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GLOBAL WELL-POSEDNESS OF THE CAUCHY PROBLEM OF
A HIGHER-ORDER SCHRÖDINGER EQUATION

HUA WANG

Abstract. We apply the I-method to prove that the Cauchy problem of a
higher-order Schrödinger equation is globally well-posed in the Sobolev space

Hs(R) with s > 6/7.

1. Introduction

This paper concerns the Cauchy problem of the higher order Schrödinger equa-
tion

∂tu + ia ∂2
xu + b∂3

xu + ic|u|2u + d|u|2∂xu + eu2∂xū = 0 in R2,

u(x, 0) = ϕ(x) for x ∈ R,
(1.1)

where a, b, c, d and e are real constants with be 6= 0, and the unknown function u
is a complex-valued function.

Hasegawa and Kodama [9, 12] proposed (1.1) as the model for propagation of
pulse in optical fiber. It is easy to see that cubic nonlinear Schrödinger equation,
nonlinear Schrödinger equation with derivative and complex modified KdV equation
are particular cases of (1.1). Therefore, in the literature, this model is also called
the Airy-Schrödinger equation.

Well-posedness of the Cauchy problem of (1.1) in Sobolev spaces has been in-
vestigated by a few authors; see for instance [2, 10, 13, 15, 16]. Laurey [13] proved
that the Cauchy problem of (1.1) is locally well-posed in Hs(R) for s > 3/4. Lau-
rey’s result was improved by Staffilani [15], who obtained the local well-posedness
in Hs(R) with s ≥ 1

4 . This local well-posedness combined with mass and energy
conservation laws naturally yields that (1.1) is globally well-posed in H1(R). Re-
cently, using I-method introduced by Colliander, Kell, Staffilani, Takaoka and Tao
[3, 4, 5], Carvajal [2] established global well-posedness in Hs(R) with s > 1

4 under
the relation c = (d−e)a

3b . Our aim of this paper is to get global well-posedness in
Hs(R) with s > 6

7 without the above restriction condition.
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Without loss of generality, we may assume that a = 0 in the sequel. In fact,
when a 6= 0 we may utilize the gauge transform [2]

v(x, t) = exp(i
a

3b
x + i

a3

27b2
t)u(x +

a2

3b
t, t),

then u satisfies (1.1) if and only if v is such that

∂tv + b∂3
xv + i(c− (d− e)a

3b
)|v|2v + d|v|2∂xv + ev2∂xv̄ = 0 in R2,

v(x, 0) = ei ax
3b ϕ(x) for x ∈ R.

(1.2)

Note that when c = (d−e)a
3b , (1.2) is the complex mKdV equation satisfying a scaling

invariant property. It is well known that real mKdV possesses global well-posedness
in Hs(R) with s > 1/4 [6]. Using the same argument as the one in [6] the same
result was obtained for the complex case [2]. Since in our case a scaling invariance
disappears, thus we must modify I-method suitably. Similar results as the one
of this paper were also obtained for some other nonlinear dispersive systems and
equations (e.g., [14, 17] and therein).

To precisely state our main result, we first introduce some notation. We use the
notation a+ and a− to respectively denote expressions of the forms a+ε and a−ε,
where 0 < ε << 1. We denote by Ds

x the Riesz potential of order −s, or the Fourier
multiplier with symbol |ξ|s (s > 0). Recall that the Sobolev space Hs(R) is defined
by

f ∈ Hs(R) ⇔ ‖f‖Hs(R) := ‖〈ξ〉sf̂(ξ)‖L2
ξ(R) < ∞,

where 〈ξ〉s := (1 + |ξ|2)s/2, and f̂ represents the Fourier transformation in one
variable of f . We define the space Xs,α(R2) (as in [1, 11]) by

u ∈ Xs,α(R2) ⇔ ‖u‖Xs,α(R2) := ‖〈ξ〉s〈τ − ξ3〉αũ(ξ, τ)‖L2
τ L2

ξ
< ∞,

where ũ represents the Fourier transformation in two variables of u. For any given
interval L, we define the space Xs,α(L× R) to be the restriction of Xs,α(R2) on
L× R, with norm

‖u‖Xs,α(L×R) = inf{‖U‖Xs,α(R2) : U |L×R = u}.

