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STABILIZATION OF SOLUTIONS TO HIGHER-ORDER
NONLINEAR SCHRÖDINGER EQUATION WITH LOCALIZED

DAMPING

ELENI BISOGNIN, VANILDE BISOGNIN, OCTAVIO PAULO VERA VILLAGRÁN

Abstract. We study the stabilization of solutions to higher-order nonlinear
Schrödinger equations in a bounded interval under the effect of a localized

damping mechanism. We use multiplier techniques to obtain exponential decay

in time of the solutions of the linear and nonlinear equations.

1. Introduction

In this work we consider the initial-value problem of the higher-order nonlinear
Schrödinger equation with localized damping

iut + αuxx + iβuxxx + |u|2u + ia(x)u = 0 (1.1)

u(x, 0) = u0(x) (1.2)

where 0 < x < L and t > 0, and with boundary conditions

u(0, t) = u(L, t) = 0 for all t > 0 (1.3)

ux(L, t) = 0 for all t > 0 (1.4)

with α, β ∈ R, β 6= 0, u = u(x, t) a complex valued function, a = a(x) a nonnegative
everywhere function such that a(x) ∈ C∞((0, L)) and a(x) ≥ a0 > 0. Equation
(1.1) is a particular case of the equation

iut + ωuxx + iβuxxx + γ|u|2u + iδ|u|2ux + iεu2ux = 0 x, t ∈ R
u(x, 0) = u0(x)

(1.5)

where ω, β, γ, δ are real numbers and β 6= 0. This equation was first proposed by
Hasegawa and Kodama [9] as a model for the propagation of a signal in a optic fiber
(see also [11]). The equation (1.5) can be reduced to other well known equations.
For instance, setting ω = 1, β = δ = ε = 0 in (1.5) we have the semilinear
Schrödinger equation,

iut + uxx + γ|u|2u = 0. (1.6)
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If we let β = γ = 0 and ω = 1 in (1.5) we obtain the nonlinear Schrödinger equation

iut + uxx + iδ|u|2ux + iεu2ux = 0. (1.7)
Letting α = γ = ε = 0 in (1.5) arises is the complex modified Korteweg-de Vries
(KdV) equation

iut + iβuxxx + iδ|u|2ux = 0. (1.8)
The initial value problem for the equations (1.6), (1.7) and (1.8) has been exten-
sively studied in the last few years, see for instance [3, 6, 10, 27] and references
therein. In 1992, Laurey [14] considered the equation (1.5) and proved local well-
posedness of the initial value problem associated for data in Hs(R), s > 3/4, and
global well-posedness in Hs(R), s ≥ 1. In 1997, Staffilani [30] established local
well-posedness for data in Hs(R), s ≥ 1/4 in (1.5) improving Laurey’s result. A
similar result was given in [4, 5] with w(t), β(t) real functions. Recently, Sepúlveda
and Vera [28] showed that C∞ solutions u(x, t) are obtained for all t > 0 if the
initial data u0(x) decays faster than polynomially on R+ = {x ∈ R : x > 0} and
has a certain initial Sobolev regularity. In [2] Bisognin and Vera considered the
equation (1.5) with δ = ε = 0 and proved the unique continuation property.

This paper concerns the exponential stabilization of the solution of (1.1) when
the damping a = a(x) is effective only on a subset of the interval (0, L). This
problem was extensively studied in the context of wave equations, see Dafermos [7],
Haraux [8], Slemrod [29], Zuazua [36] and Nakao [17]. The same problem has been
also studied for the KdV equation. Here we can mention the works of Komornik,
Russell and Zhang [13]. Using a different damping mechanism they obtained the
exponential decay with periodic boundary conditions. In [20], Menzala, Vasconcel-
los and Zuazua studied the nonlinear KdV equation inspired in the work of Rosier
[23]. They studied the stabilization of solutions for the KdV equation in a bounded
interval under the effect of a localized damping mechanism. Using compactness
arguments, the smoothing effect of the KdV equation on the line and the unique
continuation results, the authors deduced the exponential decay in time of the solu-
tions of the linear equation and a local uniform stabilization result of the solutions
of the nonlinear equation when the localized damping is active simultaneously only
in a neighborhood of both extremes x = 0, x = L. The same result was obtained
by the KdV coupled system by Menzala, Bisognin and Bisognin [21]. The main
result of this paper says that the total energy E(t) associated to (1.1) decays expo-
nentially as t → +∞, for bounded sets of initial data. In order to prove the result
we use multipliers together with compactness arguments and smoothing properties
proved by M. Sepúveda and Vera [28] and the Unique Continuation Principle valid
for this problem, see Bisognin and Vera [2].

This paper is organized as follows: In section two, we study the existence of
global solution to the linear and nonlinear problem. In section three, we study
the stabilization result of the problem. First we prove the exponential decay in
the linear problem and of at end we prove the stabilization of the solution of the
nonlinear problem. The notation that we use in this article is standard and can be
found in Temam [32].

2. Stabilization of solutions of the linear problem

In this section we are interested in proving the global existence and uniqueness
of the solution and the exponential decay of the solution of the linear problem
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associated to (1.1)-(1.4). We consider the problem

iut + αuxx + iβuxxx + ia(x)u = 0 (2.1)

u(x, 0) = u0(x), for all x ∈ I (2.2)

u(0, t) = u(L, t) = 0, for all t > 0 (2.3)

ux(L, t) = 0, for all t > 0 (2.4)

where I = (0, L), a ∈ C∞(I), a(x) ≥ a0 > 0 is assumed to be nonnegative ev-
erywhere in an open non empty proper subset ω of I and we will prove the global
existence of the problem (2.1)-(2.4).

