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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO
FIRST–ORDER SYSTEMS OF NONLINEAR IMPULSIVE

BOUNDARY–VALUE PROBLEMS WITH SUB–, SUPER–LINEAR
OR LINEAR GROWTH

JUAN J. NIETO, CHRISTOPHER C. TISDELL

Abstract. In this work we present some new results concerning the existence

and uniqueness of solutions to an impulsive first–order, nonlinear ordinary dif-

ferential equation with “non–periodic” boundary conditions. These boundary
conditions include, as a special case, so–called “anti–periodic” boundary condi-

tions. Our methods to prove the existence and uniqueness of solutions involve

new differential inequalities, the classical fixed–point theorem of Schaefer, and
the Nonlinear Alternative. Our new results apply to systems of impulsive dif-

ferential equations where the right-hand side of the equation may grow linearly,

or sub– or super–linearly in its second argument.

1. Introduction

At certain points in time, many dynamic phenomena experience sudden, instan-
taneous, rapid change exhibited by a jump in their states. Such behaviour is seen in
a range of physical problems from: mechanics; chemotherapy; population dynam-
ics; optimal control; ecology; industrial robotics; biotechnology; spread of disease;
harvesting; and physics. The reader is referred to [12, 14, 16, 20, 22, 23, 24, 27, 28,
32, 36, 38, 39, 40] and references therein for some nice examples and applications
to the above areas.

The branch of modern, applied analysis known as “impulsive” differential equa-
tions furnishes a natural framework to mathematically describe the aforementioned
jumping processes. Consequently, the area of impulsive differential equations has
been developing at a rapid rate, with the wide applications significantly motivating
a deeper theoretical study of the subject.

This paper considers the existence and uniqueness of solutions to the following
first–order differential system:

x′ = f(t, x), t ∈ [0, N ], t 6= t1; (1.1)

Ax(0) +Bx(N) = α, 0 < N ∈ R; (1.2)
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where: f : [0, N ]×Rn → Rn is continuous on (t, p) ∈ ([0, N ] \ {t1})×Rn; n ≥ 1; A
and B are n× n matrices with real-valued elements; α is a constant vector in Rn;
and the impulse at t = t1 is given by a continuous function I1 : Rn → Rn with

x(t+1 ) = x(t−1 ) + I1(x(t1)), t1 ∈ (0, 1), t1 fixed; (1.3)

using the notation x(t−1 ) := limt→t−1
x(t) and x(t+1 ) := limt→t+1

x(t).
Equations (1.1)–(1.3) are collectively known as an impulsive boundary value

problem (BVP). Besides the natural physical applications of impulsive differential
equations, significance of the study of the system (1.1)–(1.3) lies in the fact that
most types of impulsive BVPs with linear boundary conditions can be written in the
form (1.1)–(1.3). For example, through a simple substitution xi := x(i), i = 1, . . . , k,
impulsive BVPs with second– or higher–order derivatives may be reduced to the
system (1.1)–(1.3). Thus the study of (1.1)–(1.3) can lead to a deeper understanding
of a range of impulsive BVPs, including those of a higher-order.

In the case when: A = B equals the identity matrix; and α = 0 in (1.2), that is,
(1.2) becomes the periodic boundary conditions

x(0) = x(N),

some recent and influential papers examining existence of solutions to (1.1)–(1.3)
include [4, 8, 10, 15, 20, 21, 22, 23, 26].

Throughout this paper the condition det(A + B) 6= 0 is assumed to hold, so
in this sense, the boundary conditions (1.2) do not include the periodic condi-
tions x(0) − x(N) = 0. Few papers, apart from [9, 18, 29, 30], have examined
the existence and uniqueness of solutions to (1.1)–(1.3) under this “non–periodic”
boundary condition, even though these types of boundary conditions appear in
many applications, especially the case of “anti–periodic” boundary conditions

x(0) = −x(N),

for example, see [1, 2, 3, 5, 9, 11, 13, 19, 25, 31, 37].
This article is organised as follows. Section 2 presents some preliminary ideas