If L = [0, T ] (resp. [0, δ]), we use XT
s,α (resp. Xδ

s,α) to abbreviate Xs,α(L×R).
For given N >> 1 and s < 1, we define the multiplier operator Is

N : Hs(R) →
H1(R) by

(Is
Nu)̂(ξ) := ms,N (ξ)û(ξ), u ∈ Hs(R),

where ms,N (ξ) is an even C∞ function, non-increasing in |ξ|, and

ms,N (ξ) =

{
1, |ξ| ≤ N,(
|ξ|/N

)s−1
, |ξ| > 2N.

In the sequel, for simplicity of notation we shall omit the superscripts and subscripts
s,N of the operator Is

N and the multiplier ms,N (ξ).
It is obvious that for some positive constant C,

C−1‖u‖Hs(R) ≤ ‖Iu‖H1(R) ≤ CN1−s‖u‖Hs(R).

We denote by ‖ · ‖Xs,α,N (R2) the equivalent norm in Xs,α(R2) defined by

‖u‖Xs,α,N (R2) := ‖Iu‖X1,α(R2).
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The space Xs,α(R2) endowed with this norm will be re-denoted as Xs,α,N (R2).
Clearly, there also hold the inequalities

C−1‖u‖Xs,α(R2) ≤ ‖Iu||X1,α(R2) ≤ CN1−s‖u‖Xs,α(R2).

The notation Xδ
s,α,N denotes the restriction of Xs,α,N (R2) on R× [0, δ].

Next we give a local well-posedness result. This local result is a variant of that
of [10, 16], with precise estimates on the lifespan and the norm of the solution and
it can be established by the same argument as [10, 16] and the interpolation lemma
in [7].

Theorem 1.1. For 6
7 < s < 1, the initial value problem of (1.1) is locally well-posed

in Hs(R). More precisely, for given ϕ ∈ Hs(R) and N >> 1, there exists a corre-
sponding δ > 0 such that (1.1) has a unique solution u ∈ Xδ

s, 1
2+,N

⊆ C([0, δ],Hs(R))
satisfying the condition u(0, ·) = ϕ. Moreover, the lifespan satisfies the estimate

δ ∼ ‖Iϕ‖−θ
H1(R), θ = 12+ (1.3)

and the solution satisfies the estimate

‖Iu||Xδ

1, 1
2 +

≤ C‖Iϕ‖H1(R). (1.4)

Finally, we state our main result of this paper as follows:

Theorem 1.2. The Cauchy problem of the equation (1.1) is globally well-posed
in Hs(R) for s > 6/7. More precisely, let ϕ ∈ Hs(R) with s > 6/7. Then for
any T > 0 the equation (1.1) has a unique solution u ∈ XT

s, 1
2+

⊆ C([0, T ],Hs(R))
satisfying the initial condition u(0, ·) = ϕ, and the mapping ϕ → u(t, ·) belongs to
C(Hs(R), XT

s, 1
2+

) ⊆ C(Hs(R), C([0, T ],Hs(R))).

We note that the improvement of θ in Theorem 1.1 will directly lead to a better
Sobolev index s in Theorem 1.2. Here we do not pursue this although it is possible
to get a smaller θ by more precise trilinear estimates of nonlinear terms in (1.1).

2. The almost conserved energy

Laurey [13] showed that the Cauchy problem of (1.1) has the following two
conserved quantities

M(u) =
∫

R
|u(x, t)|2dx := M0, (2.1)

E(u) = k1

∫
R
|∂xu(x, t)|2dx + k2

∫
R
|u(x, t)|4dx

+ k3 Im
∫

R
u(x, t)∂xu(x, t)dx := E0,

(2.2)

where k1 = 3be, k2 = − e(e+d)
2 and k3 = 3bc.

