Electronic Journal of Differential Equations, Vol. 2007(2007), No. 09, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO HIGHER-ORDER MIXED DIFFERENCE EQUATIONS

QIAOLUAN LI, HAIYAN LIANG, WENLEI DONG, ZHENGUO ZHANG

ABSTRACT. In this paper, we consider the higher order neutral nonlinear difference equation

$$\begin{split} \Delta^m(x(n) + p(n)x(\tau(n))) + f_1(n, x(\sigma_1(n))) - f_2(n, x(\sigma_2(n))) &= 0, \\ \Delta^m(x(n) + p(n)x(\tau(n))) + f_1(n, x(\sigma_1(n))) - f_2(n, x(\sigma_2(n))) &= g(n), \\ \Delta^m(x(n) + p(n)x(\tau(n))) + \sum_{i=1}^l b_i(n)x(\sigma_i(n)) &= 0. \end{split}$$

We obtain sufficient conditions for the existence of non-oscillatory solutions.

1. INTRODUCTION

Consider the difference equations

$$\Delta^{m}(x(n) + p(n)x(\tau(n))) + f_{1}(n, x(\sigma_{1}(n))) - f_{2}(n, x(\sigma_{2}(n))) = 0, \qquad (1.1)$$

$$\Delta^m(x(n) + p(n)x(\tau(n))) + f_1(n, x(\sigma_1(n))) - f_2(n, x(\sigma_2(n))) = g(n), \qquad (1.2)$$

$$\Delta^{m}(x(n) + p(n)x(\tau(n))) + \sum_{i=1}^{l} b_{i}(n)x(\sigma_{i}(n)) = 0, \qquad (1.3)$$

for $n \ge n_0$, where $\tau(n), \sigma_i(n)$ are sequences of positive integers with $\tau(n) \le n$, $\lim_{n\to\infty} \tau(n) = \infty$, $\lim_{n\to\infty} \sigma_i(n) = \infty$, i = 1, 2, ..., l. Also where $p(n), g(n), b_j(n)$, j = 1, 2, ..., l are sequences of real numbers, $f_i(n, x), i = 1, 2$ are continuous and nondecreasing for $x, f_1(n, x)f_2(n, x) > 0$. There exists $b \ne 0$ such that

$$\sum_{s=n}^{\infty} (s-n)^{(m-1)} |f_i(s,b)| < \infty, \quad i = 1, 2,$$
(1.4)

$$\sum_{s=n}^{\infty} (s-n)^{(m-1)} |g(s)| < \infty, \tag{1.5}$$

$$\sum_{s=n}^{\infty} (s-n)^{(m-1)} |b_j(s)| < \infty.$$
(1.6)

Key words and phrases. Nonoscillatory; existence; neutral equation.

²⁰⁰⁰ Mathematics Subject Classification. 39A05, 39A10.

^{©2007} Texas State University - San Marcos.

Submitted April 30, 2006. Published January 2, 2007.

Supported by the Natural Science Foundation of Hebei Province and by the

Main Foundation of Hebei Normal University.

Recently, there has been an increasing interest in the study of existence and oscillation of solutions to differential and difference equations. The papers [2, 5, 8, 9] discussed the existence of non-oscillatory solutions of differential equations. The papers [6, 7] discussed the oscillation of difference equations. But there are relatively few which guarantee the existence of non-oscillatory solutions of difference equations, see [3, 4].

This paper is motivated by the recent paper [10], where the authors gave sufficient conditions for the existence of non-oscillatory solutions of some first-order neutral delay differential equations. The purpose of this paper is to present some new criteria for the existence of non-oscillatory solution of (1.1)-(1.3).

A solution of (1.1) ((1.2) (1.3)) is said to be oscillatory if it has arbitrarily large zeros; otherwise it is said to be non-oscillatory.

2. Main Results

To obtain our main results, we need the following lemma.

Lemma 2.1 ([1]). Let K be a closed bounded and convex subset of l^{∞} , the Banach space consisting of all bounded real sequences. Suppose Γ is a continuous map such that $\Gamma(K) \subset K$, and suppose further that $\Gamma(K)$ is uniformly Cauchy. Then Γ has a fixed point in K.

In the sequel, without loss of generality, we assume that $f_i(n, x) > 0$, i = 1, 2and (1.4) holds for b > 0.