We consider a ≡ 0 and the operator A = −β∂3
x + iα∂2

x with domain

D(A) = {v ∈ H3(I) : v(0) = v(L) = 0, vx(L) = 0} ⊆ L2(I)

Lemma 2.1. Let a ≡ 0 and β > 0. Then, the operator A is the infinitesimal
generator of a strongly continuous semigroup {S(t)}t≥0 of contractions in L2(I).

Proof. It is easy to prove that A is closed. Let us to prove that A is dissipative.
Integration by parts give us

(Av, v)L2(I) =
∫ L

0

(−βvxxx + iαvxx)v dx = −β

2
|v2

x(0, t)|2 − iα

∫ L

0

|vx|2dx.

Hence,

Re(Av, v)L2(I) = −β

2
|v2

x(0, t)|2 ≤ 0,

where A is dissipative. On the other hand, the adjoint of the operator A is given
by

H∗v = βvxxx − iαvxx

with domain

D(H∗) = {v ∈ H3(I) : v(0, t) = v(L, t) = 0, vx(0, t) = 0} ⊆ L2(I).

A similar calculation shows that

(H∗v, v)L2(I) =
∫ L

0

(βvxxx − iαvxx)v dx = −β

2
|v2

x(0, t)|2 + iα

∫ L

0

|vx|2 dx.

Hence

Re(Av, v)L2(I) = −β

2
|v2

x(0, t)|2 ≤ 0.

The conclusion of Lemma 2.1 follows from the Stone Theorem [19] of semigroup
theory. �

The above discussion proves the following result.

Theorem 2.2. Let u0 ∈ D(A), a ≡ 0 and β > 0. Then, there exists a unique
function u such that u ∈ C(0,+∞ : H3(I)) ∩ C1(0,+∞ : L2(I)) which solves
(2.1)-(2.4).

The well-posedness of system (2.1)-(2.4), when a 6≡ 0 can be handled in a similar
way by considering the term a(x)u as a linear perturbation of the case a ≡ 0.

Now, we will prove the exponential decay of the total energy E(t) associated to
(2.1)-(2.4) under suitable assumptions on the open subset ω of I. We denote by



4 E. BISOGNIN, V. BISOGNIN, O. P. VERA V. EJDE-2007/06

{S(t)}t≥0 the semigroup of contractions associated with A, and by H the Banach
space C([0, T ] : L2(I)) ∩ L2(0, T : H1(I)) with the norm

‖v‖H = sup
[0,T ]

‖v(·, t)‖L2(I) +
( ∫ T

0

‖v(·, t)‖2H1(I)

)1/2

(2.5)

Theorem 2.3. Consider the solution of the problem (2.1)-(2.4). Then there exist
c > 0 and µ > 0 such that

‖u(·, t)‖2L2(I) ≤ c‖u0‖2L2(I)e
−µt (2.6)

for all t ≥ 0 and u0 ∈ L2(I).

For the proof of the above theorem we need the following result.

Lemma 2.4. Let |α| < 3β. Then

(1) The map u0 ∈ L2(I) → S(t)u0 ∈ H is continuous.
(2) For u0 ∈ L2(I), ∂xu(0, ·) makes sense in L2(I) and

‖ux(0, ·)‖L2(0,T ) ≤
1√
β
‖u0‖L2(I) (2.7)∫ T

0

|u0|2 dx ≤ 1
T

∫ T

0

∫ L

0

|u|2 dx dt + β

∫ T

0

|ux(0, t)|2 dt + 2
∫ T

0

∫ L

0

a(x)|u|2 dx.

(2.8)

Proof. (1) For u0 ∈ L2(I), let u = S(t)u0 be the mild solution of (2.1)-(2.4). By
Theorem 2.2, u ∈ C(0, T : L2(I)) and

‖u‖C(0,T :L2(I)) ≤ ‖u0‖L2(I). (2.9)

To see that u ∈ L2(0, T : H1(I)) we first assume that u0 ∈ D(A). Let ξ = ξ(x, t) ∈
C∞([0, L]× [0, T ]). Multiplying the equation (2.1) by ξu we have

iξuut + αξuuxx + iβξuuxxx + iξa(x)|u|2 = 0. (2.10)

Applying the conjugate, we have

−iξuut + αξuuxx − iβξuuxxx − iξa(x)|u|2 = 0. (2.11)

Subtracting (2.10) and (2.11) and integrating over x ∈ (0, L), we have

i
d

dt

∫ L

0

ξ|u|2 dx− i

∫ L

0

ξt|u|2 dx + iβ

∫ L

0

ξuuxxx dx + iβ

∫ L

0

ξuuxxx dx

+ α

∫ L

0

ξuuxx dx− α

∫ L

0

ξuuxx dx + 2i

∫ L

0

ξa(x)|u|2 dx = 0.

(2.12)
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Each term in the above equation is treated separately, integrating by parts and
using the boundary conditions we obtain∫ L

0

ξuuxxx dx =
∫ L

0

ξxxuux dx + 2
∫ L

0

ξx|ux|2 dx +
∫ L

0

ξuxuxx dx

+ ξ(0, t)|ux(0, t)|2∫ L

0

ξuuxxx dx =
∫ L

0

ξxxuux dx +
∫ L

0

ξx|ux|2 dx−
∫ L

0

ξuxuxx dx∫ L

0

ξuuxx dx = −
∫ L

0

ξxuux dx−
∫ L

0

ξ|ux|2 dx∫ L

0

ξuuxx dx = −
∫ L

0

ξxuux dx−
∫ L

0

ξ|ux|2 dx.

