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A REGULARITY CRITERION FOR THE ANGULAR VELOCITY
COMPONENT IN AXISYMMETRIC NAVIER-STOKES

EQUATIONS

ONDŘEJ KREML, MILAN POKORNÝ

Abstract. We study the non-stationary Navier-Stokes equations in the entire

three-dimensional space under the assumption that the data are axisymmetric.
We extend the regularity criterion for axisymmetric weak solutions given in

[10].

1. Introduction

Consider the Navier-Stokes equations in the entire three-dimensional space; i.e.,
the system of PDE’s

∂v
∂t

+ v · ∇v− ν∆v +∇p = 0 in (0, T )× R3

div v = 0 in (0, T )× R3

v(0,x) = v0(x) in R3 ,

(1.1)

where v : (0, T )× R3 = ΩT 7→ R3 is the velocity field, p : ΩT 7→ R is the pressure,
0 < T ≤ ∞, ν > 0 is constant viscosity coefficient and v0 is the initial velocity. To
avoid technical difficulties, we take the forcing term on the right-hand side equal
to zero. However, it is not difficult to formulate conditions on f under which the
statement of Theorem 1 remains true. We leave this relatively easy exercise to the
kind reader.

The question of smoothness and uniqueness of weak solutions to (1.1) is one of
the most challenging problems in the theory of PDE’s. The solution is known to
be unique (in the class of all weak solutions satisfying the energy inequality) if it
belongs to the class Lt,s(ΩT ) with 2

t + 3
s ≤ 1, t ∈ [2,+∞], s ∈ [3,+∞] (see [3, 12]).

Moreover, if the weak solution belongs to Lt,s(ΩT ) with 2
t + 3

s ≤ 1, t ∈ [2,+∞],
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s ∈ [3,+∞] and the input data are ”smooth enough” then the solution is smooth.
(See [13] for s > 3, [2] for s = 3.)

In the case of the planar flow the weak solution is known to be unique and
smooth as the data of the problem allow (see [7], [4]). Thus a natural question,
namely what can be said about the axisymmetric flow, appears. The first results
in this direction were obtained in the late sixties for vϕ = 0 (see [5, 15]) and later
also in [6].

The case vϕ 6= 0, including the z-axis, was for the first time considered in the
paper [9] where for vr ∈ Lt,s(ΩT ) with 2

t + 3
s ≤ 1, t ∈ [2,+∞], s ∈ (3,+∞] the

smoothness and thus also the uniqueness in the class of weak solutions satisfying the
energy inequality was obtained. In the same paper the authors prove a regularity
criterion for the angular velocity component. This criterion was improved in [10].
The author shows the smoothness and the uniqueness in the class of weak solutions
satisfying the energy inequality for vϕ ∈ Lt,s(ΩT ) with t ∈ (2,+∞], s ∈ (4,+∞],
2
t + 3

s < 1. See also [1], where the authors give several other smoothness criteria
for the vorticity components. Another approach to this problem, based on the
smallness of the swirl, can be found in [16]. Note that, except for the L∞,3(ΩT )
case, the criterion for vr is optimal from the scaling argument (see [11] for discussion
of this issue). On the other hand, for vϕ, we would like to have rather equality than
strict inequality 2

t + 3
s < 1. Moreover, the restriction s > 4 seems to be artificial.

In this paper, we will give a partial answer to the latter problem. Note that,
unfortunately, we do not get s close to 3 and moreover, the criterion is not optimal
from the viewpoint of the scaling. However, our main result reads as follows.

Theorem 1.1. Let v be a weak solution to problem (1.1) satisfying the energy
inequality with v0 ∈ W 2,2(R3) so that ∇v0 ∈ L1(R3) and (v0)ϕr ∈ L∞(R3). Let
v0 be axisymmetric. Suppose further that the angular component vϕ of v belongs to
Lt,s(ΩT ) for some t ∈

(
8s

7s−24 ,∞
]
, s ∈ ( 24

7 , 4], 2
t + 3

s <
7
4 −

3
s . Then (v, p), where p

is the corresponding pressure, is the axisymmetric strong solution to problem (1.1)
which is unique in the class of all weak solutions satisfying the energy inequality.

