Electronic Journal of Differential Equations, Vol. 2007(2007), No. 108, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

RELATIONS BETWEEN THE SMALL FUNCTIONS AND THE SOLUTIONS OF CERTAIN SECOND-ORDER DIFFERENTIAL EQUATIONS

HUIFANG LIU, ZHIQIANG MAO

Abstract

In this paper, we investigate the relations between the small functions and the solutions, first, second derivatives, and differential polynomial of the solutions to the differential equation $$
f^{\prime \prime}+A_{1} e^{P(z)} f^{\prime}+A_{0} e^{Q(z)} f=0
$$ where $P(z)=a_{n} z^{n}+\cdots+a_{0}, Q(z)=b_{n} z^{n}+\cdots+b_{0}$ are polynomials with degree $n(n \geq 1), a_{i}, b_{i}(i=0,1, \ldots, n), a_{n} b_{n} \neq 0$ are complex constants, $A_{j}(z) \not \equiv 0(j=0,1)$ are entire functions with $\sigma\left(A_{j}\right)<n$.

1. Main Results

In this paper, we use the standard notation of Nevanlinna's value distribution theory [7]. In addition, we use notations $\sigma(f), \lambda(f), \bar{\lambda}(f)$ to denote the order of growth, the exponent of convergence of the zero-sequence and the sequence of distinct zeros of $f(z)$ respectively. A meromorphic function $g(z)$ is called a small function of a meromorphic function $f(z)$ if $T(r, g)=o(T(r, f))$, as $r \rightarrow+\infty$.

Consider the differential equation

$$
\begin{equation*}
f^{\prime \prime}+A_{1} e^{P(z)} f^{\prime}+A_{0} e^{Q(z)} f=0 \tag{1.1}
\end{equation*}
$$

where $P(z), Q(z)$ are polynomials with degree $n(n \geq 1), A_{j}(z) \not \equiv 0(j=0,1)$ are entire functions with $\sigma\left(A_{1}\right)<\operatorname{deg} P, \sigma\left(A_{0}\right)<\operatorname{deg} Q$. If $\operatorname{deg} P \neq \operatorname{deg} Q$, then every solution of (1.1) has infinite order [5, p. 419]. If $\operatorname{deg} P=\operatorname{deg} Q$, then equation 1.1) may have a solution of finite order. Indeed $f(z)=z$ satisfies $f^{\prime \prime}+z e^{z} f^{\prime}-e^{z} f=0$. Kwon [8] studied the growth of solutions of equation (1.1) with $\operatorname{deg} P=\operatorname{deg} Q$, and obtained the following result.

Theorem 1.1. Let $A_{j}(z) \not \equiv 0(j=0,1)$ be entire functions with $\sigma\left(A_{j}\right)<n$, $P(z)=a_{n} z^{n}+\cdots+a_{0}, Q(z)=b_{n} z^{n}+\cdots+b_{0}$ be polynomials with degree n $(n \geq 1)$, where $a_{i}, b_{i}(i=0,1, \ldots, n), a_{n} b_{n} \neq 0$ are complex constants such that $\arg a_{n} \neq \arg b_{n}$ or $a_{n}=c b_{n}(0<c<1)$. Then every solution $f \not \equiv 0$ of equation (1.1) has infinite order.

[^0]Chen and Shon [4] studied the differential equation

$$
\begin{equation*}
f^{\prime \prime}+A_{1} e^{a z} f^{\prime}+A_{0} e^{b z} f=0 \tag{1.2}
\end{equation*}
$$

and obtained
Theorem 1.2. Let $A_{j}(z) \not \equiv 0(j=0,1)$ be entire functions with $\sigma\left(A_{j}\right)<1$, a, b be complex constants such that $a b \neq 0$ and $\arg a \neq \arg b$ or $a=c b(0<c<1)$. If $\varphi(z) \not \equiv 0$ is an entire function with finite order, then every solution $f \not \equiv 0$ of equation (1.2) satisfies $\bar{\lambda}(f-\varphi)=\bar{\lambda}\left(f^{\prime}-\varphi\right)=\bar{\lambda}\left(f^{\prime \prime}-\varphi\right)=\infty$.

Theorem 1.3. Let $A_{j}(z), a, b$ satisfy the hypotheses of Theorem 1.2, $d_{0}(z), d_{1}(z)$, $d_{2}(z)$ be polynomials not all equal to zero, $\varphi(z) \not \equiv 0$ is an entire function of order less than 1. If $f \not \equiv 0$ is a solution of equation (1.2), then the differential polynomials $g(z)=d_{2} f^{\prime \prime}+d_{1} f^{\prime}+d_{0} f$ satisfy $\bar{\lambda}(g-\varphi)=\infty$.

In this paper we go deeply into the study of the relations of the small functions and solutions of the differential equation (1.1) and obtain the following theorem.

Theorem 1.4. Let $A_{j}(z) \not \equiv 0(j=0,1), P(z), Q(z)$ satisfy the hypotheses of Theorem 1.1. If $\varphi(z) \not \equiv 0$ is an entire function with finite order, then every solution $f \not \equiv 0$ of equation (1.1) satisfies $\bar{\lambda}(f-\varphi)=\bar{\lambda}\left(f^{\prime}-\varphi\right)=\bar{\lambda}\left(f^{\prime \prime}-\varphi\right)=\infty$.

Theorem 1.5. Let $\left.A_{j}(z) \not \equiv 0\right)(j=0,1), P(z), Q(z)$ satisfy the hypotheses of Theorem 1.1. $d_{0}(z), d_{1}(z), d_{2}(z)$ be polynomials that are not all equal to zero, $\varphi(z) \not \equiv 0$ is an entire function of order that is less than n. If $f \not \equiv 0$ is a solution of equation 1.1, then the differential polynomials $g(z)=d_{2} f^{\prime \prime}+d_{1} f^{\prime}+d_{0} f$ satisfy $\bar{\lambda}(g-\varphi)=\infty$.

2. Auxiliary Lemmas

Lemma 2.1 (3). Let $f(z)$ be a transcendental meromorphic function with $\sigma(f)=$ $\sigma<+\infty$. Then for any given $\varepsilon>0$, there is a set $E \subset[0,2 \pi)$ that has linear measure zero, such that if $\varphi \in[0,2 \pi) \backslash E$, then there is a constant $R_{0}=R_{0}(\varphi)>1$, such that for all z satisfying $\arg z=\varphi$ and $|z| \geq R_{0}$, we have $\exp \left\{-r^{\sigma+\varepsilon}\right\} \leq$ $|f(z)| \leq \exp \left\{r^{\sigma+\varepsilon}\right\}$.

