

gτ (t) ≤ ϕn(t) ≤ R for all n ≥ 1;

that is, the sequence {ϕn(t)} belongs to the closed order interval 〈gτ , R〉 ⊂ D.
When restricted to this closed order interval, T is a compact mapping, and so,

there is a subsequence of {Tϕn(t)} which converges to some ϕ∗ ∈ K. We relabel
the subsequence as the original sequence so that

lim
n→∞

‖Tϕn − ϕ∗‖ = 0. (2.15)

The final part of the proof is to establish that

lim
n→∞

‖Tϕn − ϕn‖ = 0.

Let C = 1
4

∫ 1

0
f(s, gτ (s))ds. Then∫ 1

0

G(x, s)f(s, ϕn(s))ds ≤ C for all n ≥ 1.
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By the uniformly continuous of ϕ−1
p on [0, C], let ε > 0 be given, there exists δ > 0,

such that if s1, s2 ∈ [0, C] and |s1 − s2| < δ, we have

|ϕ−1
p (s1)− ϕ−1

p (s2)| < ε.

By the integrability condition (f), for above δ, there exists 0 < δ1 < 1, such that∫ δ1

0

f(s, gτ (s))ds+
∫ 1

1−δ1

f(s, gτ (s))ds ≤ δ. (2.16)

Further, by (2.9) there exists an n0 such that, for n ≥ n0,

ψn(t) ≤ gτ (t) ≤ ϕn(t) on [δ1, 1− δ1].

from the definition of (2.10), we know

fn(s, ϕn(s)) = f(s, ϕn(s)), for s ∈ [δ1, 1− δ1] and n ≥ n0.

Thus, for t ∈ [0, 1] and n ≥ n0, by (2.16),∫ 1

0

G(x, s)f(s, ϕn(s))ds−
∫ 1

0

G(x, s)fn(s, ϕn(s))ds

=
∫ δ1

0

G(x, s)f(s, ϕn(s))ds+
∫ 1

1−δ1

G(x, s)f(s, ϕn(s))ds

− (
∫ δ1

0

G(x, s)fn(s, ϕn(s))ds+
∫ 1

1−δ1

G(x, s)fn(s, ϕn(s))ds)

≤
∫ δ1

0

f(s, gτ (s))ds+
∫ 1

1−δ1

f(s, gτ (s))ds ≤ δ.

So ∣∣∣ϕ−1
p

( ∫ 1

0

G(x, s)f(s, ϕn(s))ds
)
− ϕ−1

p

( ∫ 1

0

G(x, s)fn(s, ϕ(s))ds
)
)
∣∣∣ ≤ ε.

Then for n ≥ n0, we have

|Tϕn(t)− ϕn(t)| =
∣∣∣ ∫ 1

0

G(t, x)ϕ−1
p

( ∫ 1

0

G(x, s)f(s, ϕn(s))ds
)
dx

−
∫ 1

0

G(t, x)ϕ−1
p

( ∫ 1

0

G(x, s)fn(s, ϕn(s))ds
)
dx

∣∣∣
=

∫ 1

0

G(t, x)
∣∣∣ϕ−1

p

( ∫ 1

0

G(x, s)f(s, ϕn(s))ds
)

− ϕ−1
p

( ∫ 1

0

G(x, s)fn(s, ϕn(s))ds
)∣∣∣dx

≤ 1
4
ε < ε

In particular,
lim

n→∞
‖Tϕn(t)− ϕn(t)‖ = 0.

Then in conjunction with (2.15) we can easily obtain

lim
n→∞

‖ϕn − ϕ∗‖ = 0,

and this implies ϕ∗ ∈ 〈gτ ,K〉 ⊂ D and

ϕ∗ = lim
n→∞

Tϕn = T
(

lim
n→∞

ϕn

)
= Tϕ∗,
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which is sufficient for the conclusion of the Theorem 2.1. �
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