Note that the case s > 4 is successfully solved in [10]. Theorem 1.1 extends the
result from [10] for s ∈ ( 24

7 , 4].
Under an axisymmetric solution we understand a pair (v, p) such that in cylindri-

cal coordinates (r, ϕ, z), r ∈ [0,∞), ϕ ∈ [0, 2π) and z ∈ R, vr, vϕ and vz, considered
in cylindrical coordinates, are independent of ϕ, and p, written in cylindrical coor-
dinates, is also independent of ϕ.

2. Preliminaries

Denote by (vr, vϕ, vz) the cylindrical coordinates of the vector field v and by
(ωr, ωϕ, ωz) the cylindrical coordinates of curlv, i.e. ωr = −∂vϕ

∂z , ωϕ = ∂vr

∂z − ∂vz

∂r

and ωz = 1
r

∂
∂r (rvϕ) for v an axisymmetric field. Moreover, let w = (w1, w2, w3)

denote the cartesian coordinates of curlv.
We will use the standard notation for the Lebesgue spaces Lp(R3) endowed

with the standard norm ‖ · ‖p,R3 and the Sobolev spaces W k,p(R3) endowed with
the standard norm ‖ · ‖k,p,R3 . By Lt,s(ΩT ), ΩT = (0, T ) × R3 we understand
the anisotropic Lebesgue space Lt(0, T ;Ls(R3)). If no confusion can arise we skip
writing R3 and ΩT , respectively.
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Vector-valued functions are printed boldfaced. Nonetheless, we do not distin-
guish between Lq(R3)3 and Lq(R3).

In order to keep a simple notation, all generic constants will be denoted by C;
thus C can have different values from term to term, even in the same formula.

By Dv we mean the gradient of v expressed in the cartesian coordinates, while
∇vr denotes the derivatives with respect to r and z only (v is axisymmetric).
Similarly for vϕ and vz.

We will use the following inequalities. For the proofs of Lemmas 2.1–2.3 see [9].

Lemma 2.1. Let v be a sufficiently smooth vector field. Then there exists a con-
stant C(p) > 0, independent of v, such that for 1 < p <∞

‖Dv‖p ≤ C(p)(‖w‖p + ‖div v‖p) . (2.1)

Lemma 2.2. Let v be a sufficiently smooth divergence-free axisymmetric vector
field. Then there exist constants Ci(p), i = 1, 2 and Cj, j = 3, . . . , 7 such that for
1 < p <∞,

‖∇vr‖p +
∥∥vr

r

∥∥
p
≤ C1(p)‖ωϕ‖p (2.2)∥∥ ∂

∂r

(vr

r

)∥∥
p
≤ C3‖D2v‖p (2.3)

‖∇vϕ‖p +
∥∥vϕ

r

∥∥
p
≤ C4‖Dv‖p (2.4)∥∥ ∂

∂r

(vϕ

r

)∥∥
p
≤ C5‖D2v‖p (2.5)

C2(p)‖D2v‖p ≤
∥∥ωr

r

∥∥
p

+
∥∥ωϕ

r

∥∥
p

+ ‖∇ωr‖p + ‖∇ωϕ‖p + ‖∇ωz‖p

≤ C6‖D2v‖p

(2.6)

∥∥ ∂

∂r

(ωϕ

r

)∥∥
p
≤ C7‖D3v‖p . (2.7)

Lemma 2.3. Let (v, p) be an axisymmetric smooth solution to the Navier-Stokes
equations such that (v0)ϕr ∈ L∞(R3). Then also vϕr ∈ L∞(ΩT ).

Note that Lemma 2.3 indicates that the singularity may appear only on the
z−axis, outside, the solution is smooth. However, this result follows easily from the
well known fact that the one-dimensional Hausdorff measure of the singular set for
the suitable weak solution is zero.