Replacing these expression in (2.12) and performing straightforward calculations,

i
d

dt

∫ L

0

ξ|u|2 dx− i

∫ L

0

ξt|u|2 dx + iβ

∫ L

0

ξxx(|u|2)x dx + 3iβ

∫ L

0

ξx|ux|2 dx

+ iβξ(0, t)|ux(0, t)|2 − 2iα Im
∫ L

0

ξxuux dx + 2i

∫ L

0

ξa(x)|u|2 dx = 0

and

d

dt

∫ L

0

ξ|u|2 dx−
∫ L

0

ξt|u|2 dx + β

∫ L

0

ξxx(|u|2)x dx + 3β

∫ L

0

ξx|ux|2 dx

+ βξ(0, t)|ux(0, t)|2 − 2α Im
∫ L

0

ξxuux dx + 2
∫ L

0

ξa(x)|u|2 dx = 0.

(2.13)

Let ξ(x, t) ≡ x, then in (2.13), we obtain

d

dt

∫ L

0

x|u|2 dx + 3β

∫ L

0

|ux|2 dx− 2α Im
∫ L

0

uux dx + 2
∫ L

0

xa(x)|u|2 dx = 0.

Hence,

d

dt

∫ L

0

x|u|2 dx + 3β

∫ L

0

|ux|2 dx + 2
∫ L

0

xa(x)|u|2 dx

= 2α Im
∫ L

0

uux dx ≤ |α|
∫ L

0

|u|2 dx + |α|
∫ L

0

|ux|2 dx

(2.14)

then

d

dt

∫ L

0

x|u|2 dx + (3β − |α|)
∫ L

0

|ux|2 dx + 2
∫ L

0

xa(x)|u|2 dx ≤ |α|
∫ L

0

|u|2 dx

and

d

dt

∫ L

0

x|u|2 dx+(3β−|α|)
∫ L

0

|ux|2 dx+2
∫ L

0

xa(x)|u|2 dx ≤ |α|‖u‖2L2(0,L). (2.15)
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Integrating (2.15) over t ∈ [0, T ] we have∫ L

0

x|u|2 dx + (3β − |α|)
∫ T

0

∫ L

0

|ux|2 dx dt + 2
∫ T

0

∫ L

0

xa(x)|u|2 dx dt

≤
∫ L

0

x|u0|2 dx + |α|
∫ T

0

‖u‖2L2(0,L) dt

≤ L‖u0‖2L2(0,L) + T |α|‖u0‖2L2(0,L)

= [L + T |α|]‖u0‖2L2(0,L)

Hence,∫ L

0

x|u|2 dx + (3β − |α|)‖ux‖2L2(0,T :L2(0,L)) + 2
∫ T

0

∫ L

0

xa(x)|u|2 dx dt

≤ [L + T |α|]‖u0‖2L2(0,L).

Using that a(x) ≥ a0 > 0, we obtain∫ L

0

x|u|2 dx + (3β − |α|)‖ux‖2L2(0,T :L2(0,L)) ≤ [L + T |α|]‖u0‖2L2(0,L). (2.16)

In particular, using that |α| < 3β,

(3β − |α|)‖ux‖2L2(0,T :L2(0,L)) ≤ [L + T |α|]‖u0‖2L2(0,L).

and
‖ux‖2L2(0,T :L2(0,L)) ≤

1
(3β − |α|)

[L + T |α|] ‖u0‖2L2(0,L). (2.17)

By the density of D(A) in L2(I) the result extends to arbitrary u0 ∈ L2(I).
We remark that: (a) The estimate (2.16) gives a smoothing effect. (b) In (2.14)

using Young’s estimate and assuming that β > 0 we have

2α Im
∫ L

0

uux dx ≤ |α|2

2β

∫ L

0

|u|2 dx + 2β

∫ L

0

|ux|2 dx.

Then, in we obtain (2.15),

d

dt

∫ L

0

x|u|2 dx + β

∫ L

0

|ux|2 dx + 2
∫ L

0

xa(x)|u|2 dx ≤ |α|2

2β
‖u‖2L2(0,L)

and the assumption that |α| < 3β can be removed.
(2) We also assume u0 ∈ D(A) and taking ξ(x, t) = 1 in (2.13), we have

d

dt

∫ L

0

|u|2 dx + β|ux(0, t)|2 + 2
∫ L

0

a(x)|u|2 dx = 0. (2.18)

Hence, integrating (2.18) over t ∈ [0, T ] we have∫ L

0

|u|2 dx + β

∫ T

0

|ux(0, t)|2 dt + 2
∫ T

0

∫ L

0

a(x)|u|2 dx dt =
∫ L

0

|u0|2 dx

Using a(x) ≥ a0 > 0, we obtain∫ L

0

|u|2 dx + β

∫ T

0

|ux(0, t)|2 dt ≤
∫ L

0

|u0|2 dx

β

∫ T

0

|ux(0, t)|2 dt ≤
∫ L

0

|u0|2 dx−
∫ L

0

|u|2 dx ≤
∫ L

0

|u0|2 dx;
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therefore, (2.7) is proved. �

On the other hand, taking ξ(x, t) = T − t in (2.13) we have

d

dt

∫ L

0

(T − t)|u|2 dx +
∫ L

0

|u|2 dx

+ β(T − t)|ux(0, t)|2 + 2
∫ L

0

(T − t)a(x)|u|2 dx = 0.

(2.19)

Integrating (2.19) over t ∈ [0, T ] we have

− T

∫ L

0

|u0|2 dx +
∫ T

0

∫ L

0

|u|2 dx dt

+ β

∫ T

0

(T − t)|ux(0, t)|2 dt + 2
∫ T

0

∫ L

0

(T − t)a(x)|u|2 dx dt = 0.