Lemma 2.2. Let $P(z)=(\alpha+i \beta) z^{n}+\ldots(\alpha, \beta$ are real, $|\alpha|+|\beta| \neq 0)$ be a polynomial with degree $n \geq 1, A(z) \not \equiv 0$ be a meromorphic function with $\sigma(A)<n$. Set $g(z)=A(z) e^{P(z)}, z=r e^{i \theta}, \delta(P, \theta)=\alpha \cos n \theta-\beta \sin n \theta$, then for any given $\varepsilon>0$, there is a set $H_{1} \subset[0,2 \pi)$ that has linear measure zero, such that for any $\theta \in[0,2 \pi) \backslash\left(H_{1} \bigcup H_{2}\right)$ and a sufficiently large r, we have
(i) If $\delta(P, \theta)>0$, then

$$
\exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \leq\left|g\left(r e^{i \theta}\right)\right| \leq \exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\}
$$

(ii) If $\delta(P, \theta)<0$, then

$$
\exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \leq\left|g\left(r e^{i \theta}\right)\right| \leq \exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\}
$$

where $H_{2}=\{\theta \in[0,2 \pi) ; \delta(P, \theta)=0\}$ is a finite set.
Proof. Rewrite $g(z)$ as $g(z)=w e^{(\alpha+i \beta) z^{n}}$, where $w(z)=A(z) e^{P(z)-(\alpha+i \beta) z^{n}}$ is a meromorphic function with $\sigma(w)=s<n$. By lemma 2.1. for any given $\varepsilon(0<\varepsilon<n-s)$, there is a set $H_{1} \subset[0,2 \pi)$ that has linear measure zero, such that, if $\theta \in[0,2 \pi) \backslash H_{1}$, then there exists a constant $R=R(\theta)>1$, for all z
satisfying $\arg z=\theta$ and $|z| \geq R$, we have $\exp \left\{-r^{s+\varepsilon}\right\} \leq|w(z)| \leq \exp \left\{r^{s+\varepsilon}\right\}$. By $\left|e^{(\alpha+i \beta) z^{n}}\right|=e^{\operatorname{Re}(\alpha+i \beta) z^{n}=e^{\delta(P, \theta) r^{n}}}$, when $\theta \in[0,2 \pi) \backslash\left(H_{1} \bigcup H_{2}\right)$ and $|z|=r>R$, we have $\exp \left\{-r^{s+\varepsilon}+\delta(P, \theta) r^{n}\right\} \leq|g(z)| \leq \exp \left\{r^{s+\varepsilon}+\delta(P, \theta) r^{n}\right\}$. So by the above inequality and $\delta(P, \theta)>0$ or $\delta(P, \theta)<0$, we complete the proof.

Lemma $2.3\left([4)\right.$. Let $f(z)$ be an entire function with infinite order, $d_{j}(z)(j=$ $0,1,2)$ be polynomials that are not all equal to zero. Then

$$
w(z)=d_{2} f^{\prime \prime}+d_{1} f^{\prime}+d_{0} f
$$

has infinite order.
Lemma 2.4. Let $a_{i}, b_{i}(i=0,1 \ldots n)$ be complex constants such that $a_{n} b_{n} \neq 0$ and $\arg a_{n} \neq \arg b_{n}$ or $a_{n}=c b_{n}(0<c<1), P(z)=a_{n} z^{n}+\cdots+a_{0}, Q(z)=$ $b_{n} z^{n}+\cdots+b_{0}$. We denote index sets by

$$
\begin{gathered}
\Lambda_{1}=\{0, P\} ; \\
\Lambda_{2}=\{0, P, Q, 2 P, P+Q\} ; \\
\Lambda_{3}=\{0, P, Q, 2 P, P+Q, 2 Q, 3 P, 2 P+Q, P+2 Q\} ; \\
\Lambda_{4}=\{0, P, Q, 2 P, P+Q, 2 Q, 3 P, 2 P+Q, P+2 Q \\
3 Q, 4 P, 3 P+Q, 2 P+2 Q, P+3 Q\}
\end{gathered}
$$

Then
(i) If $H_{j}\left(j \in \Lambda_{1}\right)$ and H_{Q} are all meromorphic functions of orders that are less than $n, H_{Q} \not \equiv 0$, setting $\psi_{1}(z)=\Sigma_{j \in \Lambda_{1}} H_{j}(z) e^{j}$, then $\psi_{1}(z)+H_{Q} e^{Q} \not \equiv 0$.
(ii) If $H_{j}\left(j \in \Lambda_{2}\right)$ and $H_{2 Q}$ are all meromorphic functions of orders that are less than $n, H_{2 Q} \not \equiv 0$, setting $\psi_{2}(z)=\Sigma_{j \in \Lambda_{2}} H_{j}(z) e^{j}$, then $\psi_{2}(z)+$ $H_{2 Q} e^{2 Q} \not \equiv 0$.
(iii) If $H_{j}\left(j \in \Lambda_{3}\right)$ and $H_{3 Q}$ are all meromorphic functions of orders that are less than $n, H_{3 Q} \not \equiv 0$, setting $\psi_{3}(z)=\Sigma_{j \in \Lambda_{3}} H_{j}(z) e^{j}$, then $\psi_{3}(z)+H_{3 Q} e^{3 Q} \not \equiv 0$.
(iv) If $H_{j}\left(j \in \Lambda_{4}\right)$ and $H_{4 Q}$ are all meromorphic functions of orders that are less than $n, H_{4 Q} \not \equiv 0$, setting $\psi_{4}(z)=\Sigma_{j \in \Lambda_{4}} H_{j}(z) e^{j}$, then $\psi_{4}(z)+H_{4 Q} e^{4 Q} \not \equiv 0$.
(v) The derived function of $\psi_{j}(z)(j=1, \ldots, 4)$ keep the above properties of $\psi_{j}(z)$, and also it can be expressed by $\psi_{j}(z) . \psi_{j}(z)$ may be different at different places, but preserve the above properties. $\psi_{2}(z) \psi_{2}(z)$ (it denotes the product of two $\psi_{2}(z)$, and two $\psi_{2}(z)$ may be different.) is of properties of $\psi_{4}(z)$, we write $\psi_{2}(z) \psi_{2}(z)=\psi_{4}(z)$. Similarly we have

$$
\psi_{1}(z) \psi_{1}(z)=\psi_{2}(z), \psi_{1}(z) \psi_{2}(z)=\psi_{3}(z), \psi_{1}(z) \psi_{3}(z)=\psi_{4}(z)
$$

(vi) let $\psi_{20}(z), \psi_{21}(z), \psi_{22}(z)$ have the form of $\psi_{2}(z)$ which is defined as in (ii), $\varphi(z) \not \equiv 0$ is a meromorphic function with finite order and $H_{2 Q} \not \equiv 0$ are all meromorphic functions of orders that are less than n. Then

$$
\frac{\varphi^{\prime \prime}(z)}{\varphi(z)} \psi_{22}(z)+\frac{\varphi^{\prime}(z)}{\varphi(z)} \psi_{21}(z)+\psi_{20}(z)+H_{2 Q} e^{2 Q} \not \equiv 0 .
$$