Theorem 2.2. Assume that $0 \le p(n) \le p < 1$, (1.4) holds, then (1.1) has a bounded non-oscillatory solution which is bounded away from zero.

Proof. Choose $N > n_0$, such that

$$N_0 := \min\{\inf_{n \ge N} \{\tau(n)\}, \inf_{n \ge N} \{\sigma_1(n)\}, \inf_{n \ge N} \{\sigma_2(n)\}\} \ge n_0.$$

Let *BC* be the collection of bounded real sequence in Banach space l^{∞} and $||x(n)|| = \sup_{n \ge N} |x(n)|$. Define a set $\Omega \subset BC$ as follows:

$$\Omega = \{ x(n) \in BC, \ 0 < M_1 \le x(n) \le M_2 < b, n \ge n_0 \},\$$

where $M_1 < (1-p)M_2$. Then Ω is a closed bounded and convex subset of BC. Set $c = \min\{M_2 - \alpha, \alpha - pM_2 - M_1\}$, where $pM_2 + M_1 < \alpha < M_2$. From (1.4), we get that there exists $N_1 > N$, such that for $n > N_1$,

$$\sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} f_i(s,b) \le c, \quad i=1,2.$$

Define two maps Γ_1 and Γ_2 on Ω as follows:

$$(\Gamma_1 x)(n) = \begin{cases} \alpha - p(n)x(\tau(n)), & n \ge N_1, \\ (\Gamma_1 x)(N_1), & N_0 \le n \le N_1 \end{cases}$$
$$(\Gamma_2 x)(n) = \begin{cases} \frac{(-1)^{m-1}}{(m-1)!} \sum_{s=n}^{\infty} (s-n+1)^{(m-1)} \\ \times [f_1(s, x(\sigma_1(s))) - f_2(s, x(\sigma_1(s)))], & n \ge N_1 \\ (\Gamma_2 x)(N_1), & N_0 \le n \le N_1 \end{cases}$$

EJDE-2007/09

For any $x, y \in \Omega$, we have

$$(\Gamma_1 x)(n) + (\Gamma_2 y)(n) \le \alpha + c \le M_2,$$

$$(\Gamma_1 x)(n) + (\Gamma_2 y)(n) \ge \alpha - pM_2 - c \ge M_1.$$

That is $\Gamma_1 x + \Gamma_2 y \in \Omega$. Since $0 \leq p(n) \leq p < 1$, it is easy to check that Γ_1 is a contraction mapping.

Now we show that Γ_2 is continuous. For any $\varepsilon > 0$, we can choose $n_2 > N_1$, such that

$$\sum_{s=n_2}^{\infty} \frac{(s-n_0+1)^{(m-1)}}{(m-1)!} f_i(s,b) < \varepsilon, \quad i=1,2.$$

Let $\{x_k(n)\}$ be a sequence in Ω , such that $\lim_{k\to\infty} ||x_k - x|| = 0$. Since Ω is a closed set, we get that $x \in \Omega$ and

$$\begin{aligned} |(\Gamma_2 x_k)(n) - (\Gamma_2 x)(n)| \\ &\leq |\sum_{s=n}^{n_2-1} \frac{(s-n+1)^{(m-1)}}{(m-1)!} (f_1(s, x_k(\sigma_1(s))) - f_1(s, x(\sigma_1(s))))| \\ &+ |\sum_{s=n}^{n_2-1} \frac{(s-n+1)^{(m-1)}}{(m-1)!} (f_2(s, x_k(\sigma_2(s))) - f_2(s, x(\sigma_2(s))))| + 4\varepsilon. \end{aligned}$$

Since f_i is continuous for x, we get that $\lim_{k\to\infty} \|\Gamma_2 x_k - \Gamma_2 x\| = 0$. We also know that Γ_2 is uniformly bounded and for for all $\varepsilon > 0$, there exists N_2 such that for $m_1 > m_2 \ge N_2$ and for all $x(n) \in \Omega$,

$$\begin{aligned} |\Gamma_2 x(m_1) - \Gamma_2 x(m_2)| \\ &\leq \sum_{s=m_2}^{m_1-1} \frac{(s-n_0+1)^{(m-1)}}{(m-1)!} |f_1(s, x(\sigma_1(s))) - f_2(s, x(\sigma_2(s)))| \leq \varepsilon. \end{aligned}$$

From the discrete Krasnoselskii's fixed point theorem, there exists $x \in \Omega$, such that $x = \Gamma x$, i.e.

$$\begin{aligned} x(n) &= \alpha - p(n)x(\tau(n)) \\ &+ (-1)^{m-1} \sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} \Big(f_1(s, x(\sigma_1(s))) - f_2(s, x(\sigma_2(s))) \Big). \end{aligned}$$

Note that x(n) is a bounded non-oscillatory solution of (1.1) which is bounded away from zero.