Then

T

∫ L

0

|u0|2 dx

=
∫ T

0

∫ L

0

|u|2 dx dt + β

∫ T

0

(T − t)|ux(0, t)|2 dt + 2
∫ T

0

∫ L

0

(T − t)a(x)|u|2 dx dt

≤
∫ T

0

∫ L

0

|u|2 dx dt + β

∫ T

0

T |ux(0, t)|2 dt + 2
∫ T

0

∫ L

0

Ta(x)|u|2 dx dt

and ∫ L

0

|u0|2 dx ≤ 1
T

∫ T

0

∫ L

0

|u|2 dx dt + β

∫ T

0

|ux(0, t)|2 dt

+ 2
∫ T

0

∫ L

0

a(x)|u|2 dx dt.

(2.20)

Equation (2.20) holds trivially for any u0 ∈ L2(0, L).

Proof. ][Proof of Theorem 2.3] To show the result,from (2.20), it suffices to prove

1
T

∫ T

0

∫ L

0

|u|2 dx dt ≤ β

∫ T

0

|ux(0, t)|2 dt + 2
∫ T

0

∫ L

0

a(x)|u|2 dx dt. (2.21)

Let us argue by contradiction. Suppose that (2.21) is not valid. Then, there will
exist a sequence of solutions {un} of (2.1)-(2.4) such that

lim
n→∞

‖un‖2L2(0,T :L2(I))

β
∫ T

0
|u′n(0, t)|2 dt + 2

∫ T

0

∫ L

0
a(x)|un|2 dx dt

= +∞.

Let

λn = ‖un‖L2(0,T :L2(I)) and vn(x, t) =
un(x, t)

λn
.

We have that vn solves the (2.1)-(2.4) problem with initial data vn(x, 0) = un(x,0)
λn

.
Furthermore,

‖vn‖L2(0,T :L2(I)) = 1, (2.22)

β

∫ T

0

|v′n(0, t)|2 dt + 2
∫ T

0

∫ L

0

a(x)|vn|2 dx dt → 0, as n →∞. (2.23)
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In view of (2.20), it follows that vn(x, 0) is bounded in L2(I). Thus

‖vn(·, t)‖L2(I) ≤ c, for all 0 ≤ t ≤ T.

According to (2.7)

‖vn‖L2(0,T :H1(I)) ≤ c(T )‖vn(·, t)‖L2(I) ≤ constant, for all n ∈ N. (2.24)

Estimates (2.24) and (2.22) tell us that

i(vn)t = −α(vn)xx − iβ(vn)xxx − ia(x)vn

is bounded in L2(0, T : H−2(I)). Since the embedding H1(I) ↪→ L2(I) is compact
it follows that (vn) is relatively compact in L2(0, T : L2(I)). By extracting a
subsequence we may deduce that

vn ⇀ v weakly in L2(0, T : H−2(I)),

vn → v strongly in L2(0, T : L2(I)).

Since
‖vn‖L2(0,T :L2(I)) = 1 (2.25)

it follows that
‖v‖L2(0,T :L2(I)) = 1. (2.26)

By the weak lower semicontinuity, we have

0 = lim
n→∞

inf
{
β

∫ T

0

|v′n(0, t)|2 dt + 2
∫ T

0

∫ L

0

a(x)|vn|2 dx dt
}

≥ β

∫ T

0

|v′(0, t)|2 dt + 2
∫ T

0

∫ L

0

a(x)|v|2 dx dt

which guarantees that a(x)v ≡ 0, and in particular, v ≡ 0 in ω × (0, T ). On the
other hand, the limit v satisfies

ivt + αvxx + iβvxxx + ia(x)v = 0.

Using Holmgren’s Uniqueness Theorem (see [22]) we deduce that v ≡ 0 in I×(0, T ).
This contradicts (2.22). Consequently, (2.21) has to be true. On the other hand,
we have

d

dt
‖u(·, t)‖2L2(I) + 2

∫ L

0

a(x)|u|2 dx ≤ −β|ux(0, t)|2 ≤ 0

and

‖u(·, T )‖2L2(I) = ‖u0‖2L2(I) − β

∫ T

0

|ux(0, t)|2 dt− 2
∫ T

0

∫ L

0

a(x)|u|2 dx dt

which together with (2.20) give us the inequality

(1 + c)‖u(·, T )‖2L2(I)

≤ (1 + c)
[
‖u0‖2L2(I) − β

∫ T

0

|ux(0, t)|2 dt− 2
∫ T

0

∫ L

0

a(x)|u|2 dx dt
]

≤ c‖u0‖2L2(I) −
[
β

∫ T

0

|ux(0, t)|2 dt + 2
∫ T

0

∫ L

0

a(x)|u|2 dx dt
]

≤ c‖u0‖2L2(I).
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Consequently,

‖u(·, T )‖2L2(I) ≤ µ‖u0‖2L2(I) with µ =
c

1. + c
< 1

Therefore, by a semigroup property, the conclusion of the Theorem follows. �

3. Stabilization of the solution of the non-linear problem

In this section we prove the existence of a global solution (and uniqueness) and
the exponential decay of the solution of the nonlinear problem (1.1)-(1.4). The
proof of the result needs of the Unique Continuation Principle since we are dealing
with a nonlinear equation.

Theorem 3.1 (local existence and uniqueness). Let |α| < 3β and u0 ∈ L2(I).
Then, there exist T0 > 0 and a unique function u ∈ L∞(0, T0 : L2(I)) ∩ L2(0, T0 :
H1

0 (I)) that satisfies (1.1)-(1.4).