Proof. Properties (i)-(iv) are similar, and the properties of $\psi_{j}(z)(j=1, \ldots, 4)$ in (v) are clear, so we only prove (ii) and (vi). For the proof of (ii). We consider two cases:
Case 1: $\arg a_{n} \neq \arg b_{n}$. Then $\arg \left(a_{n}+b_{n}\right), \arg a_{n}, \arg b_{n}$ are three distinct arguments. Set $\sigma\left(H_{0}\right)=\beta<n$, by Lemma 2.1. for any given $\varepsilon\left(0<\varepsilon<\min \left\{\frac{1}{5}, n-\right.\right.$ $\beta\})$, there exists a set $E_{0} \subset[0,2 \pi)$ that has linear measure zero, such that if
$\theta \in[0,2 \pi) \backslash E_{0}$, then there is a constant $R=R(\theta)>1$, such that for all z satisfying $\arg z=\theta$ and $|z|=r \geq R$, we have

$$
\begin{equation*}
\left|H_{0}(z)\right| \leq \exp \left\{r^{\beta+\varepsilon}\right\} \tag{2.1}
\end{equation*}
$$

By lemma 2.2, there exists a ray $\arg z=\theta \in[0,2 \pi) \backslash\left(E_{0} \cup E_{1} \cup E_{2}\right)$, where $E_{1} \subset[0,2 \pi)$ has linear measure zero, $E_{2}=\{\theta \in[0,2 \pi) ; \delta(P, \theta)=0$ or $\delta(Q, \theta)=0$ or $\delta(P+Q, \theta)=0\}$ is a finite set, such that $\delta(P, \theta)<0, \delta(P+Q, \theta)<0, \delta(Q, \theta)>0$, and for the above given ε, we have, when r is sufficiently large,

$$
\begin{align*}
\left|H_{2 Q} e^{2 Q}\right| & \geq \exp \left\{(1-\varepsilon) 2 \delta(Q, \theta) r^{n}\right\}, \tag{2.2}\\
\left|H_{Q} e^{Q}\right| & \leq \exp \left\{(1+\varepsilon) \delta(Q, \theta) r^{n}\right\}, \tag{2.3}\\
\left|H_{P+Q} e^{P+Q}\right| & \leq \exp \left\{(1-\varepsilon) \delta(P+Q, \theta) r^{n}\right\}<1, \tag{2.4}\\
\left|H_{2 P} e^{2 P}\right| & \leq \exp \left\{(1-\varepsilon) 2 \delta(P, \theta) r^{n}\right\}<1, \tag{2.5}\\
\left|H_{P} e^{P}\right| & \leq \exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\}<1 . \tag{2.6}
\end{align*}
$$

If $\psi_{2}(z)+H_{2 Q} e^{2 Q} \equiv 0$, then by 2.1$)-2.6$, we have

$$
\begin{aligned}
\exp \left\{(1-\varepsilon) 2 \delta(Q, \theta) r^{n}\right\} & \leq\left|H_{2 Q} e^{2 Q}\right| \\
& \leq \exp \left\{r^{\beta+\varepsilon}\right\}+\exp \left\{(1+\varepsilon) \delta(Q, \theta) r^{n}\right\}+3 \\
& \leq 3 \exp \left\{r^{\beta+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \delta(Q, \theta) r^{n}\right\}
\end{aligned}
$$

Because $2(1-\varepsilon)-(1+\varepsilon)=1-3 \varepsilon>\frac{2}{5}$, we have

$$
\exp \left\{\frac{2}{5} \delta(Q, \theta) r^{n}\right\} \leq 3 \exp \left\{r^{\beta+\varepsilon}\right\}
$$

This is a contradiction to $\beta+\varepsilon<n$. Hence $\psi_{2}(z)+H_{2 Q} e^{2 Q} \not \equiv 0$.
Case 2: $a_{n}=c b_{n}(0<c<1)$. Set $\sigma\left(H_{0}\right)=\beta<n$. By Lemmas 2.1 and 2.2, for any given $\varepsilon\left(0<\varepsilon<\min \left\{\frac{1-c}{5}, n-\beta\right\}\right)$, there exist set $E_{j} \subset[0,2 \pi)(j=0,1,2)$ that have linear measure zero, E_{j} are defined as in the case (1) respectively. We take the ray $\theta \in[0,2 \pi) \backslash\left(E_{0} \cup E_{1} \cup E_{2}\right)$, such that $\delta(Q, \theta)>0$, and when $|z|=r$ is sufficiently large, we have (2.1)-(2.3) and

$$
\begin{align*}
\left|H_{P+Q} e^{P+Q}\right| & \leq \exp \left\{(1+\varepsilon)(1+c) \delta(Q, \theta) r^{n}\right\} \tag{2.7}\\
\left|H_{2 P} e^{2 P}\right| & \leq \exp \left\{(1+\varepsilon) 2 c \delta(Q, \theta) r^{n}\right\} \tag{2.8}\\
\left|H_{P} e^{P}\right| & \leq \exp \left\{(1+\varepsilon) c \delta(Q, \theta) r^{n}\right\} \tag{2.9}
\end{align*}
$$

If $\psi_{2}(z)+H_{2 Q} e^{2 Q} \equiv 0$, then by (2.1)-(2.3), and 2.7)-2.9), we have

$$
\begin{align*}
\exp \left\{(1-\varepsilon) 2 \delta(Q, \theta) r^{n}\right\} \leq & \left|H_{2 Q} e^{2 Q}\right| \\
\leq & \exp \left\{r^{\beta+\varepsilon}\right\}+2 \exp \left\{(1+\varepsilon)(1+c) \delta(Q, \theta) r^{n}\right\} \\
& +\exp \left\{(1+\varepsilon) 2 c \delta(Q, \theta) r^{n}\right\}+\exp \left\{(1+\varepsilon) c \delta(Q, \theta) r^{n}\right\} . \tag{2.10}
\end{align*}
$$

Because $0<\varepsilon<\min \left\{\frac{1-c}{5}, n-\beta\right\}$, when $r \rightarrow+\infty$, we have

$$
\begin{gather*}
\frac{\exp \left\{r^{\beta+\varepsilon}\right\}}{\exp \left\{(1-\varepsilon) 2 \delta(Q, \theta) r^{n}\right\}} \rightarrow 0, \tag{2.11}\\
\frac{\exp \left\{(1+\varepsilon)(1+c) \delta(Q, \theta) r^{n}\right\}}{\exp \left\{(1-\varepsilon) 2 \delta(Q, \theta) r^{n}\right\}} \rightarrow 0, \tag{2.12}
\end{gather*}
$$

$$
\begin{align*}
& \frac{\exp \left\{(1+\varepsilon) 2 c \delta(Q, \theta) r^{n}\right\}}{\exp \left\{(1-\varepsilon) 2 \delta(Q, \theta) r^{n}\right\}} \rightarrow 0 \tag{2.13}\\
& \frac{\exp \left\{(1+\varepsilon) c \delta(Q, \theta) r^{n}\right\}}{\exp \left\{(1-\varepsilon) 2 \delta(Q, \theta) r^{n}\right\}} \rightarrow 0 \tag{2.14}
\end{align*}
$$