Applying Gagliardo-Nirenberg inequality, Young inequality and Hölder inequal-
ity, we have∫

R
|u(x, t)|4dx ≤ C‖∂xu‖L2

x
‖u‖3L2

x
≤ ε‖∂xu‖2L2

x
+ C(ε)‖∂xu‖6L2

x
, (2.3)∫

R
u(x, t)∂xu(x, t)dx ≤ C‖∂xu‖L2

x
‖u‖L2

x
≤ ε‖∂xu‖2L2

x
+ C(ε)‖∂xu‖2L2

x
. (2.4)
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By (2.1)–(2.4), we obtain an a-priori bound of the H1-norm of the solution u and
an upper bound of E

‖∂xu‖2L2
x
≤ C(E0 + M3

0 + M0), (2.5)

|E(u)| ≤ C(‖∂xu‖2L2
x

+ M3
0 + M0). (2.6)

From the local well-posedness and the a-priori bound (2.5), it follows that the
Cauchy problem of (1.1) is globally well-posed in H1(R). However, we are searching
solutions in C(R,Hs(R)) with s < 1, so we shall alteratively consider the modified
energy E(Iu) as in Colliander et al [3, 4, 5, 6]. We shall show the modified energy
E(Iu) is almost conserved, that is, it has a very slow increment in time if N is
sufficiently large. First we give the precise expression of the increment of E(Iu) in
the following lemma.

Lemma 2.1. If u is a solution of (1.1) on [0, δ] in the sense of Theorem 1.1, then

E(Iu(δ))− E(Iϕ) = 2k1d Re
∫ δ

0

∫
R

∂2
xIū

(
I(|u|2∂xu)− |Iu|2∂xIu

)
dx dt

+ 2k1eRe
∫ δ

0

∫
R

∂2
xIū

(
I(u2∂xū)− (Iu)2∂xIū

)
dx dt

− 2k1c Im
∫ δ

0

∫
R

∂2
xIū

(
I(|u|2u)− |Iu|2Iu

)
dx dt

− 2k3e Im
∫ δ

0

∫
R

∂xIū
(
I(u2∂xū)− (Iu)2∂xIū

)
dx dt

− 2k3d Im
∫ δ

0

∫
R

∂xIū
(
I(|u|2∂xu)− |Iu|2∂xIu

)
dx dt

− 2k3cRe
∫ δ

0

∫
R

∂xIū
(
I(|u|2u)− |Iu|2Iu

)
dx dt

− 4k2d Re
∫ δ

0

∫
R
|Iu|2Iū

(
I(|u|2∂xu)− |Iu|2∂xIu

)
dx dt

− 4k2eRe
∫ δ

0

∫
R
|Iu|2Iū

(
I(u2∂xū)− (Iu)2∂xIū

)
dx dt

+ 4k2c Im
∫ δ

0

∫
R
|Iu|2Iū

(
I(|u|2u)− |Iu|2Iu

)
dx dt.

(2.7)

Proof. From (1.1), we have

∂tIu = −b∂3
xIu− icI(|u|2u)− dI(|u|2∂xu)− eI(u2∂xū),

∂t∂xIu = −b∂4
xIu− ic∂xI(|u|2u)− d∂xI(|u|2∂xu)− e∂xI(u2∂xū),

∂t∂xIū = −b∂4
xIū + ic∂xI(|u|2ū)− d∂xI(|u|2∂xū)− e∂xI(ū2∂xu).

From the above equalities and using integration by part we obtain
d

dt
E(Iu) = 2k1 Re

∫
∂xIū∂t∂xIu

+ 4k2 Re
∫
|Iu|2Iū∂tIu + k3 Im

( ∫
∂xIū∂tIu +

∫
Iu∂t∂xIū

)
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= 2k1d Re
∫

∂2
xIūI(|u|2∂xu) + 2k1eRe

∫
∂2

xIuI(u2∂xū)

− 4k2b Re
∫
|Iu|2Iū∂3

xIu− 2k1c Im
∫

∂2
xIūI(|u|2u)

− 2k3d Im
∫

∂xIūI(|u|2∂xu)− 2k3e Im
∫

∂xIūI(u2∂xū)

− 2k3cRe
∫

∂xIūI(|u|2u) + 4k2c Im
∫
|Iu|2IūI(|u|2u)

− 4k2d Re
∫
|Iu|2IūI(|u|2∂xu)− 4k2eRe

∫
|Iu|2IūI(|u|2∂xū).