Proof. Let T > 0 and consider the set of functions X(T ) = {u : u ∈ L2(0, T :
H1

0 (I))} with the norm

‖u‖X(T ) =
( ∫ T

0

‖u(s)‖2H1(I) ds
)1/2

.

We define the map P : X(T ) → L∞(0,+∞ : L2(I)) given by

P (u)(t) = S(t)u0 +
∫ t

0

S(t− τ)g(u)(τ) dτ (3.1)

where g(u) = |u|2u. In order to prove local existence (and uniqueness) it is sufficient
to prove that P maps X(T ) into itself continuously and it is a contraction for
T > 0 sufficiently small. According to the results of section two it follows that the
semigroup of contractions {S(t)}t≥0 corresponding to the linear system satisfies the
following properties:

‖S(t)u‖L2 ≤ ‖u0‖L2 (3.2)

‖S(t)u0‖L2(0,T :H1
0 (I)) ≤ c(T )‖u0‖L2 (3.3)

for all T > 0, where c(T ) = |α|T+L
3β−|α| . It follows that S(t)u0 ∈ X(T ). On the other

hand, the function

J(t) =
∫ t

0

S(t− s)g(u)

is a solution to the problem

iJt + αJxx + iβJxxx + ia(x)J = F,

where F = −g(u). We can follow the same idea due to L. Rosier [23] (Proposition
4.1) to prove that J ∈ X(T ) and F → J which maps L2(0, T : L2(I)) to X(T ) is
continuous. Furthermore, the map that associates to each u in L2(0, T : H1

0 (I)) the
element g(u) in L1(0, T : L2(I)) is also continuous. Consequently, P maps X(T )
into X(T ) continuously. Now, let us prove that P is a contraction in a suitable ball
of X(T ) provided that T > 0 is chosen sufficiently small. Let u and v be elements
of X(T ), then

P (u)− P (v) = −
∫ t

0

S(t− τ)[g(u)− g(v)] dτ.
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Direct calculation, (3.1), (3.3) and Holder’s inequality yield

‖P (u)(t)− P (v)(t)‖2H1(I)

=
∥∥∫ t

0

S(t− τ)[g(u)− g(v)] dτ
∥∥2

H1(I)

≤
[ ∫ t

0

‖S(t− τ)[g(u)− g(v)]‖H1(I)dτ
]2

≤
[( ∫ t

0

dτ
)1/2( ∫ t

0

‖S(t− τ)[g(u)− g(v)]‖2H1(I)dτ
)1/2]2

≤
( ∫ t

0

dτ
)( ∫ t

0

‖S(t− τ)[g(u)− g(v)]‖2H1(I)dτ
)

≤ M2T

∫ t

0

‖g(u)− g(v)‖2L2(I)dτ

≤ T
( |α|T + L

3β − |α|
)2

∫ T

0

‖g(u)− g(v)‖2L2(I) dt.

Hence,
‖P (u)(t)− P (v)(t)‖2L∞(0,T :H1(I))

≤ T

(
|α|T + L

3β − |α|

)2 ∫ T

0

‖g(u)− g(v)‖2L2(I) dt.
(3.4)

On the other hand, using that ||u| − |v|| ≤ |u− v|, we have

‖g(u)− g(v)‖L2(I)

= ‖|u|2u− |v|2v‖L2(I)

= ‖|u|2(u− v) + (|u|2 − |v|2)v‖L2(I)

= ‖|u|2(u− v) + (|u|+ |v|)(|u| − |v|)v‖L2(I)

≤ ‖|u|2(u− v)‖L2(I) + ‖(|u|+ |v|)(|u| − |v|)v‖L2(I)

≤ ‖u‖2L∞(I)‖u− v‖L2(I) +
(
‖u‖L∞(I) + ‖v‖L∞(I)

)
‖v‖L∞(I)‖u− v‖L2(I)

≤ ‖u‖2L∞(I)‖u− v‖L2(I) +
(
‖u‖L∞(I)‖v‖L∞(I) + ‖v‖2L∞(I)

)
‖u− v‖L2(I)

≤ 3
2

(
‖u‖2L∞(I) + ‖v‖2L∞(I)

)
‖u− v‖L2(I).

Thus

‖g(u)− g(v)‖2L2(I) ≤
3
2

(
‖u‖2L∞(I) + ‖v‖2L∞(I)

)2

‖u− v‖2L2(I). (3.5)

Therefore, from (3.4), we have

‖P (u)(t)− P (v)(t)‖2L∞(0,T :H1(I))

≤ cT
( |α|T + L

3β − |α|
)2

∫ t

0

(
‖u‖2H1(I) + ‖v‖2H1(I)

)2‖u− v‖2L2(I)dt.

Then

‖P (u)(t)− P (v)(t)‖2X(T ) ≤ cT
( |α|T + L

3β − |α|
)2(‖u‖2X(T ) + ‖v‖2X(T )

)2‖u− v‖2X(T )
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and

‖P (u)(t)− P (v)(t)‖X(T ) ≤ cT 1/2
( |α|T + L

3β − |α|
)(
‖u‖2X(T ) + ‖v‖2X(T )

)
‖u− v‖X(T ).

This shows that P is a contraction in the ball BR = {u ∈ X(T ) : ‖u‖X(T ) ≤ R}
with

2cT 1/2
( |α|T + L

3β − |α|
)
R2 < 1. (3.6)

Therefore, the proof will be complete if we show that for a suitable choice of R
and T satisfying (3.6), the map P maps BR into itself. Putting all the previous
estimates together, we have

‖P (u)‖2X(T ) =
∫ T

0

‖P (u)‖2H1(I) dt.