By $2.10-2.14$, we get a contradiction. Hence $\psi_{2}(z)+H_{2 Q} e^{2 Q} \not \equiv 0$.
Proof of (vi). By $\sigma(\varphi)<\infty$ and [6, p. 89] we know, for any given $\varepsilon>0$, there exists a set $E \subset[0,2 \pi)$ that has linear measure zero, if $\theta \in[0,2 \pi) \backslash E$, then there exists a constant $R=R(\theta)>1$, such that for all z satisfying $\arg z=\theta$ and $|z| \geq R$, we have

$$
\left|\frac{\varphi^{(k)}(z)}{\varphi(z)}\right| \leq|z|^{k(\sigma(\varphi)-1+\varepsilon)} \quad(k=1,2)
$$

So on the ray $\arg z=\theta \in[0,2 \pi) \backslash E, \frac{\varphi^{(k)}(z)}{\varphi(z)} H_{j}(z) e^{j}\left(k=1,2, j \in \Lambda_{2}\right)$ keep the properties of $H_{j} e^{j}$ which are defined as in (2.1), 2.3)-2.6) or 2.1, (2.3, (2.7)(2.9). Using a similar reasoning to that in the proof of (ii), we can prove (vi).

Lemma 2.5 ([2]). Suppose that $A_{0}, \ldots, A_{k-1}, F \not \equiv 0$ are finite-order meromorphic functions. If f is an infinite-order meromorphic solution of the equation

$$
f^{(k)}+A_{k-1} f^{(k-1)}+\cdots+A_{0} f=F
$$

then f satisfies $\bar{\lambda}(f)=\lambda(f)=\sigma(f)=\infty$.

3. Proofs of Theorems

Proof of Theorem 1.4. Suppose that $f(z) \not \equiv 0$ is a solution of 1.1). First of all we prove that $\bar{\lambda}(f-\varphi)=\infty$. Set $g_{0}=f-\varphi$, then $\sigma\left(g_{0}\right)=\sigma(f)=\infty, \lambda\left(g_{0}\right)=\bar{\lambda}(f-\varphi)$. Substituting $f=g_{0}+\varphi, f^{\prime}=g_{0}^{\prime}+\varphi^{\prime}, f^{\prime \prime}=g_{0}^{\prime \prime}+\varphi^{\prime \prime}$ into equation (1.1), we have

$$
\begin{equation*}
g_{0}^{\prime \prime}+A_{1} e^{P(z)} g_{0}^{\prime}+A_{0} e^{Q(z)} g_{0}=-\left(\varphi^{\prime \prime}+A_{1} e^{P(z)} \varphi^{\prime}+A_{0} e^{Q(z)} \varphi\right) \tag{3.1}
\end{equation*}
$$

We remark that (3.1) may have finite-order solution (For example when $\varphi(z)=z$, $g_{0}=-z$ solves the equation (3.1)). But here we discuss only the case $\sigma\left(g_{0}\right)=\infty$.

By $\varphi(z)$ being a finite-order entire function and Theorem 1.1, we know $\varphi^{\prime \prime}+$ $A_{1} e^{P(z)} \varphi^{\prime}+A_{0} e^{Q(z)} \varphi \not \equiv 0$. Hence by lemma 2.5. we have $\bar{\lambda}\left(g_{0}\right)=\sigma\left(g_{0}\right)=\infty$, i.e. $\bar{\lambda}(f-\varphi)=\infty$.

Secondly we prove $\bar{\lambda}\left(f^{\prime}-\varphi\right)=\infty$. Set $g_{1}=f^{\prime}-\varphi$, then $\sigma\left(g_{1}\right)=\sigma\left(f^{\prime}\right)=\sigma(f)=$ $\infty, \bar{\lambda}\left(g_{1}\right)=\bar{\lambda}\left(f^{\prime}-\varphi\right)$. Differentiating both sides of equation 1.1), we get

$$
\begin{equation*}
f^{\prime \prime \prime}+A_{1} e^{P(z)} f^{\prime \prime}+\left[\left(A_{1} e^{P(z)}\right)^{\prime}+A_{0} e^{Q(z)}\right] f^{\prime}+\left(A_{0} e^{Q(z)}\right)^{\prime} f=0 \tag{3.2}
\end{equation*}
$$

Substituting $f=-\frac{1}{A_{0} e^{Q(z)}}\left[f^{\prime \prime}+A_{1} e^{P(z)} f^{\prime}\right]$ into 3.2 , we get
$f^{\prime \prime \prime}+\left[A_{1} e^{P(z)}-\frac{\left(A_{0} e^{Q(z)}\right)^{\prime}}{A_{0} e^{Q(z)}}\right] f^{\prime \prime}+\left[\left(A_{1} e^{P(z)}\right)^{\prime}+A_{0} e^{Q(z)}-\frac{\left(A_{0} e^{Q(z)}\right)^{\prime}}{A_{0} e^{Q(z)}} A_{1} e^{P(z)}\right] f^{\prime}=0$.
Substituting $f^{\prime}=g_{1}+\varphi, f^{\prime \prime}=g_{1}^{\prime}+\varphi^{\prime}$, $f^{\prime \prime \prime}=g_{1}^{\prime \prime}+\varphi^{\prime \prime}$ into equation (3.3), we get

$$
\begin{equation*}
g_{1}^{\prime \prime}+h_{1} g_{1}^{\prime}+h_{0} g_{1}=h \tag{3.4}
\end{equation*}
$$

where $h_{1}=A_{1} e^{P(z)}-\frac{\left(A_{0} e^{Q(z)}\right)^{\prime}}{A_{0} e^{Q(z)}}$,

$$
h_{0}=\left(A_{1} e^{P(z)}\right)^{\prime}+A_{0} e^{Q(z)}-\frac{\left(A_{0} e^{Q(z)}\right)^{\prime}}{A_{0} e^{Q(z)}} A_{1} e^{P(z)}
$$

$-h=\varphi^{\prime \prime}-\left(\frac{A_{0}^{\prime}}{A_{0}}+Q^{\prime}\right) \varphi^{\prime}+\left[A_{1} \varphi^{\prime}+A_{1}^{\prime} \varphi+P^{\prime} A_{1} \varphi-\frac{A_{0}^{\prime}}{A_{0}} A_{1} \varphi-Q^{\prime} A_{1} \varphi\right] e^{P}+A_{0} \varphi e^{Q}$.
Now we prove $h \not \equiv 0$. If $h \equiv 0$, then

$$
\begin{equation*}
\frac{\varphi^{\prime \prime}}{\varphi}-\left(\frac{A_{0}^{\prime}}{A_{0}}+Q^{\prime}\right) \frac{\varphi^{\prime}}{\varphi}+\left[\frac{\varphi^{\prime}}{\varphi}+\frac{A_{1}^{\prime}}{A_{1}}+P^{\prime}-\frac{A_{0}^{\prime}}{A_{0}}-Q^{\prime}\right] A_{1} e^{P}+A_{0} e^{Q}=0 \tag{3.5}
\end{equation*}
$$

