Electronic Journal of Differential Equations, Vol. 2007(2007), No. 09, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO HIGHER-ORDER MIXED DIFFERENCE EQUATIONS

QIAOLUAN LI, HAIYAN LIANG, WENLEI DONG, ZHENGUO ZHANG

$$
\begin{aligned}
& \text { AbSTRACT. In this paper, we consider the higher order neutral nonlinear dif- } \\
& \text { ference equation } \\
& \qquad \Delta^{m}(x(n)+p(n) x(\tau(n)))+f_{1}\left(n, x\left(\sigma_{1}(n)\right)\right)-f_{2}\left(n, x\left(\sigma_{2}(n)\right)\right)=0 \\
& \Delta^{m}(x(n)+p(n) x(\tau(n)))+f_{1}\left(n, x\left(\sigma_{1}(n)\right)\right)-f_{2}\left(n, x\left(\sigma_{2}(n)\right)\right)=g(n) \\
& \qquad \Delta^{m}(x(n)+p(n) x(\tau(n)))+\sum_{i=1}^{l} b_{i}(n) x\left(\sigma_{i}(n)\right)=0
\end{aligned}
$$

We obtain sufficient conditions for the existence of non-oscillatory solutions.

1. Introduction

Consider the difference equations

$$
\begin{gather*}
\Delta^{m}(x(n)+p(n) x(\tau(n)))+f_{1}\left(n, x\left(\sigma_{1}(n)\right)\right)-f_{2}\left(n, x\left(\sigma_{2}(n)\right)\right)=0 \tag{1.1}\\
\Delta^{m}(x(n)+p(n) x(\tau(n)))+f_{1}\left(n, x\left(\sigma_{1}(n)\right)\right)-f_{2}\left(n, x\left(\sigma_{2}(n)\right)\right)=g(n) \tag{1.2}\\
\Delta^{m}(x(n)+p(n) x(\tau(n)))+\sum_{i=1}^{l} b_{i}(n) x\left(\sigma_{i}(n)\right)=0 \tag{1.3}
\end{gather*}
$$

for $n \geq n_{0}$, where $\tau(n), \sigma_{i}(n)$ are sequences of positive integers with $\tau(n) \leq n$, $\lim _{n \rightarrow \infty} \tau(n)=\infty, \lim _{n \rightarrow \infty} \sigma_{i}(n)=\infty, i=1,2, \ldots, l$. Also where $p(n), g(n), b_{j}(n)$, $j=1,2, \ldots, l$ are sequences of real numbers, $f_{i}(n, x), i=1,2$ are continuous and nondecreasing for $x, f_{1}(n, x) f_{2}(n, x)>0$. There exists $b \neq 0$ such that

$$
\begin{gather*}
\sum_{s=n}^{\infty}(s-n)^{(m-1)}\left|f_{i}(s, b)\right|<\infty, \quad i=1,2, \tag{1.4}\\
\sum_{s=n}^{\infty}(s-n)^{(m-1)}|g(s)|<\infty \tag{1.5}\\
\sum_{s=n}^{\infty}(s-n)^{(m-1)}\left|b_{j}(s)\right|<\infty \tag{1.6}
\end{gather*}
$$

[^0]Recently, there has been an increasing interest in the study of existence and oscillation of solutions to differential and difference equations. The papers [2, 5, 8, 9] discussed the existence of non-oscillatory solutions of differential equations. The papers [6, 7] discussed the oscillation of difference equations. But there are relatively few which guarantee the existence of non-oscillatory solutions of difference equations, see [3, 4].

This paper is motivated by the recent paper 10, where the authors gave sufficient conditions for the existence of non-oscillatory solutions of some first-order neutral delay differential equations. The purpose of this paper is to present some new criteria for the existence of non-oscillatory solution of $\sqrt{1.1})-(1.3)$.

A solution of 1.1 ($1.2,(1.3)$ is said to be oscillatory if it has arbitrarily large zeros; otherwise it is said to be non-oscillatory.

2. Main Results

To obtain our main results, we need the following lemma.
Lemma 2.1 (1]). Let K be a closed bounded and convex subset of l^{∞}, the Banach space consisting of all bounded real sequences. Suppose Γ is a continuous map such that $\Gamma(K) \subset K$, and suppose further that $\Gamma(K)$ is uniformly Cauchy. Then Γ has a fixed point in K.