Theorem 2.3. Assume that $1 < p_1 \leq p(n) \leq p_2$, (1.4) holds, $\tau(n)$ is strictly increasing, then (1.1) has a bounded non-oscillatory solution which is bounded away from zero.

Proof. We choose $N_1 > n_0$, such that

$$N_0 = \min\{\tau(N_1), \inf_{n \ge N_1}\{\sigma_1(n)\}, \inf_{n \ge N_1}\{\sigma_2(n)\}\} \ge n_0.$$

Let *BC* be the collection of bounded real sequences in the Banach space l^{∞} and $||x(n)|| = \sup_{n \ge N_1} |x(n)|$. Define a set $X \subset BC$ as follows:

$$X = \{x(n) \in BC : \Delta x(n) \le 0, 0 < M_1 \le x(n) \le p_1 M_1 < b \text{ for } n \ge N_1 \\ x_{(n)} = x_{(N_1)} \text{ for } N_0 \le n \le N_1 \}$$

Then X is a closed bounded and convex subset of BC.

Let $c = \min\{\alpha - M_1, p_1M_1 - \alpha\}$, where $M_1 < \alpha < p_1M_1$. We choose $N \ge N_1$, such that for $n \ge N$,

$$\sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} f_i(s,b) \le c.$$

For $x \in X$, define

$$\psi(n) = \begin{cases} \sum_{i=1}^{\infty} \frac{(-1)^{i-1} x(\tau^{-i}(n))}{H_i(\tau^{-i}(n))}, & n \ge N \\ \psi(N), & N_0 \le n \le N \end{cases}$$

where $\tau^0(n) = n$, $\tau^i(n) = \tau(\tau^{i-1}(n))$, $\tau^{-i}(n) = \tau^{-1}(\tau^{-(i-1)}(n))$, $H_0(n) = 1$, $H_i(n) = \prod_{j=0}^{i-1} p(\tau^j(n))$, $i = 1, 2, \dots$ From $M_1 \leq x(n) \leq p_1 M_1$, we know $0 < \psi(n) \leq p_1 M_1$, $n \geq N$.

Define a mapping Γ on X as follows

$$\Gamma x(n) = \begin{cases} \alpha + (-1)^{m-1} \sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} \\ \times [f_1(s, \psi(\sigma_1(s))) - f_2(s, \psi(\sigma_2(s)))], & n \ge N \\ \Gamma x(N), & N_0 \le n \le N \end{cases}$$

Note that Γ satisfies the following three conditions:

- (a) $\Gamma(X) \subseteq X$. In fact, for any $x \in X$, $\Gamma x(n) \ge \alpha c \ge M_1$, $\Gamma x(n) \le \alpha + c \le p_1 M_1$.
- (b) Γ is continuous. Let $\{x_k(n)\}$ be a sequence in X, such that $\lim_{k\to\infty} ||x_k x|| = 0$. Since X is a closed set, we know $x \in X$. For any $\varepsilon > 0$, we can choose $n_2 > N$, such that

$$\sum_{s=n_2}^{\infty} \frac{(s-n_0+1)^{(m-1)}}{(m-1)!} f_i(s,b) < \varepsilon, \quad i=1,2.$$

$$\begin{aligned} |\Gamma x_k(n) - \Gamma x(n)| \\ &\leq \sum_{s=n}^{n_2 - 1} \frac{(s - n + 1)^{(m-1)}}{(m-1)!} \sum_{i=1}^2 |f_i(s, \psi_k(\sigma_i(s))) - f_i(s, \psi(\sigma_i(s)))| + 4\varepsilon. \end{aligned}$$

So $\lim_{k\to\infty} \|\Gamma x_k - \Gamma x\| = 0.$

(c) ΓX is uniformly Cauchy. For all $\varepsilon > 0$, there exists n_3 such that for $m_1 > m_2 \ge n_3$ and for all $x(n) \in X$,

$$\begin{aligned} |\Gamma x(m_1) - \Gamma x(m_2)| \\ &\leq \sum_{s=m_2}^{m_1-1} \frac{(s-n_0+1)^{(m-1)}}{(m-1)!} |f_1(s,\psi(\sigma_1(s))) - f_2(s,\psi(\sigma_2(s)))| \leq \varepsilon. \end{aligned}$$

This shows that ΓX is uniformly Cauchy.