By $\sigma(\varphi)<\infty, \sigma\left(A_{j}\right)<n(j=0,1)$ and [6, p. 89], for any given $0<\varepsilon<\frac{1-c}{1+2 c}$ (c is defined as in Theorem 1.4), there exists a set $E_{0} \subset[0,2 \pi)$ that has linear measure zero, if $\theta \in[0,2 \pi) \backslash E_{0}$, then there exists a constant $R=R(\theta)>1$, such that for all z satisfying $\arg z=\theta$ and $|z| \geq R$, we have

$$
\begin{align*}
&\left|\frac{\varphi^{(k)}(z)}{\varphi(z)}\right| \leq|z|^{k(\sigma(\varphi)-1+\varepsilon)}(k=1,2) \tag{3.6}\\
&\left|\frac{A_{j}^{\prime}(z)}{A_{j}(z)}\right| \leq|z|^{\sigma\left(A_{j}\right)-1+\varepsilon} \quad(j=0,1) \tag{3.7}
\end{align*}
$$

Since $P(z), Q(z)$ are polynomials with degree n, when $|z|=r$ is sufficiently large, we have

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \leq r^{n} \quad \text { and } \quad\left|Q^{\prime}(z)\right| \leq r^{n} \tag{3.8}
\end{equation*}
$$

So by $(3.6)-(3.8)$, there exists a positive constant M, such that for all z satisfying $\arg z=\theta \in[0,2 \pi) \backslash E_{0}$, we have, when $|z|=r$ is sufficiently large,

$$
\begin{gather*}
\left|\left(\frac{A_{0}^{\prime}}{A_{0}}+Q^{\prime}\right) \frac{\varphi^{\prime}}{\varphi}\right| \leq r^{M} \tag{3.9}\\
\left|\frac{\varphi^{\prime}}{\varphi}+\frac{A_{1}^{\prime}}{A_{1}}+P^{\prime}-\frac{A_{0}^{\prime}}{A_{0}}-Q^{\prime}\right| \leq r^{M} \tag{3.10}
\end{gather*}
$$

If $\arg a_{n} \neq \arg b_{n}$, then by lemma 2.2 , there exists a ray $\arg z=\theta \in[0,2 \pi) \backslash\left(E_{0} \cup\right.$ $\left.E_{1} \cup E_{2}\right), E_{1} \subset[0,2 \pi)$ having linear measure zero, $E_{2}=\{\theta \in[0,2 \pi) ; \delta(P, \theta)=0$ or $\delta(Q, \theta)=0\}$ being a finite set, such that $\delta(P, \theta)<0, \delta(Q, \theta)>0$, and for the above given ε, we have, when r is sufficiently large,

$$
\begin{gather*}
\left|A_{0} e^{Q}\right| \geq \exp \left\{(1-\varepsilon) \delta(Q, \theta) r^{n}\right\} \tag{3.11}\\
\left|A_{1} e^{P}\right| \leq \exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\}<1 \tag{3.12}
\end{gather*}
$$

So by $(\sqrt{3.5}),(\sqrt{3.6})$ and $(3.9)-(3.12)$, we get

$$
\exp \left\{(1-\varepsilon) \delta(Q, \theta) r^{n}\right\} \leq\left|A_{0} e^{Q}\right| \leq r^{2(\sigma(\varphi)-1+\varepsilon)}+r^{M}+r^{M}
$$

This is absurd.
If $a_{n}=c b_{n}(0<c<1)$, then by lemma 2.2, there exists a ray $\arg z=\theta \in$ $[0,2 \pi) \backslash\left(E_{0} \cup E_{1} \cup E_{2}\right)$, where E_{0}, E_{1} and E_{2} are defined as the above, such that $\delta(Q, \theta)>0$, and for the above given ε, when r is sufficiently large, we have (3.11) and

$$
\begin{equation*}
\left|A_{1} e^{P}\right| \leq \exp \left\{(1+\varepsilon) c \delta(Q, \theta) r^{n}\right\} \tag{3.13}
\end{equation*}
$$

So by (3.5), (3.6, (3.9)-3.11) and 3.13), we get

$$
\begin{aligned}
\exp \left\{(1-\varepsilon) \delta(Q, \theta) r^{n}\right\} & \leq\left|A_{0} e^{Q}\right| \\
& \leq r^{2(\sigma(\varphi)-1+\varepsilon)}+r^{M}+r^{M} \exp \left\{(1+\varepsilon) c \delta(Q, \theta) r^{n}\right\} \\
& \leq 3 \exp \left\{(1+2 \varepsilon) c \delta(Q, \theta) r^{n}\right\}
\end{aligned}
$$

This is a contradiction to $0<\varepsilon<\frac{1-c}{1+2 c}$. From the above proof, we get $h \not \equiv 0$. From $h \not \equiv 0$ and lemma 2.5 we get $\bar{\lambda}\left(g_{1}\right)=\sigma\left(g_{1}\right)=\infty$. Hence $\bar{\lambda}\left(f^{\prime}-\varphi\right)=\infty$.

Finally we prove that $\bar{\lambda}\left(f^{\prime \prime}-\varphi\right)=\infty$. Set $g_{2}=f^{\prime \prime}-\varphi$, then $\sigma\left(g_{2}\right)=\sigma\left(f^{\prime \prime}\right)=$ $\sigma(f)=\infty, \bar{\lambda}\left(g_{2}\right)=\bar{\lambda}\left(f^{\prime \prime}-\varphi\right)$. Differentiating both sides of equation 3.2), we get $f^{(4)}+A_{1} e^{P} f^{\prime \prime \prime}+\left[2\left(A_{1} e^{P}\right)^{\prime}+A_{0} e^{Q}\right] f^{\prime \prime}+\left[\left(A_{1} e^{P}\right)^{\prime \prime}+2\left(A_{0} e^{Q}\right)^{\prime}\right] f^{\prime}+\left(A_{0} e^{Q}\right)^{\prime \prime} f=0$.