Lemma 2.4. Let v be a sufficiently smooth axisymmetric vector field. Then to
every ε ∈ (0, 1] and 1 < p <∞ there exists C(ε), independent of v such that∥∥ |ωϕ|p

rp+2−ε

∥∥
1
≤ C(ε)

(∥∥ωϕ

r

∥∥p

p
+

∥∥∇(∣∣∣ωϕ

r

∣∣∣p/2)∥∥2

2

)
. (2.8)

The proof of the above lemma can be found in [10]. We will also use the following
regularity criterion proved in [9].

Lemma 2.5. Let v be a weak solution to problem (1.1) satisfying the energy in-
equality with v0 ∈W 2,2, axisymmetric and divergence-free. Suppose that vr ∈ Lt,s,
t ∈ [2,∞), s ∈ (3,∞], 2

t + 3
s ≤ 1. Then (v, p), where p is the corresponding pres-

sure, is an axisymmetric strong solution to problem (1.1) which is unique in the
class of all weak solutions satisfying the energy inequality.
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The proof of Theorem 1.1 is similar to the proof of the regularity criterion in [10].
Thus we will also need the following lemma. Its proof is based on weighted estimates
for singular integral operators and the restriction on k is due to the fact, that not
all weights belong to the Muckenhoupt class. See [10, 14] for more information.

Lemma 2.6. Let 1 < a <∞ and 0 ≤ k < 2
a . Then there exists a constant C(a, k)

such that ∥∥ vr

r1+k

∥∥
a
≤ C(a, k)

∥∥ωϕ

rk

∥∥
a
. (2.9)

Finally, we will need the following result on the integrability of gradients of v
with some p’s less than 2 (see [8] for the proof)

Lemma 2.7. Let moreover Dv0 ∈ L1. Then the weak solution to (1.1) also satisfies
Dv ∈ L∞,1 and D2v ∈ Lp,1, 1 ≤ p < 2.

3. Proof of Theorem 1.1

The proof is based on the continuation argument. We have the following (more
or less standard) result

Lemma 3.1. Let v0 ∈W 2,2. Then there exists t0 > 0 and (v, p), a weak solution1

to system (1.1), which is a strong solution on the time interval (0, t0) such that
v ∈ L2(0, t0;W 3,2) ∩ L∞(0, t0;W 2,2) with ∂v

∂t and ∇p ∈ L2(0, t0;W 1,2). Moreover,
if v0 is axisymmetric then also the strong solution is axisymmetric.

Now let v0 be as in Lemma 3.1 (axisymmetric). We define:

t∗ = sup
{
t > 0 : there exists an axisymmetric strong solution to (1.1) on (0, t)

}
It follows from Lemma 3.1 that t∗ > 0. Now let v be a weak solution to the

Navier-Stokes system as in Theorem 1.1. Due to the uniqueness property (thus the
energy inequality is required!), it coincides with the strong solution from Lemma
3.1 on any compact subinterval of [0, t∗). There are two possibilities. Either t∗ = ∞
and we have the global-in-time regular solution, or t∗ < ∞. We will exclude the
latter by showing that vr satisfies on (0, t∗) the assumptions of Lemma 2.5. To this
aim we will essentially use both the information about the better regularity of one
velocity component and the fact that the solution is axisymmetric.

Now, let 0 < t̄ < t∗. Then on (0, t̄) (v, p) is in fact a strong solution to the
Navier-Stokes system. It is convenient to write the Navier-Stokes system in the
cylindrical coordinates for our purpose.

Thus vr, vϕ, vz and p satisfy in (0, t̄)× R3 the system

∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z
− 1
r
v2

ϕ +
∂p

∂r
− ν

[1
r

∂

∂r
(r
∂vr

∂r
) +

∂2vr

∂z2
− vr

r2

]
= 0

∂vϕ

∂t
+ vr

∂vϕ

∂r
+ vz

∂vϕ

∂z
+

1
r
vϕvr − ν

[1
r

∂

∂r
(r
∂vϕ

∂r
) +

∂2vϕ

∂z2
− vϕ

r2

]
= 0

∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z
+
∂p

∂z
− ν

[1
r

∂

∂r
(r
∂vz

∂r
) +

∂2vz

∂z2

]
= 0

∂vr

∂r
+
vr

r
+
∂vz

∂z
= 0 .