From (3.5),

‖P (u)‖2X(T ) ≤ cT
( |α|T + L

3β − |α|

)2

‖u0‖6X(T ) ≤ cT
( |α|T + L

3β − |α|

)2

R6 (3.7)

for all u ∈ BR. Choosing R = ‖u0‖L2(I) from (3.7) we deduce that

‖P (u)‖2X(T ) ≤
[
cT 1/2

( |α|T + L

3β − |α|
)
‖u0‖2L2(I)

]
‖u0‖L2(I).

Let us choose T > 0 sufficiently small and such that

cT 1/2
( |α|T + L

3β − |α|
)
‖u0‖2L2(I) < 1. (3.8)

Hence, P map BR into itself. �

Theorem 3.2 (Global existence and uniqueness). Let |α| < 3β and u0 ∈ L2(I).
Then, there exists a unique function u ∈ L∞(0, T : L2(I)) ∩ L2(0, T : H1

0 (I)) that
satisfies the problem (1.1)-(1.4).

Proof. It follows from Theorem 3.1 that we can extend the solution u to the maximal
interval of existence 0 ≤ t < Tmax. We need to prove that Tmax = +∞. Let T > 0
such that 0 < T < Tmax and let us get bounds for the solution u in the interval
0 ≤ t < T . Due to Theorem 3.1 we know that the solution u belongs to X(T ) and
satisfies

u(t) = S(t)u0 +
∫ t

0

S(t− τ)g(u(τ)) dτ.

It follows that
−|u|2u ∈ L2(0, T : L2(I)).

The global existence is an immediate consequence of the a priori estimate obtained
by multiplying the equation in (1.1)-(1.4) by u. In fact

iuut + iβuuxxx + αuuxx + |u|4 + ia(x)|u|2 = 0. (3.9)

Applying conjugate in (3.9) we have

−iuut − iβuuxxx + αuuxx + |u|4 − ia(x)|u|2 = 0. (3.10)

Subtracting (3.9) with (3.10), integrating over x ∈ [0, L] and using boundary con-
ditions we obtain

d

dt

∫ L

0

|u|2 dx + β|ux(0, t)|2 +
∫ L

0

a(x)|u|2 dx = 0. (3.11)
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Integrating over t ∈ [0, T ]∫ L

0

|u|2 dx + β

∫ T

0

|ux(0, t)|2 dt +
∫ T

0

∫ L

0

a(x)|u|2 dx dt = ‖u0‖2L2(I). (3.12)

Therefore, u ∈ L∞(0, T : L2(I)) for any 0 < T < Tmax.
Now, we multiply the equation in (1.1)-(1.4) by xu

ixuut + iβxuuxxx + αxuuxx + x|u|4 + ixa(x)|u|2 = 0. (3.13)

Applying conjugate in (3.9) we have

−ixuut − iβxuuxxx + αxuuxx + x|u|4 − ixa(x)|u|2 = 0. (3.14)

Subtracting (3.13) with (3.14), integrating over x ∈ [0, L] we obtain

i
d

dt

∫ L

0

x|u|2 dx + iβ

∫ L

0

xuuxxx dx + iβ

∫ L

0

xuxxx dx

α

∫ L

0

xuuxx dx− α

∫ L

0

xuuxx dx + 2
∫ L

0

x|u|4 dx = 0.

Performing similar calculations as in section two, we obtain

i
d

dt

∫ L

0

x|u|2 dx + 3iβ

∫ L

0

|ux|2 dx + iβ|ux(0, t)|2

− 2iα Im
∫ L

0

uux dx + 2i

∫ L

0

xa(x)|u|2 dx = 0

then
d

dt

∫ L

0

x|u|2 dx + 3β

∫ L

0

|ux|2 dx + β|ux(0, t)|2

− 2α Im
∫ L

0

uux dx + 2
∫ L

0

xa(x)|u|2 dx = 0.

(3.15)

Performing straightforward calculation we obtain

d

dt

∫ L

0

x|u|2 dx + (3β − |α|)
∫ L

0

|ux|2 dx + β|ux(0, t)|2 + 2
∫ L

0

xa(x)|u|2 dx

≤ |α|
∫ L

0

|u|2 dx.

(3.16)

Therefore, integrating over t ∈ [0, T ] we have∫ T

0

∫ L

0

|ux|2 dx dt ≤ 1
(3β − |α|)

[
|α|

∫ T

0

∫ L

0

|u|2 dx dt +
∫ L

0

|u0|2 dx

]

≤ 1
(3β − |α|)

‖u0‖2L2(I)

(3.17)

and u ∈ L2(0, T : H1
0 (I)), for any 0 < T < Tmax. Estimates (3.11) and (3.17) allow

us to conclude that Tmax = +∞. Thus, the global existence follows. Uniqueness
can be shown in the standard way using Gronwall’s inequality. �

Now, we have to prove the exponential decay of the solutions of the nonlinear
problem (1.1)-(1.4). The proof of the result needs that the Unique Continuation
Principle(UCP) holds because we are dealing with a nonlinear equation. The next
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Theorem contains the result of (UCP) for the problem (1.1)-(1.4). The proof will
be given later.

Theorem 3.3. Assume that the set ω contains two sets of the form (0, δ) and
(L − δ, L) for some δ > 0. Let u ∈ L∞(0, T : L2(I))) ∩ L2(0, T : H1(I))) be the
global solution of the problem

iut + iβuxxx + αuxx + δ|u|2u + ia(x)u = 0 in I × (0, T ) (3.18)

u(0, t) = u(L, t), t ∈ (0, T ) (3.19)

ux(L, t) = 0, t ∈ (0, T ) (3.20)

u(x, t) ≡ 0 in ω × (0, T ) (3.21)

with ε ≥ 0 and T > 0, then necessarily u ≡ 0 in I × (0, T ).