In the sequel, without loss of generality, we assume that $f_{i}(n, x)>0, i=1,2$ and (1.4) holds for $b>0$.

Theorem 2.2. Assume that $0 \leq p(n) \leq p<1$, 1.4 holds, then (1.1) has a bounded non-oscillatory solution which is bounded away from zero.

Proof. Choose $N>n_{0}$, such that

$$
N_{0}:=\min \left\{\inf _{n \geq N}\{\tau(n)\}, \inf _{n \geq N}\left\{\sigma_{1}(n)\right\}, \inf _{n \geq N}\left\{\sigma_{2}(n)\right\}\right\} \geq n_{0}
$$

Let $B C$ be the collection of bounded real sequence in Banach space l^{∞} and $\|x(n)\|=$ $\sup _{n \geq N}|x(n)|$. Define a set $\Omega \subset B C$ as follows:

$$
\Omega=\left\{x(n) \in B C, 0<M_{1} \leq x(n) \leq M_{2}<b, n \geq n_{0}\right\}
$$

where $M_{1}<(1-p) M_{2}$. Then Ω is a closed bounded and convex subset of $B C$. Set $c=\min \left\{M_{2}-\alpha, \alpha-p M_{2}-M_{1}\right\}$, where $p M_{2}+M_{1}<\alpha<M_{2}$. From (1.4), we get that there exists $N_{1}>N$, such that for $n>N_{1}$,

$$
\sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} f_{i}(s, b) \leq c, \quad i=1,2 .
$$

Define two maps Γ_{1} and Γ_{2} on Ω as follows:

$$
\begin{gathered}
\left(\Gamma_{1} x\right)(n)= \begin{cases}\alpha-p(n) x(\tau(n)), & n \geq N_{1}, \\
\left(\Gamma_{1} x\right)\left(N_{1}\right), & N_{0} \leq n \leq N_{1}\end{cases} \\
\left(\Gamma_{2} x\right)(n)= \begin{cases}\frac{(-1)^{m-1}}{(m-1)!} \sum_{s=n}^{\infty}(s-n+1)^{(m-1)} \\
\times\left[f_{1}\left(s, x\left(\sigma_{1}(s)\right)\right)-f_{2}\left(s, x\left(\sigma_{1}(s)\right)\right)\right], & n \geq N_{1} \\
\left(\Gamma_{2} x\right)\left(N_{1}\right), & N_{0} \leq n \leq N_{1}\end{cases}
\end{gathered}
$$

For any $x, y \in \Omega$, we have

$$
\begin{gathered}
\left(\Gamma_{1} x\right)(n)+\left(\Gamma_{2} y\right)(n) \leq \alpha+c \leq M_{2} \\
\left(\Gamma_{1} x\right)(n)+\left(\Gamma_{2} y\right)(n) \geq \alpha-p M_{2}-c \geq M_{1}
\end{gathered}
$$

That is $\Gamma_{1} x+\Gamma_{2} y \in \Omega$. Since $0 \leq p(n) \leq p<1$, it is easy to check that Γ_{1} is a contraction mapping.

Now we show that Γ_{2} is continuous. For any $\varepsilon>0$, we can choose $n_{2}>N_{1}$, such that

$$
\sum_{s=n_{2}}^{\infty} \frac{\left(s-n_{0}+1\right)^{(m-1)}}{(m-1)!} f_{i}(s, b)<\varepsilon, \quad i=1,2 .
$$

Let $\left\{x_{k}(n)\right\}$ be a sequence in Ω, such that $\lim _{k \rightarrow \infty}\left\|x_{k}-x\right\|=0$. Since Ω is a closed set, we get that $x \in \Omega$ and

$$
\begin{aligned}
& \left|\left(\Gamma_{2} x_{k}\right)(n)-\left(\Gamma_{2} x\right)(n)\right| \\
& \leq\left|\sum_{s=n}^{n_{2}-1} \frac{(s-n+1)^{(m-1)}}{(m-1)!}\left(f_{1}\left(s, x_{k}\left(\sigma_{1}(s)\right)\right)-f_{1}\left(s, x\left(\sigma_{1}(s)\right)\right)\right)\right| \\
& \quad+\left|\sum_{s=n}^{n_{2}-1} \frac{(s-n+1)^{(m-1)}}{(m-1)!}\left(f_{2}\left(s, x_{k}\left(\sigma_{2}(s)\right)\right)-f_{2}\left(s, x\left(\sigma_{2}(s)\right)\right)\right)\right|+4 \varepsilon .
\end{aligned}
$$

