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BOUNDEDNESS OF SOLUTIONS TO FOURTH-ORDER
DIFFERENTIAL EQUATION WITH OSCILLATORY RESTORING

AND FORCING TERMS

MATHEW O. OMEIKE

Abstract. This paper concerns the fourth order differential equation

x′′′′ + ax′′′ + f(x′′) + g(x′) + h(x) = p(t).

Using the Cauchy formula for the particular solution of non-homogeneous lin-

ear differential equations with constant coefficients, we prove that the solution

and its derivatives up to order three are bounded.

1. Introduction

This paper studies the boundedness of solutions of the fourth-order nonlinear
differential equation

x′′′′ + ax′′′ + f(x′′) + g(x′) + h(x) = p(t), (1.1)

where a > 0, f, g, h and p, and their first derivatives are continuous functions
depending on the arguments shown. In addition, h and p are oscillatory in the
following sense: For each argument u, there exist numbers β1 > α1 > u > α−1 >
β−1 such that

φ(α1) < 0, φ(β1) > 0, φ(α−1) < 0, φ(β−1) > 0,

where φ is either h(x) or p(t), u is either x or t and all roots of the restoring term
h(x) are isolated.

There has been a lot of work concerning the boundedness of the solutions of
nonlinear ordinary differential equations; see the references in this article and the
references cited therein. We can mention in this direction, for fourth order nonlinear
ordinary differential equations, the works of Afuwape and Adesina [1] where the
frequency-domain approach was used, while Tiryaki and Tunc [12, 13, 14, 15, 16]
have used the Lyapunov second method. All these results generalize in one way or
another some results on third order nonlinear differential equations, see for instance
[9, 10]. Equation (1.1) for which f(x′′) = bx′′ and g(x′) = cx′, that is,

x′′′′ + ax′′′ + bx′′ + cx′ + h(x) = p(t),
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was studied by Omeike [8], recently, for the existence of bounded solutions, where
a, b and c are assumed to satisfy conditions which ensure that the auxiliary equation,

λ3 + aλ2 + bλ + c = 0,

possesses negative real roots. Moreover, a2 > 4b. Also, recently, Ogundare [7],
studied (1.1) for which f(x′′) = bx′′, that is

x′′′′ + ax′′′ + bx′′ + g(x′) + h(x) = p(t),

and obtained results which ensure existence of a bounded solution.
Following the approach in [2, 7, 8], we shall use the Cauchy formula for the

particular solution of the nonhomogeneous linear part of (1.1), to prove that the
solution x(t) and its derivatives x′(t), x′′(t) and x′′′(t) are bounded.

2. Preliminaries

In this section, we shall state and prove certain results useful in the proof of our
main result in §3.

Lemma 2.1. Assume there exist positive constants a, b, c, H, P , (a2 > 4b) such
that for all x ∈ R and t ≥ 0 the following inequalities hold:

(i) |h(x)| ≤ H
(ii) |p(t)| ≤ P

(iii) 0 < f(x′′)
x′′ ≤ b < ∞, f(0) = 0

(iv) 0 < g(x′)
x′ ≤ c < ∞, g(0) = 0.

Then each solution x(t) of (1.1) satisfies

lim sup
t→∞

|x′′′(t)| ≤ 4(H + P )
a

:= D′′′,

provided

lim sup
t→∞

|x′(t)| ≤ (H + P )
c

:= D′, (2.1)

lim sup
t→∞

|x′′(t)| ≤ 2(H + P )
b

:= D′′. (2.2)

Note that a, b and c satisfy conditions ensuring that the auxiliary equation

λ3 + aλ2 + bλ + c = 0

have negative real roots.

Proof of Lemma 2.1. Substituting w := x′′′, from (1.1), we obtain the equation

w′ + aw = p(t)− f(x′′(t))− g(x′(t))− h(x(t)),

with solutions of the form

x′′′(t) = w(t)

= Ce−at +
∫ t

Tx

e−a(t−τ)[p(τ)− f(x′′(τ))− g(x′(τ))− h(x(τ))]dτ,
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where C is an arbitrary constant and Tx is a great enough number. Let (2.1) and
(2.2) hold. Thus, by virtue of (i),(ii),(iii) and (iv), for t ≥ Tx, we have not only
that