associated with the impulsive BVP (1.1)–(1.3). Sections 3 and 4 contain the main
results of the paper and are devoted to the existence and uniqueness of solutions
to (1.1)–(1.3). There, new differential inequalities in the impulsive–setting are
introduced, developed and applied, in conjunction with Schaefer’s theorem [17,
Theorem 4.4.12] and the Nonlinear Alternative [7, Theorem 5.1, p.61], to prove
the existence and uniqueness of solutions to (1.1)–(1.3). The main ideas rely on:
novel differential inequalities; and a priori bounds on solutions to a certain family
of integral operator equations, with the operator being compact.

The new results compliment and extend those of [4, 9, 10, 15, 18, 20, 21, 22, 26,
29, 30] in the sense that: our ideas permit super–linear growth of ‖f(t, p)‖ in ‖p‖ in
(1.1), whereas the theorems in [18] do not; our investigation tackles a wider range or
a different class of boundary conditions than those in [15, 18, 20, 21, 22, 26, 29, 30];
and our results apply to systems of impulsive BVPs, unlike the papers [9, 10]
which have concentrated on scalar–valued equations. This last point is of particular
significance when dealing with large systems of equations, as traditional methods,
like the method of upper and lower solutions, are rather cumbersome to apply to
(1.1)–(1.3) when n is large.
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Section 5 presents an example to illustrate how to apply some of the newly devel-
oped theoretical results. A particular example is constructed so that the theorems
in [4, 9, 10, 15, 18, 20, 21, 22, 26, 29, 30] do not directly apply.

One could consider impulsive BVPs with a finite number of impulses Ii, so that
(1.3) could take the form, for i = 1, . . . , p

x(t+i ) = x(t−i ) + Ii(x(ti)), each ti in (0, 1) and fixed.

However, for clarity and brevity, attention is restricted to BVPs with one impulse.
In addition, the difference between the theory of one or an arbitrary number of
impulses is quite minimal.

Our new results were particularly motivated by the recent works [6], [15], [33],
[34] and [35].

To understand the notation used above and the ideas in the remainder of the
paper, some appropriate concepts connected with impulsive differential equations
are now introduced. The following notation comes from [18] and further information
can be found in the references therein.

Assume that

f(t+1 , x) := lim
t→t+1

f(t, x) and f(t−1 , x) := lim
t→t−1

f(t, x)

both exist with

f(t−1 , x) = f(t1, x).

Introduce and denote the Banach space PC([0, N ]; Rn) by

PC([0, N ]; Rn) :=
{
u : [0, N ] → Rn, u ∈ C([0, N ] \ {t1}; Rn), u is left continuous

at t = t1, the right hand limit u(t+1 ) exists
}

with the norm

‖u‖PC := sup
t∈[0,N ]

‖u(t)‖

where ‖·‖ is the usual Euclidean norm and 〈·, ·〉 will be the Euclidean inner product.
Let t0 = 0 and t2 = N . In a similar fashion to the above, define and denote the

Banach space PC1([0, N ]; Rn) by

PC1([0, N ]; Rn) :=
{
u ∈ PC([0, N ]; Rn), u|(tk,tk+1) ∈ C

1((tk, tk+1); Rn)

for k = 0, 1, and the limits u′(t+1 ), u′(t−1 ) exist
}

with the norm

‖u‖PC1 := max{‖u(t)‖PC , ‖u′(t)‖PC}.

For an n× n matrix A with real-valued elements aij , ‖A‖ will denote the norm of
matrix A given by

‖A‖ :=
( n∑

j=1

[
a2
1j

]
+ · · ·+

n∑
j=1

[
a2

nj

] )1/2

.

A solution to the impulsive BVP (1.1)–(1.3) is a function x ∈ PC1([0, N ]; Rn) that
satisfies (1.1)–(1.3) for each t ∈ [0, N ].
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2. Operator Formulation

In this section the impulsive BVP (1.1)–(1.3) is reformulated as an appropriate
integral equation so that potential solutions to the integral equation will be solutions
to the impulsive BVP (1.1)–(1.3). The motivation behind this approach is to define
a suitable integral operator, with fixed–points of the operator corresponding to
solutions of the BVP (1.1)–(1.3).