Since f_{i} is continuous for x, we get that $\lim _{k \rightarrow \infty}\left\|\Gamma_{2} x_{k}-\Gamma_{2} x\right\|=0$. We also know that Γ_{2} is uniformly bounded and for for all $\varepsilon>0$, there exists N_{2} such that for $m_{1}>m_{2} \geq N_{2}$ and for all $x(n) \in \Omega$,

$$
\begin{aligned}
& \left|\Gamma_{2} x\left(m_{1}\right)-\Gamma_{2} x\left(m_{2}\right)\right| \\
& \leq \sum_{s=m_{2}}^{m_{1}-1} \frac{\left(s-n_{0}+1\right)^{(m-1)}}{(m-1)!}\left|f_{1}\left(s, x\left(\sigma_{1}(s)\right)\right)-f_{2}\left(s, x\left(\sigma_{2}(s)\right)\right)\right| \leq \varepsilon
\end{aligned}
$$

From the discrete Krasnoselskii's fixed point theorem, there exists $x \in \Omega$, such that $x=\Gamma x$, i.e.

$$
\begin{aligned}
x(n)= & \alpha-p(n) x(\tau(n)) \\
& +(-1)^{m-1} \sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!}\left(f_{1}\left(s, x\left(\sigma_{1}(s)\right)\right)-f_{2}\left(s, x\left(\sigma_{2}(s)\right)\right)\right) .
\end{aligned}
$$

Note that $x(n)$ is a bounded non-oscillatory solution of 1.1) which is bounded away from zero.

Theorem 2.3. Assume that $1<p_{1} \leq p(n) \leq p_{2}$, 1.4 holds, $\tau(n)$ is strictly increasing, then 1.1) has a bounded non-oscillatory solution which is bounded away from zero.

Proof. We choose $N_{1}>n_{0}$, such that

$$
N_{0}=\min \left\{\tau\left(N_{1}\right), \inf _{n \geq N_{1}}\left\{\sigma_{1}(n)\right\}, \inf _{n \geq N_{1}}\left\{\sigma_{2}(n)\right\}\right\} \geq n_{0}
$$

Let $B C$ be the collection of bounded real sequences in the Banach space l^{∞} and $\|x(n)\|=\sup _{n \geq N_{1}}|x(n)|$. Define a set $X \subset B C$ as follows:

$$
\begin{aligned}
X= & \left\{x(n) \in B C: \Delta x(n) \leq 0,0<M_{1} \leq x(n) \leq p_{1} M_{1}<b \text { for } n \geq N_{1}\right. \\
& \left.x_{(n)}=x_{\left(N_{1}\right)} \text { for } N_{0} \leq n \leq N_{1}\right\}
\end{aligned}
$$

Then X is a closed bounded and convex subset of $B C$.
Let $c=\min \left\{\alpha-M_{1}, p_{1} M_{1}-\alpha\right\}$, where $M_{1}<\alpha<p_{1} M_{1}$. We choose $N \geq N_{1}$, such that for $n \geq N$,

$$
\sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} f_{i}(s, b) \leq c
$$

For $x \in X$, define

$$
\psi(n)= \begin{cases}\sum_{i=1}^{\infty} \frac{(-1)^{i-1} x\left(\tau^{-i}(n)\right)}{H_{i}\left(\tau^{-i}(n)\right)}, & n \geq N \\ \psi(N), & N_{0} \leq n \leq N\end{cases}
$$

where $\tau^{0}(n)=n, \tau^{i}(n)=\tau\left(\tau^{i-1}(n)\right), \tau^{-i}(n)=\tau^{-1}\left(\tau^{-(i-1)}(n)\right), H_{0}(n)=1$, $H_{i}(n)=\prod_{j=0}^{i-1} p\left(\tau^{j}(n)\right), i=1,2, \ldots$.From $M_{1} \leq x(n) \leq p_{1} M_{1}$, we know $0<$ $\psi(n) \leq p_{1} M_{1}, n \geq N$.