∣∣ ∫ t

Tx

e−a(t−τ)[p(τ)− f(x′′(τ))− g(x′(τ))− h(x(τ))]dτ
∣∣

=
∣∣ ∫ t

Tx

e−a(t−τ)[p(τ)− f(x′′(τ))
x′′(τ)

x′′(τ)− g(x′(τ))
x′(τ)

x′(τ)− h(x(τ))]dτ
∣∣

≤
∫ t

Tx

∣∣p(τ)− f(x′′(τ))
x′′(τ)

x′′(τ)− g(x′(τ))
x′(τ)

x′(τ)− h(x(τ))
∣∣e−a(t−τ)dτ

≤
∫ t

Tx

(
|p(τ)|+

∣∣f(x′′(τ))
x′′(τ)

∣∣|x′′(τ)|+
∣∣g(x′(τ))

x′(τ)

∣∣|x′(τ)|+ |h(x(τ))|
)
e−a(t−τ)dτ

≤
∫ t

Tx

(
P + b|x′′(τ)|+ c|x′(τ)|+ H

)
e−a(t−τ)dτ

≤ 4(H + P )
a

(
1− e−a(t−Tx)

)
but also that

lim sup
t→∞

|x′′′(t)| ≤ 4(H + P )
a

.

�

Lemma 2.2. Under the assumptions of Lemma 2.1, if

(i) |h′(x)| ≤ H ′ for all x ∈ R, and
(ii)

∣∣ ∫∞
0

p(t)dt
∣∣ < ∞,

where H ′ is a suitable constant, then every bounded solution x(t) of (1.1) either
satisfies the relation

lim
t→∞

x(t) = x̄, lim
t→∞

x′(t) = lim
t→∞

x′′(t) = lim
t→∞

x′′′(t) = 0, (h(x̄) = 0) (2.3)

or there exists a root x̄ of h(x) such that (x(t)− x̄) oscillates.

Proof. Substituting a fixed bounded solution x(t) of (1.1) into (1.1) and integrating
the result from Tx to t (Tx - a large enough number, whose magnitude will be
specified later), we get the identity

∫ t

Tx

h(x(τ))dτ = −{x′′′(t)− x′′′(Tx) + a[x′′(t)− x′′(Tx)]}

−
∫ t

Tx

f(x′′(τ))dτ −
∫ t

Tx

g(x′(τ))dτ +
∫ t

Tx

p(τ)d

=: I(t).



4 M. O. OMEIKE EJDE-2007/104

∣∣∣ ∫ t

Tx

h(x(τ))dτ
∣∣∣ ≤ |x′′′(t)− x′′′(Tx)|+ a|x′′(t)− x′′(Tx)|+

∣∣∣ ∫ t

Tx

f(x′′(τ))
x′′(τ)

x′′(τ)dτ
∣∣∣

+
∣∣∣ ∫ t

Tx

g(x′(τ))
x′(τ)

x′(τ)dτ
∣∣∣ +

∣∣∣ ∫ t

Tx

p(τ)dτ
∣∣∣

≤ |x′′′(t)− x′′′(Tx)|+ a|x′′(t)− x′′(Tx)|

+
∣∣∣ ∫ t

Tx

bdx′(τ)
∣∣∣ +

∣∣∣ ∫ t

Tx

cdx(τ)
∣∣∣ +

∣∣∣ ∫ t

Tx

p(τ)dτ
∣∣∣

≤ |x′′′(t)− x′′′(Tx)|+ a|x′′(t)− x′′(Tx)|

+ b|x′(t)− x′(Tx)|+ c|x(t)− x(Tx)|+
∣∣∣ ∫ t

Tx

p(τ)dτ
∣∣∣.

Therefore, by virtue of condition (ii), the assertion of Lemma 2.1 and the bound-
edness of x(t), there exists a constant Mx such that for t ≥ Tx the relation

|I(t)| ≤ Mx; i.e.,
∣∣∣ ∫ t

Tx

h(x(τ))dτ
∣∣∣ ≤ Mx . (2.4)

Now, let us assume that x(t) does not converge to any root x̄ of h(x): i.e.,

lim sup
t→∞

|x(t)− x̄| > 0 (2.5)

and simultaneously, for t ≥ Tx,

h(x(t)) ≥ 0 or h(x(t)) ≤ 0. (2.6)

Then

H(t) :=
∫ t

Tx

h(x(τ))dτ for t ≥ Tx

evidently is a composed monotone function with a finite or infinite limit for t →∞.
Since (2.4) implies that the “divergent case” can be disregarded, it follows from
(2.6) that not only

lim
t→∞

∫ t

Tx

|h(x(τ))|dτ = lim
t→∞

∣∣∣ ∫ t

Tx

h(x(τ))dτ
∣∣∣ ≤ Mx (2.7)

but also
lim inf
t→∞

|x(t)− x̄| = 0 (2.8)

holds, because otherwise (i.e. if lim inft→∞ |x(t) − x̄| > 0) (2.6) together with the
fact that the roots of h(x) are isolated would yield

lim inf
t→∞

|h(x(t))| = lim inf
t→∞

|h(x(t))− h(x̄)| > 0,

which is a contradiction to (2.7). Thus (2.5) and (2.8) imply

lim sup
t→∞

|h(x(t))| = lim sup
t→∞

|h(x(t))− h(x̄)| > 0 = lim inf
t→∞

|h(x(t))|

and consequently there exists a sequence {ti} ≥ Tx and a positive constant H̃ such
that