The following results are included to keep the paper self-contained for the benefit
of the reader. Recall that the Heaviside function is defined as H(s) = 0 if s ≤ 0,
and H(s) = 1 if s > 0,

Lemma 2.1. Consider the impulsive BVP (1.1)–(1.3) with det(A + B) 6= 0. Let
f : [0, N ]× Rn → Rn and I1 : Rn → Rn both be continuous.

(i) If x ∈ PC1([0, N ]; Rn) is a solution of (1.1)–(1.3) then

x(t) = (A+B)−1
[
α−B

(∫ N

0

f(s, x(s)) ds+ I1(x(t1))
)]

+
∫ t

0

f(s, x(s)) ds+H(t− t1) · I1(x(t1)), t ∈ [0, N ];
(2.1)

(ii) If x ∈ PC([0, N ]; Rn) satisfies (2.1) then x ∈ PC1([0, N ]; Rn) and x is a
solution of (1.1)–(1.3).

Proof. (i) Let x ∈ PC1([0, N ]; Rn) be a solution to (1.1)–(1.3). Integrating (1.1)
from 0 to t < t1 we have

x(t) = x(0) +
∫ t

0

f(s, x(s)) ds,

and from t1 to t with t ∈ (t1, N ] we get

x(t) = x(t+1 ) +
∫ t

t1

f(s, x(s)) ds.

A similar integration of (1.1) from 0 to t1 shows that

x(t−1 ) = x(0) +
∫ t1

0

f(s, x(s)) ds.

Hence combining the previous expressions we have for t ∈ [0, t1]

x(t) = x(0) +
∫ t

0

f(s, x(s)) ds = x(0) +H(t− t1) · I1(x(t1)) +
∫ t

0

f(s, x(s)) ds,

and for each t ∈ (t1, N ]

x(t) = x(0) + x(t+1 )− x(t−1 ) +
∫ t

0

f(s, x(s)) ds

= x(0) + I1(x(t1)) +
∫ t

0

f(s, x(s)) ds.
(2.2)

Letting t = N in (2.2) and using the boundary conditions (1.2) we obtain

Bx(N) = B
[
x(0) + I1(x(t1)) +

∫ N

0

f(t, x(t)) dt
]

= α−Ax(0).
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A rearrangement in the previous expression then gives

x(0) = (A+B)−1
[
α−B

(∫ N

0

f(t, x(t)) dt+ I1(x(t1))
)]

which is substituted into (2.2) and a rearrangement leads to (2.1).
(ii) Let x ∈ PC([0, N ]; Rn) be a solution to (2.1). Since f is continuous it is

easy to see that x ∈ PC1([0, N ]; Rn). To verify that x also satisfies the impulsive
BVP (1.1)–(1.3) just differentiate (2.1) to obtain (1.1) and also show that (1.2) and
(1.3) hold by direct substitution. �

In view of Lemma 2.1 a useful operator will now be introduced so that fixed–
points of the operator will be solutions of the impulsive BVP (1.1)–(1.3).

Lemma 2.2. Consider the impulsive BVP (1.1)–(1.3) with det(A + B) 6= 0. Let
f : [0, N ]× Rn → Rn and I1 : Rn → Rn both be continuous. Consider the mapping
T : PC([0, N ]; Rn) → PC([0, N ]; Rn) defined by

(t) := (A+B)−1
[
α−B

(∫ N

0

f(s, x(s)) ds+ I1(x(t1))
)]

+
∫ t

0

f(s, x(s)) ds+H(t− t1) · I1(x(t1)), t ∈ [0, N ].
(2.3)

If T has a fixed–point q, that is Tq = q for some q ∈ PC([0, N ]; Rn), then this
fixed–point q is also a solution to the impulsive BVP (1.1)–(1.3).