Define a mapping Γ on X as follows

$$
\Gamma x(n)= \begin{cases}\alpha+(-1)^{m-1} \sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} & \\ \times\left[f_{1}\left(s, \psi\left(\sigma_{1}(s)\right)\right)-f_{2}\left(s, \psi\left(\sigma_{2}(s)\right)\right)\right], & n \geq N \\ \Gamma x(N), & N_{0} \leq n \leq N\end{cases}
$$

Note that Γ satisfies the following three conditions:
(a) $\Gamma(X) \subseteq X$. In fact, for any $x \in X, \Gamma x(n) \geq \alpha-c \geq M_{1}, \Gamma x(n) \leq \alpha+c \leq$ $p_{1} M_{1}$.
(b) Γ is continuous. Let $\left\{x_{k}(n)\right\}$ be a sequence in X, such that $\lim _{k \rightarrow \infty} \| x_{k}-$ $x \|=0$. Since X is a closed set, we know $x \in X$. For any $\varepsilon>0$, we can choose $n_{2}>N$, such that

$$
\sum_{s=n_{2}}^{\infty} \frac{\left(s-n_{0}+1\right)^{(m-1)}}{(m-1)!} f_{i}(s, b)<\varepsilon, \quad i=1,2
$$

$$
\begin{aligned}
& \left|\Gamma x_{k}(n)-\Gamma x(n)\right| \\
& \leq \sum_{s=n}^{n_{2}-1} \frac{(s-n+1)^{(m-1)}}{(m-1)!} \sum_{i=1}^{2}\left|f_{i}\left(s, \psi_{k}\left(\sigma_{i}(s)\right)\right)-f_{i}\left(s, \psi\left(\sigma_{i}(s)\right)\right)\right|+4 \varepsilon
\end{aligned}
$$

So $\lim _{k \rightarrow \infty}\left\|\Gamma x_{k}-\Gamma x\right\|=0$.
(c) ΓX is uniformly Cauchy. For all $\varepsilon>0$, there exists n_{3} such that for $m_{1}>m_{2} \geq n_{3}$ and for all $x(n) \in X$,

$$
\begin{aligned}
& \left|\Gamma x\left(m_{1}\right)-\Gamma x\left(m_{2}\right)\right| \\
& \leq \sum_{s=m_{2}}^{m_{1}-1} \frac{\left(s-n_{0}+1\right)^{(m-1)}}{(m-1)!}\left|f_{1}\left(s, \psi\left(\sigma_{1}(s)\right)\right)-f_{2}\left(s, \psi\left(\sigma_{2}(s)\right)\right)\right| \leq \varepsilon
\end{aligned}
$$

This shows that ΓX is uniformly Cauchy.
From Lemma 2.1, there exists $x \in X$, such that $x=\Gamma x$, i.e.

$$
x(n)=\alpha+(-1)^{m-1} \sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!}\left[f_{1}\left(s, \psi\left(\sigma_{1}(s)\right)\right)-f_{2}\left(s, \psi\left(\sigma_{2}(s)\right)\right)\right],
$$

for $n \geq N$. Since $\psi(n)+p(n) \psi(\tau(n))=x(n)$, we obtain

$$
\begin{aligned}
& \psi(n)+p(n) \psi(\tau(n)) \\
& =\alpha+(-1)^{m-1} \sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!}\left[f_{1}\left(s, \psi\left(\sigma_{1}(s)\right)\right)-f_{2}\left(s, \psi\left(\sigma_{2}(s)\right)\right)\right]
\end{aligned}
$$

So $\psi(n)$ satisfies (1.1) for $n \geq N$, and $\frac{p_{1}-1}{p_{1} p_{2}} x\left(\tau^{-1}(n)\right) \leq \psi(n) \leq x(n)$.

Theorem 2.4. Assume that $-1<p \leq p(n) \leq 0$, and (1.4) holds. Then (1.1) has a bounded non-oscillatory solution which is bounded away from zero.