Substituting $f=-\frac{1}{A_{0} e^{Q}}\left[f^{\prime \prime}+A_{1} e^{P} f^{\prime}\right]$ into (3.14, we get

$$
\begin{align*}
& f^{(4)}+A_{1} e^{P} f^{\prime \prime \prime}+\left[2\left(A_{1} e^{P}\right)^{\prime}+A_{0} e^{Q}-\frac{\left(A_{0} e^{Q}\right)^{\prime \prime}}{A_{0} e^{Q}}\right] f^{\prime \prime} \\
&+\left[\left(A_{1} e^{P}\right)^{\prime \prime}+2\left(A_{0} e^{Q}\right)^{\prime}-\frac{\left(A_{0} e^{Q}\right)^{\prime \prime}}{A_{0} e^{Q}} A_{1} e^{P}\right] f^{\prime}=0 \tag{3.15}
\end{align*}
$$

By (3.3) and (3.15), we have

$$
\begin{equation*}
f^{(4)}+H_{3} f^{\prime \prime \prime}+H_{2} f^{\prime \prime}=0 \tag{3.16}
\end{equation*}
$$

where

$$
\begin{gather*}
H_{3}=A_{1} e^{P}-\frac{\varphi_{1}(z)}{\varphi_{2}(z)} \tag{3.17}\\
H_{2}=2\left(A_{1} e^{P}\right)^{\prime}+A_{0} e^{Q}-\frac{\left(A_{0} e^{Q}\right)^{\prime \prime}}{A_{0} e^{Q}}-\frac{\varphi_{1}(z)}{\varphi_{2}(z)}\left[A_{1} e^{P}-\frac{\left(A_{0} e^{Q}\right)^{\prime}}{A_{0} e^{Q}}\right] \tag{3.18}\\
\varphi_{1}(z)=\left(A_{1} e^{P}\right)^{\prime \prime}+2\left(A_{0} e^{Q}\right)^{\prime}-\frac{\left(A_{0} e^{Q}\right)^{\prime \prime}}{A_{0} e^{Q}} A_{1} e^{P} \tag{3.19}\\
\varphi_{2}(z)=\left(A_{1} e^{P}\right)^{\prime}+A_{0} e^{Q}-\frac{\left(A_{0} e^{Q}\right)^{\prime}}{A_{0} e^{Q}} A_{1} e^{P} \tag{3.20}
\end{gather*}
$$

and $\varphi_{2}(z) \not \equiv 0$ by Lemma 2.4 (i). Clearly, $H_{3}, H_{2}, \varphi_{1}(z), \varphi_{2}(z)$ are meromorphic functions with $\sigma\left(\varphi_{k}\right) \leq n(k=1,2), \sigma\left(H_{j}\right) \leq n(j=2,3)$.

Substituting $f^{\prime \prime}=g_{2}+\varphi, f^{\prime \prime \prime}=g_{2}^{\prime}+\varphi^{\prime}, f^{(4)}=g_{2}^{\prime \prime}+\varphi^{\prime \prime}$ into 3.16),

$$
g_{2}^{\prime \prime}+H_{3} g_{2}^{\prime}+H_{2} g_{2}=-\left(\varphi^{\prime \prime}+H_{3} \varphi^{\prime}+H_{2} \varphi\right)
$$

If we can prove that $-\left(\varphi^{\prime \prime}+H_{3} \varphi^{\prime}+H_{2} \varphi\right) \not \equiv 0$, then by lemma 2.5, we get $\bar{\lambda}\left(g_{2}\right)=$ $\sigma\left(g_{2}\right)=\infty$. Hence $\bar{\lambda}\left(f^{\prime \prime}-\varphi\right)=\infty$. Now we prove $-\left(\varphi^{\prime \prime}+H_{3} \varphi^{\prime}+H_{2} \varphi\right) \not \equiv 0$. Notice that

$$
\begin{gathered}
\left(A_{1} e^{P}\right)^{\prime}=\left(A_{1}^{\prime}+A_{1} P^{\prime}\right) e^{P}, \quad\left(A_{1} e^{P}\right)^{\prime \prime}=\left(A_{1}^{\prime \prime}+2 A_{1}^{\prime} P^{\prime}+A_{1}\left(P^{\prime}\right)^{2}+A_{1} P^{\prime \prime}\right) e^{P} \\
\frac{\left(A_{0} e^{Q}\right)^{\prime}}{A_{0} e^{Q}}=\frac{A_{0}^{\prime}}{A_{0}}+Q^{\prime}, \quad \frac{\left(A_{0} e^{Q}\right)^{\prime \prime}}{A_{0} e^{Q}}=\frac{A_{0}^{\prime \prime}}{A_{0}}+2 \frac{A_{0}^{\prime}}{A_{0}} Q^{\prime}+\left(Q^{\prime}\right)^{2}+Q^{\prime \prime}
\end{gathered}
$$

So by (3.17)-3.20), we have

$$
\begin{gather*}
\varphi_{1}(z)=B_{1} e^{P}+2\left(A_{0}^{\prime}+A_{0} Q^{\prime}\right) e^{Q} \tag{3.21}\\
\varphi_{2}(z)=B_{2} e^{P}+A_{0} e^{Q} \tag{3.22}\\
H_{3}=\frac{1}{\varphi_{2}(z)} H_{4} \tag{3.23}\\
H_{2}=\frac{1}{\varphi_{2}(z)}\left[A_{0}^{2} e^{2 Q}+H_{5}\right] \tag{3.24}
\end{gather*}
$$

where

$$
\begin{gathered}
H_{5}=\left[2 A_{0}\left(A_{1}^{\prime}+A_{1} P^{\prime}\right)+A_{0} B_{2}-2 A_{1}\left(A_{0}^{\prime}+A_{0} Q^{\prime}\right)\right] e^{P+Q} \\
+\left[2 B_{2}\left(A_{1}^{\prime}+A_{1} P^{\prime}\right)-A_{1} B_{1}\right] e^{2 P}-\left[A_{0}^{\prime \prime}+2 A_{0}^{\prime} Q^{\prime}+A_{0}\left(Q^{\prime}\right)^{2}\right. \\
\left.+A_{0} Q^{\prime \prime}-2\left(\frac{A_{0}^{\prime}}{A_{0}}+Q^{\prime}\right)\left(A_{0}^{\prime}+A_{0} Q^{\prime}\right)\right] e^{Q} \\
-\left[B_{2}\left(\frac{A_{0}^{\prime \prime}}{A_{0}}+2 \frac{A_{0}^{\prime}}{A_{0}} Q^{\prime}+\left(Q^{\prime}\right)^{2}+Q^{\prime \prime}\right)-B_{1}\left(\frac{A_{0}^{\prime}}{A_{0}}+Q^{\prime}\right)\right] e^{P} \\
H_{4}=A_{1} A_{0} e^{P+Q}+A_{1} B_{2} e^{2 P}-2\left(A_{0}^{\prime}+A_{0} Q^{\prime}\right) e^{Q}-B_{1} e^{P} \\
B_{1}=A_{1}^{\prime \prime}+2 A_{1}^{\prime} P^{\prime}+A_{1}\left(P^{\prime}\right)^{2}+A_{1} P^{\prime \prime}-\frac{A_{1}}{A_{0}}\left(A_{0}^{\prime \prime}+2 A_{0}^{\prime} Q^{\prime}+A_{0}\left(Q^{\prime}\right)^{2}+A_{0} Q^{\prime \prime}\right) \\
B_{2}=A_{1}^{\prime}+A_{1} P^{\prime}-A_{1}\left(\frac{A_{0}^{\prime}}{A_{0}}+Q^{\prime}\right)
\end{gathered}
$$