The above lemma follows from Lemma 2.1.
The topologically–inspired fixed point theorems that will be used to guarantee

the existence of at least one fixed–point of T requires that T be a “compact” map
[17, pp.54-55].

Recall that a mapping between normed spaces is compact if it is continuous and
carries bounded sets into relatively compact sets.

Lemma 2.3. Consider (2.3) with det(A+ B) 6= 0. Let f : [0, N ]× Rn → Rn and
I1 : Rn → Rn both be continuous. Then T : PC([0, N ]; Rn) → PC([0, N ]; Rn) is a
compact map.

Proof. This follows in a standard step–by–step process and so is omitted. �

The following two well–known fixed–point theorems will be of use in the sections
to follow. In particular, the Nonlinear Alternative [7, Theorem 5.1, p.61] and
Schaefer’s Theorem [17, Theorem 4.4.12] will be employed.

Theorem 2.4 (Nonlinear Alternative). Let X be a normed space with C a convex
subset of X. Let U be an open subset of C with 0 ∈ C and consider a compact map
H : U → C. If

u 6= λHu for all u ∈ ∂U and for all λ ∈ [0, 1]

then H has at least one fixed–point.

Theorem 2.5 (Schaefer). Let X be a normed space with H : X → X a compact
mapping. If the set

S := {u ∈ X : u = λHu for some λ ∈ [0, 1)}
is bounded then H has at least one fixed–point.
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3. Existence: Homogeneous Case

This section presents some new existence results for solutions to the following
“homogenous” problem (α = 0)

x′ = f(t, x), t ∈ [0, N ], t 6= t1; (3.1)

Ax(0) +Bx(N) = 0, 0 < N ∈ R; (3.2)

x(t+1 ) = x(t−1 ) + I1(x(t1)), t1 ∈ (0, 1), t1 fixed. (3.3)

The ideas use novel differential inequalities in the impulsive equation setting and
standard fixed–point methods of integral operators. In particular, the Nonlinear
Alternative [7, Theorem 5.1, p.61] and Schaefer’s Theorem [17, Theorem 4.4.12]
will be employed.

The following existence result involves sublinear growth of ‖f(t, p)‖ in ‖p‖.

Theorem 3.1. Consider the impulsive BVP (3.1)–(3.3) with f : [0, N ]×Rn → Rn

and I1 : Rn → Rn both being continuous and det(A+B) 6= 0. Let ρ and σ be non–
negative constants and let ψ : [0,∞) → (0,∞) be a continuous, non–decreasing
function such that

‖f(t, p)‖ ≤ ρψ(‖p‖), for all (t, p) ∈ [0, N ] \ {t1} × Rn; (3.4)

‖I1(q)‖ ≤ σ‖q‖, for all q ∈ Rn; (3.5)

sup
c≥0

c

ψ(c)
> K1 :=

ρN
(
‖(A+B)−1B‖+ 1

)
1− σ

(
‖(A+B)−1B‖+ 1

) ; (3.6)

σ
(
‖(A+B)−1B‖+ 1

)
< 1; (3.7)

then the impulsive BVP (3.1)–(3.3) has at least one solution.

Proof. We will use the Nonlinear Alternative. From (3.6) there exists a constant
Q > 0 such that

Q

ψ(Q)
> K1. (3.8)

Consider the mapping T1 : PC([0, N ]; Rn) → PC([0, N ]; Rn)

T1x(t) := (A+B)−1
[
−B

(∫ N

0

f(s, x(s)) ds+ I1(x(t1))
)]

+
∫ t

0

f(s, x(s)) ds+H(t− t1) · I1(x(t1)), t ∈ [0, N ].

By Lemma 2.3, T1 is a compact mapping. Let

Ω̄ := {x ∈ PC([0, N ]; Rn) : ‖x‖PC < Q}.