From Lemma 2.1, there exists $x \in X$, such that $x = \Gamma x$, i.e.

$$x(n) = \alpha + (-1)^{m-1} \sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} [f_1(s,\psi(\sigma_1(s))) - f_2(s,\psi(\sigma_2(s)))],$$

EJDE-2007/09

for $n \ge N$. Since $\psi(n) + p(n)\psi(\tau(n)) = x(n)$, we obtain

$$\psi(n) + p(n)\psi(\tau(n))$$

= $\alpha + (-1)^{m-1} \sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} [f_1(s,\psi(\sigma_1(s))) - f_2(s,\psi(\sigma_2(s)))].$

So $\psi(n)$ satisfies (1.1) for $n \ge N$, and $\frac{p_1-1}{p_1p_2}x(\tau^{-1}(n)) \le \psi(n) \le x(n)$. \Box

Theorem 2.4. Assume that -1 , and (1.4) holds. Then (1.1) has a bounded non-oscillatory solution which is bounded away from zero.

Proof. Let *BC* be the set of bounded real sequence in the Banach space l^{∞} and $||x(n)|| = \sup_{n \ge n_0} |x(n)|$. We choose M_1, M_2, α such that $0 < M_1 < \alpha < (1+p)M_2$. Define $\Omega = \{x \in BC, M_1 \le x(n) \le M_2, n \ge n_0\}$. Let $c = \min\{\alpha - M_1, M_2 - \alpha\}$, from (1.4) we get that there exists N such that for $n \ge N$,

$$\frac{1}{(m-1)!} \sum_{s=n}^{\infty} (s-n_0+1)^{(m-1)} f_i(s,b) \le c, \quad i=1,2.$$

For $x \in \Omega$, define:

$$\varphi(n) = \begin{cases} \sum_{i=0}^{k_n - 1} (-1)^i p_n^{(i)} x(\tau_n^{(i)}) + (-1)^{k_n} p_n^{(k_n)} \frac{x_N}{1 + p_N}, & n \ge N \\ \frac{x_N}{1 + p_N}, & n_0 \le n \le N \end{cases}$$

where we take k_n such that $n_0 \leq \tau_n^{(k_n)} \leq N$, $\tau_n^{(0)} = n$, $\tau_n^{(1)} = \tau_n$, $\tau_n^{(2)} = \tau_{\tau_n}, \ldots, \tau_n^{(k)} = \tau_{\tau_n^{(k-1)}}, p_n^{(0)} = 1, p_n^{(1)} = p_n, \ldots, p_n^{(s)} = p_n p_{\tau_n} \ldots p_{\tau_n^{(s-1)}}$. It is easy to prove that $x(n) = \varphi(n) + p(n)\varphi(\tau(n)), n \geq N$ and $M_1 \leq x(n) \leq \varphi(n) \leq \frac{M_2}{1+p}$. Define a mapping Γ on Ω as follows:

$$\Gamma x(n) = \begin{cases} \alpha + \sum_{s=n}^{\infty} \frac{(-1)^{m-1} (s-n+1)^{(m-1)}}{(m-1)!} \\ \times [f_1(s, x(\sigma_1(s))) - f_2(s, x(\sigma_2(s)))], & n \ge N \\ \Gamma x(N), & N_0 \le n \le N \end{cases}$$

For any $x \in \Omega$, $M_1 \leq \alpha - c \leq \Gamma x(n) \leq \alpha + c \leq M_2$, we get $\Gamma \Omega \subseteq \Omega$. Similar to the proof of Theorem 2.2, we can obtain Γ is continuous and uniformly Cauchy. So there exists $x \in \Omega$ such that $x = \Gamma x$. The proof is complete.