1It means that v is the weak solution and p is the corresponding pressure which can be easily
computed and, up to an additive constant, is uniquely determined.
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Moreover, the vorticity components satisfy, in (0, t̄)× R3,

∂ωr

∂t
+ vr

∂ωr

∂r
+ vz

∂ωr

∂z
− ∂vr

∂r
ωr −

∂vr

∂z
ωz − ν

[1
r

∂

∂r

(
r
∂ωr

∂r

)
+
∂2ωr

∂z2
− ωr

r2

]
= 0

∂ωϕ

∂t
+ vr

∂ωϕ

∂r
+ vz

∂ωϕ

∂z
− vr

r
ωϕ +

2
r
vϕωr − ν

[1
r

∂

∂r

(
r
∂ωϕ

∂r

)
+
∂2ωϕ

∂z2
− ωϕ

r2

]
= 0

∂ωz

∂t
+ vr

∂ωz

∂r
+ vz

∂ωz

∂z
− ∂vz

∂z
ωz −

∂vz

∂r
ωr − ν

[1
r

∂

∂r

(
r
∂ωz

∂r

)
+
∂2ωz

∂z2

]
= 0 .

The main idea of the proof of Theorem 1.1 is very similar to the idea presented in
[10]; we will namely combine the estimates of ωϕ in L∞,p with the estimates of ωϕ

r

in L∞,q with the idea to get an estimate for vr which is in the range 2
t + 3

s ≤ 1.
Let us take p ∈ (1, 2) and multiply the equation for ωϕ by ωϕ

|ωϕ|2−p and inte-
grate (with respect to the measure rdrdz). We get (in what follows,

∫
f denotes∫∞

−∞
∫∞
0
frdrdz)

1
p

d

dt
‖ωϕ‖p

p + ν

∫
|ωϕ|p

r2
+

4(p− 1)
p2

ν

∫
|∇|ωϕ|p/2|2

=
∫
vr

r
|ωϕ|p +

∫
2
r
vϕ
∂vϕ

∂z

ωϕ

|ωϕ|2−p
.

(3.1)

For details of the integration by parts, see [6]. Note that all terms are fi-
nite because ωϕ(t) ∈ L1 ∩ L2. Next, let us multiply the equation for ωϕ by
ψ(r)|ωϕ

r |
q−2 ωϕ

r
1

r1−δ , δ > 0 and ψ(r) a cut-off function equal to zero near r = 0.
Now we integrate the equality over R3 then pass first with ψ(r) to the identity
function and finally with δ to zero. Note that we cannot take directly δ = 0 as
some integrals cannot be controlled, cf. [6]. We get

1
q

d

dt

∥∥ωϕ

r

∥∥q

q
+

4(q − 1)
q2

ν

∫ ∣∣∣∇(∣∣ωϕ

r

∣∣q/2
)∣∣∣2 ≤ ∣∣∣ ∫

2
r
vϕ
∂vϕ

∂z

ωϕ

|ωϕ|2−q

1
rq

∣∣∣ . (3.2)

To prove Theorem 1.1 we sum (3.1) and (3.2) and estimate all terms on the
right-hand side with q = 5

6p. First we will estimate the term I1 =
∫

vr

r |ωϕ|p, where
we basically follow [10]. Using the Hölder inequality, the interpolations, the Sobolev
embedding inequality, Lemma 2.2 and the Young inequality we finally get

I1 ≤ δ
∥∥∇(

|ωϕ

r
|q/2

)∥∥2

2
+ C(δ)‖ωϕ‖22

(
‖ωϕ‖p

p +
∥∥ωϕ

r

∥∥q

q

)
with arbitrarily small positive δ. The first term can be included into the left-hand
side while the second term can be estimated later on, using the Gronwall inequality.