For the moment, let us assume that ω satisfies the (UCP). Then we have the
following result.

Theorem 3.4. Let |α| < 3β, a = a(x) a non-negative function, a ∈ C∞(I) such
that a(x) ≥ a0 > 0 is assumed to be nonnegative everywhere in an open non empty
proper subset ω. Let u be the global solution of the problem (1.1)-(1.4). Then, for
any L > 0 and R > 0 there exist positive constants c > 0 and µ > 0 such that

E(t) ≤ c‖u0‖2L2(I)e
−µt

for any t ≥ 0 and any solution of (1.1)-(1.4) with u0 ∈ L2(I) such that ‖u0‖L2(I) ≤
R.

Proof. We proceed as in he proof of Theorem 2.3. From (3.11) we have∫ L

0

|u|2 dx + β|ux(0, t)|2 + 2
∫ T

0

∫ L

0

a(x)|u|2 dx dt = ‖u0‖2L2(I). (3.22)

Next, we multiply the equation in (1.1)-(1.4) by (T − t)u,

i(T−t)uut+iβ(T−t)uuxxx+α(T−t)uuxx+(T−t)|u|4+i(T−t)a(x)|u|2 = 0. (3.23)

Applying conjugate we have

−i(T − t)uut − iβ(T − t)uuxxx + α(T − t)uuxx + (T − t)|u|4 − i(T − t)a(x)|u|2 = 0.
(3.24)

Subtracting (3.23) with (3.24) and performing straightforward calculations we ob-
tain

d

dt

∫ L

0

(T − t)|u|2 dx+
∫ L

0

|u|2 dx+β(T − t)|ux(0, t)|2 +2
∫ L

0

(T − t)a(x)|u|2 dx = 0.

(3.25)
Integrating over t ∈ [0, T ], we have

− T

∫ L

0

|u0|2 dx +
∫ T

0

∫ L

0

|u|2 dx dt + β

∫ T

0

(T − t)|ux(0, t)|2 dt

+ 2
∫ T

0

∫ L

0

(T − t)a(x)|u|2 dx dt = 0.
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and ∫ L

0

|u0|2 dx =
1
T

∫ T

0

∫ L

0

|u|2 dx dt +
β

T

∫ T

0

(T − t)|ux(0, t)|2 dt

+
2
T

∫ T

0

∫ L

0

(T − t)a(x)|u|2 dx dt.

Consequently,∫ L

0

|u0|2 dx ≤ 1
T

∫ T

0

∫ L

0

|u|2 dx dt + β

∫ T

0

|ux(0, t)|2 dt + 2
∫ T

0

∫ L

0

a(x)|u|2 dx dt.

(3.26)
To show the result it is sufficient to prove∫ T

0

∫ L

0

|u|2 dx dt ≤ c
{
β

∫ T

0

|ux(0, t)|2 dt + 2
∫ T

0

∫ L

0

a(x)|u|2 dx dt
}

(3.27)

for some positive constant c independent of the solution u.
Let us argue by contradiction. Suppose that (3.27) is not true. Then, there will
exist a sequence of solutions un of (1.1)-(1.4) such that

lim
n→∞

‖un‖2L2(0,T :L2(I)))

β
∫ T

0
|un

x(0, t)|2 dt + 2
∫ T

0

∫ L

0
a(x)|un|2 dx dt

= +∞.

Let λn = ‖un‖L2(0,T :L2(I)) and vn(x, t) = un

λn
. For each n ∈ N the function vn

satisfies

i(vn)t + α(vn)xx + iβ(vn)xxx + (λn)2|vn|2vn + ia(x)vn = 0 in I × (0, T ) (3.28)

vn
x (L, t) = 0, for all t > 0 (3.29)

vn(0, t) = vn(L, t) = 0, for all t > 0 (3.30)

vn(x, 0) =
un(x, 0)

λn
, for all x ∈ I. (3.31)

We have

‖vn‖L2(0,T :L2(I)) = 1, (3.32)

β

∫ T

0

|un
x(0, t)|2 dt + 2

∫ T

0

∫ L

0

a(x)|un|2 dx dt → 0 as n → +∞. (3.33)

In view of (3.26) it follows that vn(x, 0) is bounded in L2(I). Thus,

‖vn(·, t)‖L2(I) ≤ c for all 0 ≤ t ≤ T. (3.34)

According to (2.17)

‖vn‖L2(0,T :H1(I)) ≤ c(T )‖vn(·, t)‖L2(I), ∀n ∈ N. (3.35)

On the other hand, |vn|2vn belongs to L2(0, T : L1(I)) and

‖|vn|2vn‖L2(0,T :L1(I)) ≤ ‖vn‖2L∞(0,T :L2(I))‖v
n‖L2(0,T :H1(I)) (3.36)

and by (3.35) we obtain a constant c > 0 such that

‖|vn|2vn‖L2(0,T :L1(I)) ≤ c. (3.37)

Since (λn) is a bounded sequence, because ‖un(·, 0)‖L2(I) ≤ R, it follows by (3.18)-
(3.21), (3.35) and (3.37) that

(vn)t = −α(vn)xx − iβ(vn)xxx − (λn)2|vn|2vn − ia(x)vn
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is bounded in L2(0, T : H−2(I)). Since the embedding H1(I) ↪→ L2(I) is compact
it follows that (vn) is relatively compact in L2(0, T : L2(I)). By extracting a
subsequence we can deduce that

vn ⇀ v weakly in L2(0, T : H−2(I)),

vn → v strongly in L2(0, T : L2(I)).