Clearly, B_{1}, B_{2} are meromorphic functions with $\sigma\left(B_{j}\right)<n(j=1,2)$. By 3.22)(3.24), we see that

$$
-\left(\frac{\varphi^{\prime \prime}}{\varphi}+H_{3} \frac{\varphi^{\prime}}{\varphi}+H_{2}\right)=-\frac{1}{\varphi_{2}(z)}\left\{\frac{\varphi^{\prime \prime}}{\varphi} \varphi_{2}(z)+\frac{\varphi^{\prime}}{\varphi} H_{4}+H_{5}+A_{0}^{2} e^{2 Q}\right\}
$$

As $\varphi_{2}(z), H_{4}, H_{5}$ have the form of $\psi_{2}(z)$ which is defined as in lemma 2.4 (ii), so by lemma 2.4 (i) and (vi), we get $\frac{\varphi^{\prime \prime}}{\varphi} \varphi_{2}(z)+\frac{\varphi^{\prime}}{\varphi} H_{4}+H_{5}+A_{0}^{2} e^{2 Q} \not \equiv 0, \varphi_{2}(z) \not \equiv 0$. Hence $-\left(\varphi^{\prime \prime}+H_{3} \varphi^{\prime}+H_{2} \varphi\right) \not \equiv 0$.

Proof of Theorem 1.5. First, we suppose $d_{2} \not \equiv 0$. Suppose that $f \not \equiv 0$ is a solution of equation (1.1), by Theorem 1.1 we have $\sigma(f)=\infty$. Set $w=d_{2} f^{\prime \prime}+d_{1} f^{\prime}+d_{0} f-\varphi$, then $\sigma(w)=\sigma(g)=\sigma(f)=\infty$ by lemma 2.3 .

To prove that $\bar{\lambda}(g-\varphi)=\infty$, we need to prove only that $\bar{\lambda}(w)=\infty$. Substituting $f^{\prime \prime}=-A_{1} e^{P} f^{\prime}-A_{0} e^{Q} f$ into w, we get

$$
\begin{equation*}
w=\left(d_{1}-d_{2} A_{1} e^{P}\right) f^{\prime}+\left(d_{0}-d_{2} A_{0} e^{Q}\right) f-\varphi \tag{3.25}
\end{equation*}
$$

Differentiating both sides of equation (3.25), and replacing $f^{\prime \prime}$ with $f^{\prime \prime}=-A_{1} e^{P} f^{\prime}-$ $A_{0} e^{Q} f$, we obtain

$$
\begin{align*}
w^{\prime}= & {\left[d_{2} A_{1}^{2} e^{2 P}-\left(\left(d_{2} A_{1}\right)^{\prime}+P^{\prime} d_{2} A_{1}+d_{1} A_{1}\right) e^{P}-d_{2} A_{0} e^{Q}+d_{0}+d_{1}^{\prime}\right] f^{\prime} } \\
& +\left[d_{2} A_{0} A_{1} e^{P+Q}-\left(\left(d_{2} A_{0}\right)^{\prime}+Q^{\prime} d_{2} A_{0}+d_{1} A_{0}\right) e^{Q}+d_{0}^{\prime}\right] f-\varphi^{\prime} \tag{3.26}
\end{align*}
$$

Set

$$
\begin{gathered}
\alpha_{1}=d_{1}-d_{2} A_{1} e^{P}, \quad \alpha_{0}=d_{0}-d_{2} A_{0} e^{Q} \\
\beta_{1}=d_{2} A_{1}^{2} e^{2 P}-\left(\left(d_{2} A_{1}\right)^{\prime}+P^{\prime} d_{2} A_{1}+d_{1} A_{1}\right) e^{P}-d_{2} A_{0} e^{Q}+d_{0}+d_{1}^{\prime} \\
\beta_{0}=d_{2} A_{0} A_{1} e^{P+Q}-\left(\left(d_{2} A_{0}\right)^{\prime}+Q^{\prime} d_{2} A_{0}+d_{1} A_{0}\right) e^{Q}+d_{0}^{\prime}
\end{gathered}
$$

Then we have

$$
\begin{gathered}
\alpha_{1} f^{\prime}+\alpha_{0} f=w+\varphi \\
\beta_{1} f^{\prime}+\beta_{0} f=w^{\prime}+\varphi^{\prime}
\end{gathered}
$$

Set

$$
\begin{align*}
h= & \alpha_{1} \beta_{0}-\alpha_{0} \beta_{1} \\
= & {\left[d_{1}-d_{2} A_{1} e^{P}\right]\left[d_{2} A_{0} A_{1} e^{P+Q}-\left(\left(d_{2} A_{0}\right)^{\prime}+Q^{\prime} d_{2} A_{0}+d_{1} A_{0}\right) e^{Q}+d_{0}^{\prime}\right] } \\
& -\left[d_{0}-d_{2} A_{0} e^{Q}\right]\left[d_{2} A_{1}^{2} e^{2 P}-\left(\left(d_{2} A_{1}\right)^{\prime}+P^{\prime} d_{2} A_{1}+d_{1} A_{1}\right) e^{P}\right. \tag{3.27}\\
& \left.-d_{2} A_{0} e^{Q}+d_{0}+d_{1}^{\prime}\right] .
\end{align*}
$$

Now check all terms of h. Since the term $\pm d_{2}^{2} A_{1}^{2} A_{0} e^{2 P+Q}$ is eliminated, by (3.27) we can write

$$
\begin{equation*}
h=\psi_{2}(z)-d_{2}^{2} A_{0}^{2} e^{2 Q} \tag{3.28}
\end{equation*}
$$

where $\psi_{2}(z)$ is defined as in lemma 2.4 (ii). By $d_{2} \not \equiv 0, A_{0} \not \equiv 0$ and lemma 2.4 (ii), we see that $h \not \equiv 0$. By 3.25 and 3.26 , we obtain

$$
\begin{align*}
f^{\prime}= & \frac{1}{h}\left\{-\left(d_{0}-d_{2} A_{0} e^{Q}\right)\left(w^{\prime}+\varphi^{\prime}\right)\right. \\
& \left.+\left[d_{2} A_{0} A_{1} e^{P+Q}-\left(\left(d_{2} A_{0}\right)^{\prime}+Q^{\prime} d_{2} A_{0}+d_{1} A_{0}\right) e^{Q}+d_{0}^{\prime}\right](w+\varphi)\right\} \\
= & \frac{1}{h}\left\{-\left(d_{0}-d_{2} A_{0} e^{Q}\right) w^{\prime}+\Phi_{10} w+\varphi d_{2} A_{0} A_{1} e^{P+Q}\right. \tag{3.29}\\
& \left.+\left[d_{2} A_{0} \varphi^{\prime}-\left(\left(d_{2} A_{0}\right)^{\prime}+Q^{\prime} d_{2} A_{0}+d_{1} A_{0}\right) \varphi\right] e^{Q}+\psi_{1}\right\}
\end{align*}
$$

where Φ_{10} is an entire function with $\sigma\left(\Phi_{10}\right) \leq n, \psi_{1}$ is defined as in lemma 2.4 (i).