We note that

Re
∫

∂2
xIū(Iu)2∂xIū = Re

∫
∂2

xIū|Iu|2∂xIu

and

Re
∫
|Iu|2Iū∂3

xIu = −Re
∫

∂2
xIū(Iu)2∂xIū− 2 Re

∫
∂2

xIū|Iu|2∂xIu.

Hence

2k1d Re
∫

∂2
xIūI(|u|2∂xu) + 2k1eRe

∫
∂2

xIūI(u2∂xū)

− 4k2b Re
∫
|Iu|2Iū∂3

xIu

= 2k1d Re
∫

∂2
xIū

(
I(|u|2∂xu)− |Iu|2∂xIu

)
+ 2k1eRe

∫
∂2

xIū
(
I(u2∂xū)− (Iu)2∂xIū

)
.

(2.8)

Integration by part yields

Im
∫

∂2
xIū|Iu|2Iu = − Im

∫
(∂xIū)2(Iu)2.

It follows from the above equality that

− 2k1c Im
∫

∂2
xIūI(|u|2u)− 2k3d Im

∫
∂xIūI(|u|2∂xu)− 2k3e Im

∫
∂xIūI(u2∂xū)

= −2k1c Im
∫

∂2
xIū

(
I(|u|2u)− |Iu|2Iu

)
− 2k3d Im

∫
∂xIū

(
I(|u|2∂xu)− |Iu|2∂xIu

)
− 2k3e Im

∫
∂xIū

(
I(u2∂xū)− (Iu)2∂xIū

)
.

Observe that

Re
∫

∂xIū|Iu|2Iu = 0, (2.9)

Im
∫
|Iu|2Iū|Iu|2Iu = 0, (2.10)

Re
∫
|Iu|2Iū|Iu|2∂xIu = 0, (2.11)
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Re
∫
|Iu|2Iū(Iu)2∂xIū = 0. (2.12)

Hence by (2.8)-(2.12), we have
d

dt
E(Iu) = 2k1d Re

∫
R

∂2
xIū

(
I(|u|2∂xu)− |Iu|2∂xIu

)
dx

+ 2k1eRe
∫

R
∂2

xIū
(
I(u2∂xū)− (Iu)2∂xIū

)
dx

− 2k1c Im
∫

R
∂2

xIū
(
I(|u|2u)− |Iu|2Iu

)
dx

− 2k3e Im
∫

R
∂xIū

(
I(u2∂xū)− (Iu)2∂xIū

)
dx

− 2k3d Im
∫

R
∂xIū

(
I(|u|2∂xu)− |Iu|2∂xIu

)
dx

− 2k3cRe
∫

R
∂xIū

(
I(|u|2u)− |Iu|2Iu

)
dx

− 4k2d Re
∫

R
|Iu|2Iū

(
I(|u|2∂xu)− |Iu|2∂xIu

)
dx

− 4k2eRe
∫

R
|Iu|2Iū

(
I(u2∂xū)− (Iu)2∂xIū

)
dx

+ 4k2c Im
∫

R
|Iu|2Iū

(
I(|u|2u)− |Iu|2Iu

)
dx.

Integrating both sides of the above expression, over the interval [0, δ], we obtain
(2.7). �

Next we apply Lemma 2.1 to deduce an exact estimate on the increment of the
modified energy E(Iu) in terms of the norm ‖Iu‖Xδ

1, 1
2 +

. Before stating the result,

we give a few simple preliminary estimates.
The following embedding inequality is established in [11]:

‖u‖L8
xt
≤ C‖u‖X0, 1

2 +
, (2.13)

‖u‖L∞t L2
x
≤ C‖u‖X0, 1

2 +
, (2.14)

‖D
1
6
x u‖L6

xt
≤ C‖u‖X0, 1

2 +
. (2.15)

By Hölder inequality and (2.14), we have

‖u‖L2
xL2

t (R×[0,δ]) ≤ δ
1
2 ‖u‖L∞t ([0,δ],L2

x) ≤ Cδ
1
2 ‖u‖Xδ

0, 1
2 +

. (2.16)