We consider T1 : Ω̄ → PC([0, N ]; Rn) and the family of problems

x = λT1x, λ ∈ [0, 1]. (3.9)



EJDE-2007/105 EXISTENCE AND UNIQUENESS OF SOLUTIONS 7

Let x be a solution to (3.9) with x ∈ Ω̄. We show that x 6∈ ∂Ω. From (3.9) and
(2.3) we have, for each t ∈ [0, N ],

‖x(t)‖ = ‖λT1x(t)‖

≤
(
1 + ‖(A+B)−1B‖

) [ ∫ N

0

‖f(t, x(t))‖dt+ ‖I1(x(t1))‖
]

≤
(
1 + ‖(A+B)−1B‖

) [ ∫ N

0

ρψ(‖x(t)‖)dt+ σ‖x(t1)‖
]

≤
(
1 + ‖(A+B)−1B‖

) [
ρNψ( sup

t∈[0,N ]

‖x(t)‖) + σ sup
t∈[0,N ]

‖x(t)‖
]
.

Hence we have

sup
t∈[0,N ]

‖x(t)‖ ≤
(
1 + ‖(A+B)−1B‖

) [
ρNψ( sup

t∈[0,N ]

‖x(t)‖) + σ sup
t∈[0,N ]

‖x(t)‖
]

so that a rearrangement in the previous line gives

sup
t∈[0,N ]

‖x(t)‖ ≤ K1ψ( sup
t∈[0,N ]

‖x(t)‖)

where K1 is defined in (3.6). Hence, by (3.8) we must have supt∈[0,N ] ‖x(t)‖ 6= Q,
that is ‖x‖PC 6= Q. The Nonlinear Alternative is applicable and thus the existence
of at least one solution follows. �

The following result allows ‖f(t, p)‖ to grow more than linearly in ‖p‖.

Theorem 3.2. Consider the impulsive BVP (3.1)–(3.3) with f : [0, N ]×Rn → Rn

and I1 : Rn → Rn both being continuous and det(A + B) 6= 0. If there exist
non–negative constants a, b, β, L such that:

‖f(t, p)‖ ≤ 2a〈p, f(t, p)〉+ b, for all (t, p) ∈ [0, N ] \ {t1} × Rn; (3.10)

‖I1(q)‖ ≤ β‖q‖+ L, for all q ∈ Rn; (3.11)

‖B−1A‖ ≤ 1; (3.12)

β(‖(A+B)−1B‖+ 1) < 1; (3.13)

then the impulsive BVP (3.1)–(3.3) has at least one solution.

Proof. Consider the mapping T1 : PC([0, N ]; Rn) → PC([0, N ]; Rn)

T1x(t) := (A+B)−1
[
−B

(∫ N

0

f(s, x(s)) ds+ I1(x(t1))
)]

+
∫ t

0

f(s, x(s)) ds+H(t− t1) · I1(x(t1)), t ∈ [0, N ].

By Lemma 2.3, T1 is a compact mapping. Consider the equation

x = T1x. (3.14)

To show that T1 has at least one fixed point, we apply Schaefer’s Theorem by
showing that all potential solutions to

x = λT1x, λ ∈ [0, 1]; (3.15)
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are bounded a priori, with the bound being independent of λ. With this in mind,
let x be a solution to (3.15). Note that x is also a solution to

x′ = λf(t, x), t ∈ [0, N ], t 6= t1;

Ax(0) +Bx(N) = 0;

x(t+1 ) = x(t−1 ) + λI1(x(t1)).

Note that (3.12) and (1.2) imply

‖x(N)‖ ≤ ‖B−1Ax(0)‖ ≤ ‖B−1A‖‖x(0)‖ ≤ ‖x(0)‖.

We also have, for each t ∈ [0, N ],

‖x(t)‖ = λ‖Tx(t)‖

≤
(
1 + ‖(A+B)−1B‖

) [ ∫ N

0

‖λf(t, x(t))‖dt+ ‖λI1(x(t1))‖
]

≤
(
1 + ‖(A+B)−1B‖

) [ ∫ N

0

2a〈x(s), λf(s, x(s))〉+ λb ds+ β‖x(t1)‖+ L
]

≤
(
1 + ‖(A+B)−1B‖

) [ ∫ N

0

2a〈x(s), x′(s)〉+ b ds+ β‖x‖PC + L
]