Next we want to estimate the other term on the right-hand side of (3.1), namely
I2. However, the term I2 =

∫
2
rvϕ

∂vϕ

∂z
ωϕ

|ωϕ|2−p can be estimated same way as the

term on the right-hand side of (3.2), I3 = |
∫

2
rvϕ

∂vϕ

∂z
ωϕ

|ωϕ|2−q
1
rq |. This is due to the

fact that main problems are near the z-axis and I2 is of lower order than I3. (Here
we also use the fact that vϕr ∈ L∞(QT ).) Choose ε > 0.

I3 ≤ 2
∫ ( |ωϕ|q−1

rX

)( |vϕ|α

rY

)∣∣∂vϕ

∂z

∣∣( |vϕ|1−α

rZ

)
,
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where

X = q + 1− 2
q
− ε, Y =

(1 + ε

2
+

1
q

)
(2− q), Z =

2
q

+ ε− Y, α = 2− q.

Using the Young inequality we get

I3 ≤ δ

∫
ωq

ϕ

r
qX
q−1

+ C(δ)
( ∫

|vϕ|2q

rq(1+ε)+2
+

∫ ∣∣ ∂
∂z

∣∣ vq
ϕ

r
q(1+ε)

2

∣∣∣∣2).
Since qX

q−1 = q + 2− ε q
q−1 , we can use Lemma 2.4 and

I3 ≤ δC(ε)
( ∫ ∣∣∇(

|ωϕ

r
|q/2

)∣∣2 +
∫
|ωϕ

r
|q

)
+ C(δ)

( ∫
|vϕ|2q

rq(1+ε)+2
+

∫
| ∂
∂z
|
vq

ϕ

r
q(1+ε)

2

||2
)
.

Taking sufficiently small δ we can include the first term to the left-hand side of
(3.2), the second term can be later estimated using the Gronwall inequality. We
have to deal with the last two terms on the right-hand side. Summing up the
estimates of I1 and I3,

d

dt

(
‖ωϕ‖p

p + ‖ωϕ

r
‖q

q

)
+

∫ ( |ωϕ|p

r2
+ |∇|ωϕ|p/2|2 + |∇(|ωϕ

r
|q/2)|2

)
≤ C

∫
|ωϕ

r
|q + C‖ωϕ‖22

(
‖ωϕ‖p

p + ‖ωϕ

r
‖q

q

)
+ C

( ∫
|vϕ|2q

rq(1+ε)+2
+

∫
|∇|

vq
ϕ

r
q(1+ε)

2

||2
)
.

(3.3)

To estimate the last two terms, we test the equation for vϕ by |vϕ|2q−2vϕ/r
q(1+ε).

We get

2
q

d

dt

∫
|vϕ|2q

rq(1+ε)
+

2q − 1
q2

ν

∫
|∇|

vq
ϕ

r
q(1+ε)

2

||2 +
(2q)2 − q2(1 + ε)2

(2q)2
ν

∫
|vϕ|2q

rq(1+ε)+2

= (−1− 1 + ε

2
)
∫

|vϕ|2q

rq(1+ε)

vr

r
,

i.e. together with (3.3),

d

dt

(
‖ωϕ‖p

p + ‖ωϕ

r
‖q

q +
∫

|vϕ|2q

rq(1+ε)

)
+

∫ ( |ωϕ|p

r2
+ |∇|ωϕ|p/2|2 + |∇(|ωϕ

r
|q/2)|2 + |∇|

vq
ϕ

r
q(1+ε)

2

||2 +
|vϕ|2q

rq(1+ε)+2

)
≤ C

∫
|ωϕ

r
|q + C

∫
|vϕ|2q

rq(1+ε)

|vr|
r

+ C‖ωϕ‖22
(
‖ωϕ‖p

p + ‖ωϕ

r
‖q

q

)
.