Interpolating (2.16) with (2.13) we get

‖u‖L4
xL4

t (R×[0,δ]) ≤ Cδ
1
6 ‖u‖Xδ

0, 1
2 +

. (2.17)

From [8] we have the following bilinear estimate:

‖D
1
2
x I

1
2
−(u1, u2)‖L2

xt
≤ C‖u1‖X0, 1

2 +
‖u2‖X0, 1

2 +
, (2.18)

where(
Iα
−(u1u2)

)̂
(ξ, τ) =

∫
ξ=ξ1+ξ2, τ=τ1+τ2

|ξ1 − ξ2|αũ1(ξ1, τ1)ũ2(ξ2, τ2)dξ1dτ1.
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Also, we need the following refined Strichartz estimate.

Lemma 2.2. Let u1, u2 be such that supp u1 ⊂ {|ξ| ∼ N} and supp u2 ⊂ {|ξ| �
N}, then

‖u1u2‖L2
xt
≤ C

N
‖u1‖X0, 1

2 +
‖u2‖X0, 1

2 +
. (2.19)

It is not difficult to prove the above, using the same argument as the one of [3,
Lemma 7.1], so we omit it.

Lemma 2.3. If u is the solution of (1.1) on [0, δ] in the sense of Theorem 1.1,
then

|E(Iu(δ))− E(Iϕ)|

≤ C(N−1+δ
2
3 + N−2+)‖Iu‖4Xδ

1, 1
2 +

+ C(N− 5
2+δ

1
2 + N−3+)‖Iu‖6Xδ

1, 1
2 +

.

Proof. We denote the nine terms on the right-hand side of (2.7) in their appearing
order by J1, J2, . . . , J9, respectively. In the sequel we only consider J1 and J7

because the other terms can be readily controlled by the bound of J1 and J7.
Estimate of J1. It suffices to prove that for any (u1, u2, u3, u4) ∈ C([0, δ], S(R))4

such that the frequency support of each uj is located in a dyadic band |ξ| ∼ Nj

(i.e., C1Nj ≤ |ξ| ≤ C2Nj) for some positive numbers Nj (j = 1, 2, 3, 4), there holds

I1 :=
∫ δ

0

( ∫
∗

∣∣∣m(ξ1 + ξ2 + ξ3)−m(ξ1)m(ξ2)m(ξ3)
m(ξ1)m(ξ2)m(ξ3)

∣∣∣
× |ξ3|ξ2

4 |û1(ξ1, t)û2(ξ2, t)û3(ξ3, t)û4(ξ4, t)|
)
dt

≤ C(N−1+δ
2
3 + N−2+)N0−

max

4∏
j=1

‖uj‖Xδ

1, 1
2 +

.

where Nmax = max{N1, N2, N3, N4} and ∗ denotes integration on the set
∑4

j=1 ξj =
0. Indeed, once this estimate is proved, then the Littlewood-Paley decomposition
immediately implies that

|J1| ≤ C(N−1+δ
2
3 + N−2+)‖Iu‖4Xδ

1, 1
2 +

. (2.20)

First. All the frequencies are equivalent, namely, |ξ1| ∼ |ξ2| ∼ |ξ3| ∼ |ξ4| ≥ CN .
Using Hölder inequality and (2.17) we see that

I1 ≤ C(
N1

N
)3(1−s)N3N

2
4

4∏
j=1

‖uj‖L4
xL4

t (R×[0,δ])

≤ C(
N1

N
)3(1−s)N3N

2
4 (N1N2N3N4)−1δ

2
3

4∏
j=1

‖uj‖Xδ

1, 1
2 +

≤ Cδ
2
3 N−1+N0−

max

4∏
j=1

‖uj‖Xδ

1, 1
2 +

.