Theorem 2.5. Assume that $p_1 \leq p(n) \leq p_2 < -1$, and (1.4) holds. Then (1.1) has a bounded non-oscillatory solution which is bounded away from zero.

Proof. We choose positive constants M_1, M_2, α such that $-p_1M_1 < \alpha < (-p_2 - 1)M_2$. Let $\Omega = \{x \in BC, M_1 \leq x(n) \leq M_2, n \geq n_0\}, c = \min\{\frac{(\alpha + M_1p_1)p_2}{p_1}, (-p_2 - 1)M_2 - \alpha\}$. Choosing N sufficiently large such that for $n \geq N$,

$$\frac{1}{(m-1)!}\sum_{s=n}^{\infty} (s-n+1)^{(m-1)} f_i(s,b) \le c, \quad i=1,2.$$

Define two maps Γ_1 , Γ_2 on Ω as follows:

$$\Gamma_{1}x(n) = \begin{cases} -\frac{\alpha}{p(\tau^{-1}(n))} - \frac{x(\tau^{-1}(n))}{p(\tau^{-1}(n))}, & n \ge N\\ \Gamma_{1}x(N), & n_{0} \le n \le N \end{cases}$$
$$\Gamma_{2}x(n) = \begin{cases} \sum_{s=\tau^{-1}(n)}^{\infty} \frac{(-1)^{m-1}(s-\tau^{-1}(n)+1)^{(m-1)}}{(m-1)!p(\tau^{-1}(n))}\\ \times [f_{1}(s,x(\sigma_{1}(s))) - f_{2}(s,x(\sigma_{2}(s)))]], & n \ge N\\ \Gamma_{2}x(N), & N_{0} \le n \le N \end{cases}$$

For each $x, y \in \Omega$,

$$\Gamma_1 x(n) + \Gamma_2 y(n) \ge \frac{-\alpha}{p_1} + \frac{c}{p_2} \ge M_1, \quad \Gamma_1 x(n) + \Gamma_2 y(n) \le \frac{-\alpha}{p_2} - \frac{M_2}{p_2} - \frac{c}{p_2} \le M_2.$$

So that $\Gamma_1 x(n) + \Gamma_2 y(n) \in \Omega$. Since $p_1 \leq p(n) \leq p_2 \leq -1$, we get Γ_1 is a contraction mapping. We also can prove that Γ_2 is uniformly bounded and continuous. Further we know Γ_2 is uniformly Cauchy. So by discrete Krasnoselskii's fixed point theorem, there exists $x \in \Omega$ such that $\Gamma_1 x + \Gamma_2 x = x$. i.e.

$$x(n) = -\frac{\alpha}{p(\tau^{-1}(n))} - \frac{x(\tau^{-1}(n))}{p(\tau^{-1}(n))} + \frac{(-1)^{m-1}}{(m-1)!p(\tau^{-1}(n))} \times \sum_{s=\tau^{-1}(n)}^{\infty} (s - \tau^{-1}(n) + 1)^{(m-1)} [f_1(s, x(\sigma_1(s))) - f_2(s, x(\sigma_2(s)))].$$

The proof is complete.

Theorem 2.6. Assume that p(n) satisfies the conditions in one of Theorems 2.2–2.5, and (1.4), (1.5) hold. Then (1.2) has a bounded non-oscillatory solution which is bounded away from zero.

Proof. Set $g_+(n) = \max\{g(n), 0\}$, $g_-(n) = \max\{-g(n), 0\}$. Then $g(n) = g_+(n) - g_-(n)$. Also (1.2) can be written as

$$\Delta^m(x(n) + p(n)x(\tau(n))) + [f_1(n, x(\sigma_1(n))) + g_-(n)] - [f_2(n, x(\sigma_2(n))) + g_+(n)] = 0.$$

Let $F_1(n, x(\sigma_1(n))) = f_1(n, x(\sigma_1(n))) + g_-(n)$, $F_2(n, x(\sigma_2(n))) = f_2(n, x(\sigma_2(n))) + g_+(n)$. Similar to the proof of Theorems 2.2–2.5, we obtain the conclusion. \Box

Theorem 2.7. Assume that p(n) satisfies the conditions in one of the Theorems 2.2–2.5, and (1.6) holds. Then (1.3) has a bounded non-oscillatory solution which is bounded away from zero.