(a) lim infi→∞⇒ti→∞ d(ti, ti−1) > 0
(b) |h(x(ti))| ≥ H̃;
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here and in what follows, d(x, y) denotes the distance between x and y. Hence

Mx ≥ lim
t→∞

∫ t

t1

|h(x(τ))|dτ =
∞∑

i=2

∫ ti

ti−1

|h(x(τ))|dτ

implies

lim sup
i→∞⇒ti→∞

∫ ti

ti−1

|h(x(t))|dt = 0

or (cf. (a),(b)),

H ′ lim sup
t→∞

|x′(t)| ≥ lim sup
t→∞

∣∣dh(x(t))
dx(t)

x′(t)
∣∣ = lim sup

t→∞

∣∣dh(x(t))
dt

∣∣ = ∞.

According to the assertion of Lemma 2.1, this is impossible and that is why (x(t)−x̄)
necessarily oscillates.

The remaining part of our lemma follows immediately from the assertion

x(t) ∈ C(n)[0,∞), lim sup
t→∞

|x(n)(t)| < ∞, lim
t→∞

|x(t)| < ∞

⇒ lim
t→∞

x(k)(t) = 0,
(2.9)

where n is a natural number greater than or equal to 3, and k = 1, . . . , n− 1. The
proof of this statement can be found in [6, p.161]. This completes the proof. �

Lemma 2.3. Under the assumptions of Lemma 2.2 and if
(i) |p′(t)| ≤ P ′ for all t ≥ 0,
(ii) lim supt→∞ |p(t)| > 0
(iii) |f ′(x′′)| ≤ b0

(iv) |g′(x′)| ≤ c0

where b0, c0, P
′ are suitable constants, then for every bounded solution x(t) of (1.1)

there exists a root x̄ of h(x) such that (x(t)− x̄) oscillates.

Proof. If Lemma 2.3 does not hold, then according to Lemma 2.2, (2.3) holds and
the derivatives of x(t) satisfy

x(v)(t) = p′(t)− ax′′′′(t)− f ′(x′′(t))x′′′(t)− g′(x′(t))x′′(t)− h′(x(t))x′(t),

|x(v)(t)| = |p′(t)− ax′′′′(t)− f ′(x′′(t))x′′′(t)− g′(x′(t))x′′(t)− h′(x(t))x′(t)|
≤ |p′(t)|+ a|x′′′′(t)|+ |f ′(x′′(t))||x′′′(t)|+ |g′(x′(t))||x′′(t)|

+ |h′(x(t))||x′(t)|.

Thus, by part (i) of Lemma 2.2 and parts (i), (iii) of Lemma 2.3, we have

|x(v)(t)| ≤ P ′ + a|x′′′′(t)|+ b0|x′′′(t)|+ c0|x′′(t)|+ H ′|x′(t)|.
Hence by the boundedness of x′(t), x′′(t), x′′′(t), x′′′′(t), there exists a constant K
such that

lim sup
t→∞

|x(v)(t)| ≤ K,

which according to (2.9) gives

lim
t→∞

x(t) = x̄ =⇒ lim
t→∞

h(x(t)) = h(x̄) = 0, lim
t→∞

x(j)(t) = 0, j = 1, 2, 3

or

lim sup
t→∞

|p(t)| = lim sup
t→∞

|x′′′′(t) + ax′′′(t) + bx′′(t) + g(x′(t)) + h(x(t))| = 0
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a contradiction to lim supt→∞ |p(t)| > 0. �

3. Main Result

Now we can give the principal result of our paper.

Theorem 3.1. If there exist positive constants H,H ′, P, P ′, P0, R such that for
|x| > R and t ≥ 0 the following conditions are satisfied:

(1) |h(x)| ≤ H, |h′(x)| ≤ H ′

(2) 0 < f(x′′)
x′′ ≤ b < ∞, f(0) = 0,

(3) 0 < g(x′)
x′ ≤ c < ∞, g(0) = 0,

(4) |p(t)| ≤ P , |p′(t)| ≤ P ′,
∣∣ ∫ t

0
p(τ)dτ

∣∣ ≤ P0, lim supt→∞ |p(t)| > 0,
(5) min[d(x̄k, x̄k+1), d(x̄k, x̄k−1)] > (H+P )

c1

(
4
a + 2a

b + b
c

)
+ P0

c1
,

where x̄k are roots of h(x) with h′(x̄k) > 0 and x̄k−1, x̄k+1 denote the couple of
adjacent roots of x̄k (k = 0,±2,±4, . . . ), then all solutions x(t) of (1.1) are bounded
and for each of them there exists a root x̄ of h(x) such that (x(t)− x̄) oscillates.