Since ‖vn‖L2(0,T :L2(I)) = 1, then

‖v‖L2(0,T :L2(I)) = 1. (3.38)

By lower semicontinuity, we have

0 = lim
n→∞

inf
{
β

∫ T

0

|vn
x (0, t)|2 dt + 2

∫ T

0

∫ L

0

a(x)|vn|2 dx dt
}

≥ β

∫ T

0

|vx(0, t)|2 dt + 2
∫ T

0

∫ L

0

a(x)|v|2 dx dt

which guarantees that av ≡ 0, and in particular v ≡ 0 in ω × (0, T ). We now
distinguish the following two situations:

(1) There exists a subsequence of (λn) also denoted by (λn) such that

λn → 0 as n →∞.

In this case, the limit v satisfies the linear problem

ivt + iβvxxx + αvxx + δ|v|2v + ia(x)v = 0

v(0, t) = v(L, t) for all t ∈ (0, T )

vx(L, t) = 0 for all t ∈ (0, T )

v(x, t) = 0 in ω × (0, T )

Then, by Holmgren’s uniqueness Theorem (see [22]), v ≡ 0 in I × (0, T ) and this
contradicts (3.38).

(2) There exists a subsequence of (λn) also denoted by (λn) and λ > 0 such that
λn → λ. In this case, the limit function v solves (3.29)-(3.31) and, by the (UCP)
assumed to hold for the subset ω, we have that v ≡ 0 in I × (0, T ), and again, in
this case, we have a contradiction.

In the cases (1) and (2) we have a contradiction. Hence, (3.27) holds and the
proof is complete. �

Proof of Theorem 3.3. From Theorem 3.2 we obtain that if u0 ∈ L2(I) then

u ∈ L∞(0, T : L2(I)) ∩ L2(0, T : H1
0 (I))

and ut ∈ L2(0, T : H−2
0 (I)). Consequently, we know that u is weakly continuous

from [0, T ] into L2(I). According to the structure of ω, u ≡ 0 in {(0, δ) × (L −
δ, L)} × (0, T ). Let us define the extended function

u(x, t) =

{
u(x, t) if (x, t) ∈ (δ, L− δ)× (0, T )
0 if (x, t) ∈ {R− (δ, L− δ)} × (0, T ).

Then, u satisfies

iut + αuxx + iβuxxx + λ|u|2u + ia(x)u = 0 in R× (0, T ) (3.39)

u(x, 0) = φ(x) in R. (3.40)
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and

φ(x) =

{
u0(x) if x ∈ (δ, L− δ)
0 if x ∈ {R− (δ, L− δ)}.

If we consider v(x, t) = u(x + t, t), then v solves

ivt + αvxx + iβvxxx + λ|v|2v + ia(x)v = 0 in R× (0, T ) (3.41)

u(x, 0) = φ(x) in R. (3.42)

Since φ has compact support and belongs to L2(R), we have∫
R

φ2(x)e2bx dx < ∞, ∀b > 0. (3.43)

Thus, by regularizing properties (see [28]), v ∈ C∞(I × (0, T )). Therefore, v is
smooth as well, and applying the unique continuation result we have that v ≡ 0
and u ≡ 0, x ∈ I, t ∈ (0, T ). �

Remark about the hypothesis |α| < 3β. We consider the Gauge transformation

u(x, t) = eid2x+id3tv(x− d1t, t) ≡ eθv(η, ξ)

and θ = id2x + id3t, η = x− d1t, ξ = t. Then

ut = id3e
θv − d1e

θvη + eθvξ,

ux = id2e
θv + eθvη,

uxx = −d2
2e

θv + 2id2e
θvη + eθvηη,

uxxx = −id3
2e

θv − 3d2
2e

θvη + 3id2e
θvηη + eθvηηη.

Replacing in (1.5), we have

− d3e
θv − id1e

θvη + ieθvξ − ωd2
2e

θv + 2iωd2e
θvη + ωeθvηη

βd3
3e

θv − 3iβd2
2e

θvη − 3βd2e
θvηη + iβeθvηηη + γ|v|2eθv

− δd2|v|2eθv + iδ|v|2eθvη + εd2e
θv2v + iεeθv2vη = 0

and

ivξ + (ω − 3βd2)vηη + iβvηηη + (2iωd2 − 3iβd2
2 − id1 + iδ|v|2 + iεv2)vη

(βd3
2 − ωd2

2 − d3 + γ|v|2 − δd2|v|2)v + εd2v
2v = 0 .

Then

d1 =
ω2

3β
, d2 =

ω

3β
, d3 =

−2ω3

27β2
.

This way in (1.5) we obtain

ivξ + iβvηηη + i(δ|v|2 + εv2)vη +
(
γ − ωδ

3β

)
|v|2v +

εδ

3β
v2v = 0,

but v2v = vvv = |v|2v, then using the Gauge transformation we have the equivalent
problem to (1.5)

ivξ + iβvηηη + iδ|v|2vη + iεv2vη +
(
γ +

εδ

3β
− ωδ

3β

)
|v|2v = 0 η, ξ ∈ R

v(η, 0) = e−i ω
3β ηu0(η).

(3.44)
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Here, rescaling the equation, we take β = 1.

ivt + ivxxx + iδ|v|2vx + iεv2vx +
(
γ +

εδ

3
− ωδ

3
)
|v|2v = 0 x, t ∈ R

v(x, 0) = e−i ω
3 xu0(x).

(3.45)

The above Gauge’s transformation is a bicontinuous map from Lp([0, T ] : Hs(R)
to itself, as far as 0 < T < ∞. With this, the imposed assumption |ω| < 3β can be
removed.
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