Second. Three of the frequencies are equivalent. We shall deal with the most
difficult case |ξ1| ∼ |ξ3| ∼ |ξ4| ≥ CN and |ξ2| � |ξ1|, |ξ3|, |ξ4|. The other two
cases |ξ1| ∼ |ξ2| ∼ |ξ3| ≥ CN and |ξ1| ∼ |ξ2| ∼ |ξ4| ≥ CN can be solved easily
by the same argument as the case 1◦ and the difficult case, respectively. Since
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ξ1 +ξ2 +ξ3 +ξ4 = 0, the largest two of the frequencies must have different sign. We
may assume that they are ξ1 and ξ4 for the other cases can be considered similarly.
Thus we have

N4 ∼ |ξ1 − ξ4| ∼ N3 ∼ |ξ3 + ξ2| ∼ |ξ1 + ξ4|.

Utilizing (2.18) and (2.19), we obtain

I1 ≤ C(
N1

N
)2(1−s)〈(N2

N
)1−s〉N3N4‖D

1
2
x I

1
2
−(u1, u4)‖L2

xt
‖u2u3‖L2

xt

≤ C(
N1

N
)2(1−s)〈(N2

N
)1−s〉N3N4N

−1
1 〈N2〉−1N−2

3 N−1
4

4∏
j=1

‖uj‖Xδ

1, 1
2 +

≤ CN−2+N0−
max

4∏
j=1

‖uj‖Xδ

1, 1
2 +

.

Third. Exact two of the frequencies are equivalent. We only consider the most
difficult case |ξ1| ∼ |ξ4| ≥ CN and |ξ2|, |ξ3| � |ξ1|, |ξ4|.

3.1◦ |ξ2|, |ξ3| ≤ N Applying the mean value theorem and (2.19) yield

I1 ≤ C
N2 + N3

N1
N3N

2
4 ‖u1u2‖L2

xt
‖u3u4‖L2

xt

≤ C
N2 + N3

N1
N3N

2
4 N−2

1 N−2
4 〈N2〉−1〈N3〉−1

4∏
j=1

‖uj‖Xδ

1, 1
2 +

≤ CN−2+N0−
max

4∏
j=1

‖uj‖Xδ

1, 1
2 +

.

3.2◦ |ξ2| ≥ N ( |ξ3| ≥ N can be considered with the same argument).
By (2.19) we obtain

I1 ≤ C(
N2

N
)1−s〈(N3

N
)1−s〉N3N

2
4 ‖u1u2‖L2

xt
‖u3u4‖L2

xt

≤ C(
N2

N
)1−s〈(N3

N
)1−s〉N3N

2
4 N−2

1 N−2
4 〈N2〉−1〈N3〉−1

4∏
j=1

‖uj‖Xδ

1, 1
2 +

≤ CN−2+N0−
max

4∏
j=1

‖uj‖Xδ

1, 1
2 +

.

Estimate of J7. Similarly as before we only need to prove that for any triple
(u1, u2, . . . , u6) similar as before there holds

I7 :=
∫ δ

0

( ∫
∗

∣∣∣m(ξ4 + ξ5 + ξ6)−m(ξ4)m(ξ5)m(ξ6)
m(ξ4)m(ξ5)m(ξ6)

∣∣∣|ξ6|
6∏

j=1

|ûj(ξj , t)|dt

≤ C(N− 5
2+δ

1
2 + N−3+)N0−

max

6∏
j=1

‖uj‖Xδ

1, 1
2 +

.

where Nmax = max{N1, N2, . . . , N6} and ∗ denotes integration on the set
∑6

j=1 ξj =
0.
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First. At least three of ξi’s satisfy |ξi| ≥ CN . Let the largest three of |ξi| be
N∗

1 , N∗
2 and N∗

3 . Then by Hölder inequality L6
x,t −L6

x,t −L6
x,t −L2

x,t −L∞x,t −L∞x,t,
(2.14), (2.15) and Sobolev embedding we have

I7 ≤ C(
N∗

1

N
)1−s(

N∗
2

N
)1−s(

N∗
3

N
)1−sN∗

1 N∗
1
− 7

6 N∗
2
− 7

6 N∗
3
− 7

6 δ
1
2

6∏
j=1

‖uj‖Xδ

1, 1
2 +

≤ CN∗
1

5
6−sN∗

2
− 1

6−sN∗
3
− 1

6−sδ
1
2

6∏
j=1

‖uj‖Xδ

1, 1
2 +

≤ CN− 5
2+δ

1
2 N0−

max

6∏
j=1

‖uj‖Xδ

1, 1
2 +

.