Proof. Let us assume, on the contrary, that x(t) is an unbounded solution of (1.1);
i.e., for example, lim supt→∞ x(t) = ∞. Lemma 2.1 implies the existence of a
number T0 ≥ 0 great enough such that for t ≥ T0,

|x′(t)| ≤ D′ + ε1, |x′′(t)| ≤ D′′ + ε2, |x′′′(t)| ≤ D′′′ + ε3

with ε1 > 0, ε2 > 0, ε3 > 0 small enough. Let T1 ≥ T0 be the last point with
x(T1) = xk(k − even) and T2 > T1 be the first point with x(T2) = x̄k+1. If we
integrate (1.1) from T1 to t, T1 ≤ t ≤ T2, we come to

[x′′′(t)− x′′′(T1)] + a[x′′(t)− x′′(T1)]

+
∫ t

T1

f(x′′(τ))dτ +
∫ t

T1

g(x′(τ))dτ +
∫ t

T1

h(x(τ))dτ

=
∫ t

T1

p(τ)dτ.

Thus, ∫ t

T1

g(x′(τ))
x′(τ)

dx(τ) =
∫ t

T1

p(τ)dτ + x′′′(T1)− x′′′(t) + a[x′′(T1)− x′′(t)]

−
∫ t

T1

f(x′′(τ))
x′′(τ)

dx′(τ)−
∫ t

T1

h(x(τ))dτ.

Since by (3), 0 < g(x′(τ))
x′(τ) ≤ c, there is a constant c1, small enough such that

0 < c1 ≤
g(x′(τ))
x′(τ)

≤ c.

Therefore,

c1|x(t)− x(T1)| ≤ |x′′′(t)|+ |x′′′(T1)|+ a[|x′′(t)|+ |x′′(T1)|] + b[|x′(t)|+ |x′(T1)|]

+
∣∣ ∫ t

T1

h(x(τ))dτ
∣∣ +

∣∣ ∫ t

T1

p(τ)dτ
∣∣.
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Thus,

|x(t)| ≤ |x(T1)|+
2
c1

(
D′′′ + aD′′ + bD′ +

P0

2
)

+ ε,

where ε is an arbitrary small positive constant. This is a contradiction to x(T2) =
x̄k+1 with respect to (4).

Since the remaining part of our theorem follows immediately from Lemma 2.3,
the proof is complete. �

4. Example

Consider the equation

x′′′′(t) +
385
16

x′′′(t) +
259x′′(t)

2 (1 + (x′′(t))2)

+
(
7x′(t) +

x′(t)
1 + (x′(t))2

)
+

1
10

sinx(t)

=
1
10

cos t,

(4.1)

where

a =
385
16

, f(x′′(t)) =
259x′′(t)

2
(
1 + (x′′(t))2

) , g(x′(t)) = 7x′(t) +
x′(t)

1 + (x′(t))2
,

h(x(t)) = 1
10 sinx(t) and p(t) = 1

10 cos t, with sin x(t) and cos t being oscillatory. A
simple calculation (with the earlier notation) gives H = 0.1, H ′ = 0.1, P = 0.1,
P ′ = 0.1, P0 = 0.1, b = 259

2 , c = 8 and c1 = 7. It is obvious that the conditions
(1)–(4) of Theorem 3.1 are satisfied. For condition (5), since h(x(t)) = 1

10 sinx(t)
the roots of h(x(t)) are

x̄k−1 = (k − 1)π, x̄k = kπ, x̄k+1 = (k + 1)π, (k = 0,±2,±4, . . . ),

where x̄k−1 and x̄k+1 are the couple of adjacent roots of x̄k = kπ. Thus,

min
{
d(x̄k, x̄k+1), d(x̄k, x̄k−1)

}
= π

and
(H + P )

c1

(4
a

+
2a

b
+

b

c

)
+

P0

c1
=

5684041880
11574192000

< 1.

Since π > 1, then all the conditions of Theorem 3.1 are satisfied, thus all solutions
x(t) of (4.1) are bounded and for each of them there exists a root x̄ of h(x(t)) such
that (x(t)− x̄) oscillates.
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