Proof. Let $B C$ be the set of bounded real sequence in the Banach space l^{∞} and $\|x(n)\|=\sup _{n \geq n_{0}}|x(n)|$. We choose M_{1}, M_{2}, α such that $0<M_{1}<\alpha<(1+p) M_{2}$. Define $\Omega=\left\{x \in B C, M_{1} \leq x(n) \leq M_{2}, n \geq n_{0}\right\}$. Let $c=\min \left\{\alpha-M_{1}, M_{2}-\alpha\right\}$, from (1.4) we get that there exists N such that for $n \geq N$,

$$
\frac{1}{(m-1)!} \sum_{s=n}^{\infty}\left(s-n_{0}+1\right)^{(m-1)} f_{i}(s, b) \leq c, \quad i=1,2 .
$$

For $x \in \Omega$, define:

$$
\varphi(n)= \begin{cases}\sum_{i=0}^{k_{n}-1}(-1)^{i} p_{n}^{(i)} x\left(\tau_{n}^{(i)}\right)+(-1)^{k_{n}} p_{n}^{\left(k_{n}\right)} \frac{x_{N}}{1+p_{N}}, & n \geq N \\ \frac{x_{N}}{1+p_{N}}, & n_{0} \leq n \leq N\end{cases}
$$

where we take k_{n} such that $n_{0} \leq \tau_{n}^{\left(k_{n}\right)} \leq N, \tau_{n}^{(0)}=n, \tau_{n}^{(1)}=\tau_{n}, \tau_{n}^{(2)}=$ $\tau_{\tau_{n}}, \ldots, \tau_{n}^{(k)}=\tau_{\tau_{n}^{(k-1)}}, p_{n}^{(0)}=1, p_{n}^{(1)}=p_{n}, \ldots, p_{n}^{(s)}=p_{n} p_{\tau_{n}} \ldots p_{\tau_{n}^{(s-1)}}$. It is easy to prove that $x(n)=\varphi(n)+p(n) \varphi(\tau(n)), n \geq N$ and $M_{1} \leq x(n) \leq \varphi(n) \leq \frac{M_{2}}{1+p}$. Define a mapping Γ on Ω as follows:

$$
\Gamma x(n)= \begin{cases}\alpha+\sum_{s=n}^{\infty} \frac{(-1)^{m-1}(s-n+1)^{(m-1)}}{(m-1)!} & \\ \times\left[f_{1}\left(s, x\left(\sigma_{1}(s)\right)\right)-f_{2}\left(s, x\left(\sigma_{2}(s)\right)\right)\right], & n \geq N \\ \Gamma x(N), & N_{0} \leq n \leq N\end{cases}
$$

For any $x \in \Omega, M_{1} \leq \alpha-c \leq \Gamma x(n) \leq \alpha+c \leq M_{2}$, we get $\Gamma \Omega \subseteq \Omega$. Similar to the proof of Theorem 2.2 , we can obtain Γ is continuous and uniformly Cauchy. So there exists $x \in \Omega$ such that $x=\Gamma x$. The proof is complete.

Theorem 2.5. Assume that $p_{1} \leq p(n) \leq p_{2}<-1$, and 1.4 holds. Then 1.1 has a bounded non-oscillatory solution which is bounded away from zero.

Proof. We choose positive constants M_{1}, M_{2}, α such that $-p_{1} M_{1}<\alpha<\left(-p_{2}-\right.$ 1) M_{2}. Let $\Omega=\left\{x \in B C, M_{1} \leq x(n) \leq M_{2}, n \geq n_{0}\right\}, c=\min \left\{\frac{\left(\alpha+M_{1} p_{1}\right) p_{2}}{p_{1}},\left(-p_{2}-\right.\right.$ 1) $\left.M_{2}-\alpha\right\}$. Choosing N sufficiently large such that for $n \geq N$,

$$
\frac{1}{(m-1)!} \sum_{s=n}^{\infty}(s-n+1)^{(m-1)} f_{i}(s, b) \leq c, \quad i=1,2 .
$$