Proof. We prove only the case $0 \le p(n) \le p < 1$. Let BC be the set of bounded real sequence in the Banach space l^{∞} and $||x(n)|| = \sup_{n \ge n_0} |x(n)|$. We choose M_1, M_2, α such that $pM_2 + M_1 < \alpha < M_2$. Define $\Omega = \{x \in BC, M_1 \le x(n) \le M_2\}, c = \min\{\frac{\alpha - pM_2 - M_1}{lM_2}, \frac{M_2 - \alpha}{lM_2}\}$. N is sufficiently large such that for $n \ge N$

$$\frac{1}{(m-1)!} \sum_{s=n}^{\infty} (s-n+1)^{(m-1)} |b_i(s)| \le c, \quad i=1,2,\dots,l.$$

EJDE-2007/09

Define two maps Γ_1 , Γ_2 on Ω as follows

$$\Gamma_1 x(n) = \begin{cases} \alpha - p(n) x(\tau(n)), & n \ge N \\ \Gamma x_1(N), & n_0 \le n \le N, \end{cases}$$
$$\Gamma_2 x(n) = \begin{cases} (-1)^{m-1} \sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} \sum_{i=1}^l b_i(s) x(\sigma_i(s)), & n \ge N \\ \Gamma_2 x(N), & n_0 \le n \le N \end{cases}$$

For each $x, y \in \Omega$, $\Gamma_1 x(n) + \Gamma_2 y(n) \ge \alpha - pM_2 - lM_2 c \ge M_1$, $\Gamma_1 x(n) + \Gamma_2 y(n) \le \alpha + lM_2 c \le M_2$, that is $\Gamma_1 x(n) + \Gamma_2 y(n) \in \Omega$. Γ_1 is a contraction mapping and Γ_2 is continuous and uniformly Cauchy. So there exists $x \in \Omega$ such that $\Gamma_1 x + \Gamma_2 x = x$. The proof is complete.

References

- S. Z. Chen, L. Erbe; Oscillation Results for Second-Order Scalar and Matrix Difference Equations. Computers. Math. Applic. 28 (1-3)(1994), 55-70.
- [2] M. M. A. EL-Sheikh; Oscillation and nonoscillation criteria for second order nonlinear differential equations. J. Math. Anal. Appl. 179(1993), 14-27.
- [3] Yang Jun, Guan Xin Ping; Positive solution of a class of neutral delay difference equations. Acta Mathematic Sinica, Vol. 44, No.3 (2001), 409-416.
- [4] K. Y. Liu, Z. Q. Zhang; Existence of positive solutions in neutral differential and difference equations with delays. Acta Sci. Nat. Univ. Norm. Hunan, Vol. 21 (1998), 12-18.
- [5] A. Lomtatidze; Oscillation and nonoscillation criteria for second order linear differential equations. Georgian. Math. Journal, Vol. 4, No.2 (1997), 129-138.
- S. H. Saker; Oscillation of second order nonlinear delay difference equations. Bull. Korean. Math. Soc. 40(2003), No. 3, 489-501.
- [7] E. Thandapani, K. Ravi; Oscillation of second order half-linear difference equations. Applied Math. Letters, 13 (2000), 43-49.
- [8] E. Wahlén; Positive solutions of second order differential equations. Nonlinear Analysis, 58(2004), 359-366.
- X. J. Yang; Nonoscillation criteria for second order nonlinear differential equations. Appl. Math. Comp., 131 (2002), 125-131.
- [10] W. P. Zhang, W. Feng, J. R. Yan, J. S. Song; Existence of nonoscillatory solutions of firstorder linear neutral delay differential equaitons. Computers. Math. Applic., 49(2005), 1021-1027.

QIAOLUAN LI, HAIYAN LIANG, WENLEI DONG, ZHENGUO ZHANG COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE, HEBEI NORMAL UNIVERSITY, SHIJIAZHUANG, 050016. CHINA

E-mail address, Qiaoluan Li: ql171125@163.com *E-mail address*, Haiyan Liang: Liang730110@eyou.com

Zhenguo Zhang

INFORMATION COLLEGE, ZHEJIANG OCEAN UNIVERSITY, ZHOUSHAN, ZHEJIANG, 316000, CHINA E-mail address, Zhenguo Zhang: Zhangzhg@mail.hebtu.edu.cn