=
(
1 + ‖(A+B)−1B‖

) [ ∫ N

0

a
d

ds

(
‖x(s)‖2

)
+ b ds+ β‖x‖PC + L

]
=
(
1 + ‖(A+B)−1B‖

)
[a(‖x(N)‖2 − ‖x(0)‖2) + bN + β‖x‖PC + L]

≤
(
1 + ‖(A+B)−1B‖

)
[bN + β‖x‖PC + L]

Thus, taking the supremum above and rearranging we obtain

‖x‖PC = sup
t∈[0,N ]

‖x(t)‖ ≤ [bN + L][1 + ‖(A+B)−1B‖]
1− (1 + ‖(A+B)−1B‖)β

.

Thus we see that the bound on all possible solutions to (3.15) is independent of λ
and Schaefer’s Theorem applies, yielding the existence of at least one fixed–point
to T1 and thus (3.1)–(3.3) has at least one solution. �

Theorem 3.2 may be suitably modified to include an alternate class of f as
follows.

Theorem 3.3. Consider the impulsive BVP (1.1)–(1.3) with f : [0, N ]×Rn → Rn

and I1 : Rn → Rn both being continuous. Let the conditions of Theorem 3.2 hold
with (3.10) and (3.12) respectively replaced by

‖f(t, p)‖ ≤ −2a〈p, f(t, p)〉+ b, for all (t, p) ∈ [0, N ] \ {t1} × Rn. (3.16)

‖A−1B‖ ≤ 1; (3.17)

Then the impulsive BVP (1.1)–(1.3) has at least one solution.

Proof. The proof is a minor variation to that of Theorem 3.2 and so is not discussed.
�
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Although the proofs of Theorems 3.2 and 3.3 are similar, the two results differ in
sense that Theorem 3.2 may apply to certain problems, whereas Theorem 3.3 may
not apply, and vice–versa. For example, in the scalar case,

f(t, p) := −p3 − t, t ∈ [0, 1];

satisfies (3.16) for the choices a = 1/2 and b = 100, but the above f cannot satisfy
(3.10) for any choice of non–negative a and b.

4. Existence and Uniqueness: Inhomogeneous Case

This section presents existence and uniqueness results for solutions to the general
impulsive BVP (1.1)–(1.3) where α may be non–zero.

The following general existence result allows linear growth of ‖f(t, p)‖ in ‖p‖.

Theorem 4.1. Consider the impulsive BVP (1.1)–(1.3) with f : [0, N ]×Rn → Rn

and I1 : Rn → Rn both being continuous and det(A + B) 6= 0. Let u, v, w, z be
non–negative constants such that

‖f(t, p)‖ ≤ u‖p‖+ v, for all (t, p) ∈ [0, N ] \ {t1} × Rn; (4.1)

‖I1(q)‖ ≤ w‖q‖+ z, for all q ∈ Rn; (4.2)

(‖(A+B)−1B‖+ 1)[Nu+ w] < 1. (4.3)

Then the impulsive BVP (1.1)–(1.3) has at least one solution.

Proof. We use Schaefer’s Theorem. Consider the mapping T : PC([0, N ]; Rn) →
PC([0, N ]; Rn),

Tx(t) := (A+B)−1
[
α−B

(∫ N

0

f(s, x(s)) ds+ I1(x(t1))

)]
+
∫ t

0

f(s, x(s)) ds+H(t− t1) · I1(x(t1)), t ∈ [0, N ].