Define two maps Γ_{1}, Γ_{2} on Ω as follows:

$$
\begin{gathered}
\Gamma_{1} x(n)= \begin{cases}-\frac{\alpha}{p\left(\tau^{-1}(n)\right)}-\frac{x\left(\tau^{-1}(n)\right)}{p\left(\tau^{-1}(n)\right)}, & n \geq N \\
\Gamma_{1} x(N), & n_{0} \leq n \leq N\end{cases} \\
\Gamma_{2} x(n)= \begin{cases}\sum_{s=\tau^{-1}(n)}^{\infty} \frac{(-1)^{m-1}\left(s-\tau^{-1}(n)+1\right)^{(m-1)}}{(m-1)!p\left(\tau^{-1}(n)\right)} \\
\times\left[f_{1}\left(s, x\left(\sigma_{1}(s)\right)\right)-f_{2}\left(s, x\left(\sigma_{2}(s)\right)\right)\right], & n \geq N \\
\Gamma_{2} x(N), & N_{0} \leq n \leq N\end{cases}
\end{gathered}
$$

For each $x, y \in \Omega$,

$$
\Gamma_{1} x(n)+\Gamma_{2} y(n) \geq \frac{-\alpha}{p_{1}}+\frac{c}{p_{2}} \geq M_{1}, \quad \Gamma_{1} x(n)+\Gamma_{2} y(n) \leq \frac{-\alpha}{p_{2}}-\frac{M_{2}}{p_{2}}-\frac{c}{p_{2}} \leq M_{2}
$$

So that $\Gamma_{1} x(n)+\Gamma_{2} y(n) \in \Omega$. Since $p_{1} \leq p(n) \leq p_{2} \leq-1$, we get Γ_{1} is a contraction mapping. We also can prove that Γ_{2} is uniformly bounded and continuous. Further we know Γ_{2} is uniformly Cauchy. So by discrete Krasnoselskii's fixed point theorem, there exists $x \in \Omega$ such that $\Gamma_{1} x+\Gamma_{2} x=x$. i.e.

$$
\begin{aligned}
x(n)= & -\frac{\alpha}{p\left(\tau^{-1}(n)\right)}-\frac{x\left(\tau^{-1}(n)\right)}{p\left(\tau^{-1}(n)\right)}+\frac{(-1)^{m-1}}{(m-1)!p\left(\tau^{-1}(n)\right)} \\
& \times \sum_{s=\tau^{-1}(n)}^{\infty}\left(s-\tau^{-1}(n)+1\right)^{(m-1)}\left[f_{1}\left(s, x\left(\sigma_{1}(s)\right)\right)-f_{2}\left(s, x\left(\sigma_{2}(s)\right)\right)\right]
\end{aligned}
$$

The proof is complete.

Theorem 2.6. Assume that $p(n)$ satisfies the conditions in one of Theorems 2.22.5, and (1.4), 1.5 hold. Then 1.2 has a bounded non-oscillatory solution which is bounded away from zero.

Proof. Set $g_{+}(n)=\max \{g(n), 0\}, g_{-}(n)=\max \{-g(n), 0\}$. Then $g(n)=g_{+}(n)-$ $g_{-}(n)$. Also 1.2 can be written as
$\Delta^{m}(x(n)+p(n) x(\tau(n)))+\left[f_{1}\left(n, x\left(\sigma_{1}(n)\right)\right)+g_{-}(n)\right]-\left[f_{2}\left(n, x\left(\sigma_{2}(n)\right)\right)+g_{+}(n)\right]=0$.
Let $F_{1}\left(n, x\left(\sigma_{1}(n)\right)\right)=f_{1}\left(n, x\left(\sigma_{1}(n)\right)\right)+g_{-}(n), F_{2}\left(n, x\left(\sigma_{2}(n)\right)\right)=f_{2}\left(n, x\left(\sigma_{2}(n)\right)\right)+$ $g_{+}(n)$. Similar to the proof of Theorems 2.22 .5 we obtain the conclusion.

Theorem 2.7. Assume that $p(n)$ satisfies the conditions in one of the Theorems 2.2 2.5, and (1.6 holds. Then (1.3) has a bounded non-oscillatory solution which is bounded away from zero.