(3.4)

Denoting by I4 the second integral on the right-hand side, we have

I4 =
∫ ( |vr|

r1+k

)( |vϕ|2q

rq(1+ε)

)α( |vϕ|2q

rq(1+ε)+2

)β |vϕ|γ ,

where k ∈ [0, 1], γ = 5+k
3 , β = 5

12 (1−k)+ε 5+k
12 and α = 5k+7

12 − 5+k
5p −ε 5+k

12 . Recall
that q = 5

6p. Let 1 < a < 2
k . Hence

I4 ≤
∥∥ vr

r1+k

∥∥
a

∥∥ |vϕ|2q

rq(1+ε)

∥∥α

1

∥∥ |vϕ|2q

rq(1+ε)+2

∥∥β

1

∥∥vϕ

∥∥γ
γa

a(1−α−β)−1
. (3.5)
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Using Lemma 2.6 we get

‖ vr

r1+k
‖a ≤ C‖ωϕ

rk
‖a

and furthermore

‖ωϕ

rk
‖a ≤ ‖ωϕ‖1−k

a ‖ωϕ

r
‖k

a. (3.6)

Since k ∈ (0, 1], 1 < a < 2
k , under the assumption that p < a < 5

2p (which will be
verified later) we have

‖ωϕ‖a ≤ ‖ωϕ‖
3p−a
2a

p ‖ωϕ‖
3(a−p)

2a
3p , (3.7)

‖ωϕ

r
‖a ≤ ‖

ωϕ

r
‖

5p−2a
4a

q ‖ωϕ

r
‖

6a−5p
4a

3q , (3.8)

Using (3.6), (3.7) and (3.8), we get

I4 ≤ ‖ωϕ‖λ1
p ‖ωϕ‖λ2

3p‖
ωϕ

r
‖λ3

q ‖
ωϕ

r
‖λ4
3q‖

|vϕ|2q

rq(1+ε)
‖α
1 ‖

|vϕ|2q

rq(1+ε)+2
‖β
1‖vϕ‖γ

γa
a(1−α−β)−1

, (3.9)

where

λ1 =
3p− a

2a
(1− k), λ2 =

3(a− p)
2a

(1− k),

λ3 =
5p− 2a

4a
k, λ4 =

6a− 5p
4a

k.

Denote B = 10ap
10ap(1−β)+15p−15a−3ka . Then

I4 ≤ δ
(
‖ωϕ‖p

3p + ‖ωϕ

r
‖q
3q + ‖ |vϕ|2q

rq(1+ε)+2
‖1

)
+ C(δ)‖vϕ‖γB

γa
a(1−α−β)−1

‖ωϕ‖λ1B
p ‖ωϕ

r
‖λ3B

q ‖ |vϕ|2q

rq(1+ε)
‖αB
1

and consequently

I4 ≤ δC
(
‖∇(|ωϕ|p/2)‖22 + ‖∇(|ωϕ

r
|q/2)‖22 + ‖ |vϕ|2q

rq(1+ε)+2
‖1

)
+ C(δ)‖vϕ‖γB

γa
a(1−α−β)−1

(
‖ωϕ‖p

p + ‖ωϕ

r
‖q

q + ‖ |vϕ|2q

rq(1+ε)
‖1

)
.

Thus if vϕ ∈ Lt,s(ΩT ) with t = γB and s = γa
a(1−α−β)−1 we get, using the Gronwall

inequality(
‖ωϕ‖p

p + ‖ωϕ

r
‖q

q +
∫

|vϕ|2q

rq(1+ε)

)
(t)

+
∫ t

0

∫ ( |ωϕ|p

r2
+ |∇|ωϕ|p/2|2 + |∇(|ωϕ

r
|q/2)|2 + |∇|

vq
ϕ

r
q(1+ε)

2

||2 +
|vϕ|2q

rq(1+ε)+2

)
≤ C(v0).