By Lemma 2.3, T is a compact mapping. Consider the equation

x = Tx. (4.4)

In order to show that T has at least one fixed point, we apply Schaefer’s Theorem
by showing that all potential solutions to

x = λTx, λ ∈ [0, 1]; (4.5)

are bounded a priori, with the bound being independent of λ. With this in mind,
let x be a solution to (4.5). Note that x is also a solution to

x′ = λf(t, x), t ∈ [0, N ], t 6= t1, (4.6)

Ax(0) +Bx(N) = λα; (4.7)

x(t+1 ) = x(t−1 ) + λI1(x(t1)). (4.8)
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We then have, for each t ∈ [0, N ],

‖x(t)‖
= ‖λTx(t)‖

≤ ‖(A+B)−1α‖+
(
1 + ‖(A+B)−1B‖

) [ ∫ N

0

‖λf(t, x(t))‖ dt+ ‖λI1(x(t1))‖
]

≤ ‖(A+B)−1α‖+
(
1 + ‖(A+B)−1B‖

) [ ∫ N

0

u‖x(t)‖+ v dt+ w‖x(t1)‖+ z
]

≤ ‖(A+B)−1α‖+
(
1 + ‖(A+B)−1B‖

) [
N(u‖x‖PC + v) + w‖x‖PC + z

]

Thus, taking the supremum and rearranging we obtain

‖x‖PC = sup
t∈[0,N ]

‖x(t)‖ ≤ ‖(A+B)−1α‖+ [1 + ‖(A+B)−1B‖](Nv + z)
1− (‖1 + (A+B)−1B‖)[Nu+ w]

.

Thus we see that the bound on all possible solutions to (3.15) is independent of λ
and Schaefer’s Theorem applies, yielding the existence of at least one fixed–point
to T and thus (1.1)–(1.3) has at least one solution. �

The following uniqueness result for solutions (1.1)–(1.3) is now obtained with
the help of Theorem 4.1.

Theorem 4.2. Consider the impulsive BVP (1.1)–(1.3) with f : [0, N ]×Rn → Rn

and I1 : Rn → Rn both being continuous and det(A + B) 6= 0. Let u1 and w1 be
non–negative constants such that

‖f(t, p)− f(t, q)‖ ≤ u1‖p− q‖, for all (t, p, q) ∈ [0, N ] \ {t1} × R2n;

‖I1(p)− I1(q)‖ ≤ w1‖p− q‖, for all (p, q) ∈ R2n;

(‖(A+B)−1B‖+ 1)[Nu1 + w1] < 1.

Then the impulsive BVP (1.1)–(1.3) has a unique solution.

Proof. The conditions of the theorem imply that

‖f(t, p)− f(t, 0)‖ ≤ u1‖p− 0‖, for all (t, p) ∈ [0, N ] \ {t1} × Rn;

‖I1(p)− I1(0)‖ ≤ w1‖p− 0‖, for all p ∈ Rn.

A rearrangement of the above two inequalities leads to (4.1) and (4.2) for

v = sup
t∈[0,N ]

‖f(t, 0)‖,

u = u1, w = w1 and z = ‖I1(0)‖. Thus, since (4.3) holds, all of the conditions of
Theorem 4.1 are satisfied and the existence of at least one solution to (1.1)–(1.3)
follows.
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Now let x and y be two solutions to (1.1)–(1.3). We have, for each t ∈ [0, N ]

‖x(t)− y(t)‖

≤
(
1 + ‖(A+B)−1B‖

) [ ∫ N

0

‖f(t, x(t)− f(t, y(t))‖dt+ ‖I1(x(t1))− I1(y(t1))‖
]

≤
(
1 + ‖(A+B)−1B‖

) [
u1

∫ N

0

‖x(t)− y(t))‖dt+ w1‖x(t1)− y(t1)‖
]

≤
(
1 + ‖(A+B)−1B‖

)
[u1N‖x− y‖PC + w1‖x− y‖PC ].

Hence rearranging and taking the supremum above we have[
1− [1 + ‖(A+B)−1B‖][Nu1 + w1]

]
‖x− y‖PC ≤ 0

and (4.2) ensures x = y. Thus, the solutions are unique. �

The following corollary is a special case of Theorem 4.1 and involves global
bounds on the functions f and I1.

Corollary 4.3. Consider the impulsive BVP (1.1)–(1.3) with f : [0, N ]×Rn → Rn

and I1 : Rn × Rn both being continuous and det(A+ B) 6= 0. Let v and z be non–
negative constants such that

‖f(t, p)‖ ≤ v, for all (t, p) ∈ [0, N ] \ {t1} × Rn;

‖I1(q)‖ ≤ z, for all q ∈ Rn.