Proof. We prove only the case $0 \leq p(n) \leq p<1$. Let $B C$ be the set of bounded real sequence in the Banach space l^{∞} and $\|x(n)\|=\sup _{n \geq n_{0}}|x(n)|$. We choose M_{1}, M_{2}, α such that $p M_{2}+M_{1}<\alpha<M_{2}$. Define $\Omega=\left\{x \in \bar{B} C, M_{1} \leq x(n) \leq M_{2}\right\}$, $c=\min \left\{\frac{\alpha-p M_{2}-M_{1}}{l M_{2}}, \frac{M_{2}-\alpha}{l M_{2}}\right\} . N$ is sufficiently large such that for $n \geq N$

$$
\frac{1}{(m-1)!} \sum_{s=n}^{\infty}(s-n+1)^{(m-1)}\left|b_{i}(s)\right| \leq c, \quad i=1,2, \ldots, l .
$$

Define two maps Γ_{1}, Γ_{2} on Ω as follows

$$
\begin{gathered}
\Gamma_{1} x(n)= \begin{cases}\alpha-p(n) x(\tau(n)), & n \geq N \\
\Gamma x_{1}(N), & n_{0} \leq n \leq N\end{cases} \\
\Gamma_{2} x(n)= \begin{cases}(-1)^{m-1} \sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} \sum_{i=1}^{l} b_{i}(s) x\left(\sigma_{i}(s)\right), & n \geq N \\
\Gamma_{2} x(N), & n_{0} \leq n \leq N\end{cases}
\end{gathered}
$$

For each $x, y \in \Omega, \Gamma_{1} x(n)+\Gamma_{2} y(n) \geq \alpha-p M_{2}-l M_{2} c \geq M_{1}, \Gamma_{1} x(n)+\Gamma_{2} y(n) \leq$ $\alpha+l M_{2} c \leq M_{2}$, that is $\Gamma_{1} x(n)+\Gamma_{2} y(n) \in \Omega$. Γ_{1} is a contraction mapping and Γ_{2} is continuous and uniformly Cauchy. So there exists $x \in \Omega$ such that $\Gamma_{1} x+\Gamma_{2} x=x$. The proof is complete.

References

[1] S. Z. Chen, L. Erbe; Oscillation Results for Second-Order Scalar and Matrix Difference Equations. Computers. Math. Applic. 28 (1-3)(1994), 55-70.
[2] M. M. A. EL-Sheikh; Oscillation and nonoscillation criteria for second order nonlinear differential equations. J. Math. Anal. Appl. 179(1993), 14-27.
[3] Yang Jun, Guan Xin Ping; Positive solution of a class of neutral delay difference equations. Acta Mathematic Sinica, Vol. 44, No. 3 (2001), 409-416.
[4] K. Y. Liu, Z. Q. Zhang; Existence of positive solutions in neutral differential and differnce equations with delays. Acta Sci. Nat. Univ. Norm. Hunan, Vol. 21 (1998), 12-18.
[5] A. Lomtatidze; Oscillation and nonoscillation criteria for second order linear differential equations. Georgian. Math. Journal, Vol. 4, No. 2 (1997), 129-138.
[6] S. H. Saker; Oscillation of second order nonlinear delay difference equations. Bull. Korean. Math. Soc. 40(2003), No. 3, 489-501.
[7] E. Thandapani, K. Ravi; Oscillation of second order half-linear difference equations. Applied Math. Letters, 13 (2000), 43-49.
[8] E. Wahlén; Positive solutions of second order differential equations. Nonlinear Analysis, 58(2004), 359-366.
[9] X. J. Yang; Nonoscillation criteria for second order nonlinear differential equations. Appl. Math. Comp., 131 (2002), 125-131.
[10] W. P. Zhang, W. Feng, J. R. Yan, J. S. Song; Existence of nonoscillatory solutions of firstorder linear neutral delay differential equaitons. Computers. Math. Applic., 49(2005), 10211027.

Qiaoluan Li, Haiyan Liang, Wenlei Dong, Zhenguo Zhang
College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, 050016, China

E-mail address, Qiaoluan Li: qll71125@163.com
E-mail address, Haiyan Liang: Liang730110@eyou.com
Zhenguo Zhang
Information College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000, China
E-mail address, Zhenguo Zhang: Zhangzhg@mail.hebtu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 39A05, 39A10.
 Key words and phrases. Nonoscillatory; existence; neutral equation.
 © 2007 Texas State University - San Marcos.
 Submitted April 30, 2006. Published January 2, 2007.
 Supported by the Natural Science Foundation of Hebei Province and by the
 Main Foundation of Hebei Normal University.