(3.10)
Using this estimate we will be able to show vr ∈ L3,9(ΩT ). To this aim it is sufficient
to verify that ωϕ ∈ L∞, 3

2 and∇|ωϕ|
3
4 ∈ L2,2. Note that we cannot simply use (3.10)

with p = 3
2 , because our t and s imply that p is very close to 1.
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We will test the equation for ωϕ by |ωϕ|−1/2ωϕ. Then with (3.10) at disposal

2
3
d

dt
‖ωϕ‖

3
2
3
2

+ ν

∫
|ωϕ|

3
2

r2
+

8
9
ν

∫
|∇(|ωϕ|

3
4 )|2

≤
∣∣ ∫

vr

r
|ωϕ|

3
2
∣∣ +

∣∣ ∫
2
r
vϕ
∂vϕ

∂z
|ωϕ|−1/2ωϕ

∣∣
≡ I5 + I6

To estimate I5 recall that we know that there exists η0 > 0 such that ωϕ

r is bounded
in L∞,1+η and in L1+η,3(1+η) for 0 < η ≤ η0. Thus

I5 ≤ C‖ωϕ

r
‖3(1+η)‖vr‖ 3(1+η)

1+2η
‖ωϕ‖

1
2
3
2
≤ C‖ωϕ

r
‖3(1+η)‖ωϕ‖

3
2−

2η
1+η

3
2

‖vr‖
2η

1+η

2

and we can estimate I5 using the Gronwall inequality. Finally, to estimate I6 we
will use the fact that there exists η1 > 0 such that for 0 < η ≤ η1,

|vϕ|1+η

r
1+η
2 (1+ε)

∈ L∞,2

and its gradient is bounded in L2,2. In fact we will use the same information for
| vϕ

r
1
2
|1+η, but this information is weaker since the main problems are near the axis

(recall that due to Lemma 2.3 vϕr ∈ L∞(ΩT )).

I6 =
∣∣ ∫

2
r
vϕ
∂vϕ

∂z
|ωϕ|−1/2ωϕ

∣∣
≤ C

∣∣ ∫
|ωϕ|

1
2 (
vϕ√
r
)1−η ∂

∂z
(
vϕ√
r
)1+η

∣∣
≤ C‖ωϕ‖

1
2
3
2
‖( vϕ√

r
)6(1−η)‖

1
6
1 ‖∇|

vϕ√
r
|1+η‖2

= C‖ωϕ‖
1
2
3
2
‖( vϕ√

r
)1+η‖

r
6
r ‖∇|

vϕ√
r
|1+η‖2,

where r = 6 1−η
1+η < 6. Thus I6 can be again estimated by means of the Gronwall

inequality.
Since

s =
γa

a(1− α− β)− 1
=

10apγ
6aγ − 10p

,

t = γB =
10apγ

10ap(1− β) + 15p− 15a− 3ka
,

γ =
5 + k

3
,

we compute
2
t

+
6
s

=
7 + 5k

2(5 + k)
+

9
5p
− 9
a(5 + k)

− ε

2
.

Now, using that a < 2
k , ε > 0, we get

2
t

+
6
s
<

7− 4k
2(5 + k)

+
9
5p
.

Recall that α = 5k+7
12 − 5+k

5p − ε 5+k
12 needs to be greater than zero. This implies

p > 12
5

5+k
5k+7 . Using this we get

2
t

+
6
s
<

7− 4k
2(5 + k)

+
9
5p

<
7
4
. (3.11)
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Note that taking a sufficiently close to 2
k and p close to 12

5
5+k
5k+7 , we get 2

t + 6
s

arbitrarily close to 7
4 . Moreover we need 1

t ≥ 0. Thus

1
t

=
7 + 5k

4(5 + k)
+

9
2a(5 + k)

− 9
10p

− ε

4
≥ 0

and consequently p > 18
35

5+k
1+2k . The lowest s we get taking 1

t = 0 and α almost
equal to zero. Therefore we take

p =
12
5

5 + k

5k + 7
=

18
35

5 + k

1 + 2k
,

which implies k = 7
13 , p = 48

35 and s = 24
7 +ε for arbitrarily small ε. Note that since

k ∈ ( 7
13 , 1) and p ∈ ( 6

5 ,
48
35 ), taking a close to 2

k , we indeed have p < a < 5
2p. The

theorem is proved.
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