Then the impulsive BVP (1.1)–(1.3) has at least one solution.

Proof. The proof involves taking u = 0 = w so that all of the conditions of Theorem
4.1 are satisfied. �

5. Examples

In this section some examples are presented to highlight the theory. We firstly
consider the following scalar–valued differential equation case.

Example 5.1. Consider the impulsive BVP given by

x′ = x3 + x+ t, t ∈ [0, 1], t 6= t1; (5.1)

x(0) = 2x(1); (5.2)

x(t+1 ) = x(t−1 ) + x(t1)/2 (5.3)

where x is scalar-valued (n = 1). The above impulsive BVP has at least one
solution.

Proof. Let f(t, p) = p3+p+t and see that |f(t, p)| ≤ |p3|+|p|+1 for (t, p) ∈ [0, 1]×R.
For a and b to be chosen below, see that

2apf(t, p) + b = 2a(p4 + p2 + pt) + b

= (p4 + 1) + [p2 + pt+ 40.25], for the choices a = 1/2, b = 41.25

= (p4 + 1) + [(p+ t/2)2 + 40.25− t2/4]

≥ (|p3|) + [|p|+ 1]

≥ |f(t, p)| for all (t, p) ∈ [0, 1]× R

and thus (3.10) holds. It is easy to see that (3.11), (3.12) and (3.13) hold for
β = 1/2, L = 0, N = 1, A = 1, B = −2. Thus, all of the conditions of Theorem
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3.2 hold and the solvability follows. The theorems of [18, 29, 30], for example, do
not apply to the above because of the wider class of boundary conditions. �

We now consider an example involving a system of differential equations.

Example 5.2. Consider (1.1)–(1.3) with n = 2 and f given by

f(t, p) = (h(t, y, z), j(t, y, z)), t ∈ [0, 1],

:= ((t+ 1)y3 + ye−z2
+ 1, (t+ 1)z3 + ze−y2

).
(5.4)

and
(y(0), z(0))− 2(y(1), z(1)) = (0, 0)

with
(y(t+1 ), z(t+1 )) = (y(t−1 ), z(t−1 )) + (y(t1)/2, z(t1)/2).

The above impulsive BVP has at least one solution.

Proof. We show that above f satisfies the conditions of Theorem 3.2. Note that
for all (t, p) ∈ [0, 1]× R2 we have

‖f(t, p)‖ ≤ |h(t, y, z)|+ |j(t, y, z)|

≤ 2|y|3 + |y|e−z2
+ 2|z|3 + |z|e−y2

+ 1.

Below, we will need the following simple inequalities:

w4 ≥ |w|3 − 1, w4 + w ≥ |w|3 − 10, for all w ∈ R,

d2e−c2
≥ |d|e−c2

− 1, for all (c, d) ∈ R2.

For a ≥ 0 and b ≥ 0 to be chosen below, consider for (t, p) ∈ [0, 1]× R2,

2a〈p, f(t, p)〉+ b ≥ 2a
[
y4 + y + y2e−z2

+ z4 + z2e−y2
]

+ b

≥ 2a
[
|y|3 − 10 + |y|e−z2

− 1 + |z|3 − 1 + |z|e−y2
− 1
]

+ b

≥ 2|y|3 + |y|e−z2
+ 2|z|3 + |z|e−y2

+ 1, for a = 1, b = 27

≥ ‖f(t, p)‖

Thus f satisfies the conditions of Theorem 3.2 for the choices a = 1 and b = 27.
It is not difficult to verify that the remaining conditions of Theorem 3.2 hold

with β = 1/2, N = 1 and L = 0. Thus we conclude that our problem has at least
one solution. �

The theorems in [4, 9, 10, 15, 18, 20, 21, 22, 26, 29, 30] do not directly apply to the
previous example as: the growth of ‖f(t, p)‖ in ‖p‖ is super–linear; the boundary
conditions are a wider range or a different class; and the problem involves a system
of impulsive BVPs.
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