Second. Exactly two of |ξi| ≥ CN and the others � N . For example, |ξ4|, |ξ6| ≥
CN . Then , using Sobolev embedding, (2.14) and (2.19), we get

I7 ≤ C(
N4

N
)1−s(

N6

N
)1−sN6‖u1u4‖L2

xt
‖u2u6‖L2

xt
‖u3‖L∞xt

‖u5‖L∞xt

≤ C(
N4

N
)1−s(

N6

N
)1−sN6N

−2
4 N−2

6

6∏
j=1

‖uj‖Xδ

1, 1
2 +

≤ CN−3+N0−
max

6∏
j=1

‖uj‖Xδ

1, 1
2 +

.

�

3. Proof of Theorem 1.1

For completeness, we give the proof of Theorem 1.1 in this section (see also
[14, 17]). For any fixed T > 0, we want to construct the solution of the time initial
value (1.1) on the interval [0, T ].

Since ‖Iϕ‖2H1(R) ≤ CN2(1−s), it follows from (2.6) that

|E(Iϕ)| ≤ C ′N2(1−s) ≤ 2C ′N2(1−s),

which, by (2.5), implies ‖Iϕ‖2H1(R) ≤ ĈN2(1−s) with Ĉ = Ĉ(2C ′). Applying Theo-
rem 1.1 we know that the solution u exists on [0, δ] with

δ ≥ C ′′‖Iϕ‖−θ
H1(R) ≥ C ′′(ĈN (1−s)

)−θ = C0N
−(1−s)θ,

‖Iu(t)‖Xδ

1, 1
2 +

≤ C‖Iϕ‖H1(R) ≤ ĈCN1−s for 0 ≤ t ≤ δ.

By Lemma 2.3, we have

|E(Iu(δ))−E(Iϕ)| ≤ C ′′′[(N−1+δ
2
3 +N−2+)N4(1−s) +(N− 5

2+δ
1
2 +N−3+)N6(1−s)],

where C ′′′ depends only on ĈC. As long as

C ′′′[(N−1+δ
2
3 + N−2+)N4(1−s) + (N− 5

2+δ
1
2 + N−3+)N6(1−s)] ≤ C ′N2(1−s),

we have
|E(Iu(δ))| ≤ 2C ′N2(1−s).
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It follows, by considering δ as the initial time, using Iu(δ) as the initial value, and
applying Theorem 1.1, that the problem (1.1) has a solution on R× [δ, 2δ]. In this
way we succeed to extend the solution of (1.1) to the time interval [0, 2δ].

The above argument can be repeated for K steps as long as the following condi-
tion on K is satisfied:

C ′′′[(N−1+δ
2
3 + N−2+)N4(1−s) + (N− 5

2+δ
1
2 + N−3+)N6(1−s)]K ≤ C ′N2(1−s).

In order to extend the solution to the time interval [0, T ], we must have Kδ ≥ T ,
or K ≥ Tδ−1. Since the minimum of all such K satisfies K ∼ Tδ−1, to arrive at
this goal we only need to have

CC ′′′[(N−1+δ
2
3 + N−2+)N4(1−s) + (N− 5

2+δ
1
2 + N−3+)N6(1−s)]Tδ−1 ≤ C ′N2(1−s).

Since δ ≥ C0N
−(1−s)θ, this can be fulfilled if we can choose a sufficiently large

number N so that

CC ′′′C−1
0 [(N−1+N

(1−s)θ
3 + N−2+N (1−s)θ)N4(1−s)

+ (N− 5
2+N

(1−s)θ
2 + N−3+N (1−s)θ)N6(1−s)]T

≤ C ′N2(1−s).

Though direct computation, we know that the above condition is satisfied if s > 6/7.
Hence, the solution exists on R×[0, T ] for any T > 0, and it belongs to and is unique
in XT

s, 1
2+

.
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