$$
\begin{align*}
f= & \frac{1}{h}\left\{\left(d_{1}-d_{2} A_{1} e^{P}\right)\left(w^{\prime}+\varphi^{\prime}\right)\right. \\
& \left.-\left[d_{2} A_{1}^{2} e^{2 P}-\left(\left(d_{2} A_{1}\right)^{\prime}+P^{\prime} d_{2} A_{1}+d_{1} A_{1}\right) e^{P}-d_{2} A_{0} e^{Q}+d_{0}+d_{1}^{\prime}\right](w+\varphi)\right\} \\
= & \frac{1}{h}\left\{\left(d_{1}-d_{2} A_{1} e^{P}\right) w^{\prime}+\Phi_{00} w-\varphi d_{2} A_{1}^{2} e^{2 P}+\varphi d_{2} A_{0} e^{Q}+\psi_{1}\right\}, \tag{3.30}
\end{align*}
$$

where Φ_{00} is an entire function with $\sigma\left(\Phi_{00}\right) \leq n, \psi_{1}$ is defined as in lemma 2.4 (i). Differentiating both sides of equation (3.29), and by 3.28, we get

$$
\begin{equation*}
f^{\prime \prime}=\frac{1}{h^{2}}\left\{\left(-d_{2}^{3} A_{0}^{3} e^{3 Q}+\psi_{3}\right) w^{\prime \prime}+\Phi_{21} w^{\prime}+\Phi_{20} w+\psi_{4}\right\} \tag{3.31}
\end{equation*}
$$

where Φ_{21} and Φ_{20} are entire functions with $\sigma\left(\Phi_{21}\right) \leq n, \sigma\left(\Phi_{20}\right) \leq n, \psi_{3}, \psi_{4}$ are defined as in lemma 2.4 (iii)-(iv). Substituting (3.28)-(3.31) into 1.1), we obtain

$$
\begin{aligned}
& \left(-d_{2}^{3} A_{0}^{3} e^{3 Q}+\psi_{3}\right) w^{\prime \prime}+\Phi_{21} w^{\prime}+\Phi_{20} w+\psi_{4} \\
& +A_{1} e^{P(z)}\left(\psi_{2}(z)-d_{2}^{2} A_{0}^{2} e^{2 Q}\right)\left\{-\left(d_{0}-d_{2} A_{0} e^{Q}\right) w^{\prime}+\Phi_{10} w+\varphi d_{2} A_{0} A_{1} e^{P+Q}\right. \\
& \left.+\left[d_{2} A_{0} \varphi^{\prime}-\left(\left(d_{2} A_{0}\right)^{\prime}+Q^{\prime} d_{2} A_{0}+d_{1} A_{0}\right) \varphi\right] e^{Q}+\psi_{1}\right\} \\
& +A_{0} e^{Q(z)}\left(\psi_{2}(z)-d_{2}^{2} A_{0}^{2} e^{2 Q}\right)\left\{\left(d_{1}-d_{2} A_{1} e^{P}\right) w^{\prime}\right. \\
& \left.+\Phi_{00} w-\varphi d_{2} A_{1}^{2} e^{2 P}+\varphi d_{2} A_{0} e^{Q}+\psi_{1}\right\}=0,
\end{aligned}
$$

namely

$$
\begin{equation*}
\left(-d_{2}^{3} A_{0}^{3} e^{3 Q}+\psi_{3}\right) w^{\prime \prime}+\Phi_{1} w^{\prime}+\Phi_{0} w=F \tag{3.32}
\end{equation*}
$$

where Φ_{1} and Φ_{0} are entire functions with $\sigma\left(\Phi_{1}\right) \leq n, \sigma\left(\Phi_{0}\right) \leq n$, and

$$
\begin{align*}
-F= & \psi_{4}+\left(A_{1} e^{P} \psi_{2}-d_{2}^{2} A_{1} A_{0}^{2} e^{(P+2 Q)}\right)\left(\varphi d_{2} A_{0} A_{1} e^{P+Q}\right. \\
& \left.\left.+\left[d_{2} A_{0} \varphi^{\prime}-\left(\left(d_{2} A_{0}\right)^{\prime}+Q^{\prime} d_{2} A_{0}+d_{1} A_{0}\right) \varphi\right] e^{Q}+\psi_{1}\right)\right) \\
& +\left(A_{0} e^{Q} \psi_{2}-d_{2}^{2} A_{0}^{3} e^{3 Q}\right)\left(-\varphi d_{2} A_{1}^{2} e^{2 P}+\varphi d_{2} A_{0} e^{Q}+\psi_{1}\right) \\
= & \psi_{4}+A_{1}^{2} A_{0} \psi_{2} \varphi d_{2} e^{2 P+Q}+A_{1} \psi_{2}\left[d_{2} A_{0} \varphi^{\prime}-\left(d_{2} A_{0}\right)^{\prime} \varphi-Q^{\prime} d_{2} A_{0} \varphi\right. \\
& \left.-d_{1} A_{0} \varphi\right] e^{P+Q}+A_{1} e^{P} \psi_{1} \psi_{2}-d_{2}^{2} A_{1} A_{0}^{2} e^{(P+2 Q)} \psi_{1}-d_{2}^{2} A_{1} A_{0}^{2}\left[d_{2} A_{0} \varphi^{\prime}\right. \tag{3.33}\\
& \left.-\left(d_{2} A_{0}\right)^{\prime} \varphi-Q^{\prime} d_{2} A_{0} \varphi-d_{1} A_{0} \varphi\right] e^{P+3 Q}-d_{2}^{3} A_{0}^{3} A_{1}^{2} \varphi e^{2 P+3 Q} \\
& -\varphi \psi_{2} d_{2} A_{0} A_{1}^{2} e^{2 P+Q}+\varphi d_{2}^{3} A_{1}^{2} A_{0}^{3} e^{2 P+3 Q}+\psi_{2} \varphi d_{2} A_{0}^{2} e^{2 Q} \\
& -\varphi d_{2}^{3} A_{0}^{4} e^{4 Q}+A_{0} e^{Q} \psi_{1} \psi_{2}-d_{2}^{2} A_{0}^{3} e^{3 Q} \psi_{1} .
\end{align*}
$$

Since every ψ_{2} in (3.33) is equal to that in (3.28), so the terms $\pm A_{1}^{2} A_{0} \psi_{2} \varphi d_{2} e^{2 P+Q}$ and $\pm \varphi d_{2}^{3} A_{1}^{2} A_{0}^{3} e^{2 P+3 Q}$ are eliminated. By lemma 2.4 (iv), we know that

$$
\begin{gathered}
A_{1} \psi_{2}\left[d_{2} A_{0} \varphi^{\prime}-\left(d_{2} A_{0}\right)^{\prime} \varphi-Q^{\prime} d_{2} A_{0} \varphi-d_{1} A_{0} \varphi\right] e^{P+Q}, \\
A_{1} e^{P} \psi_{1} \psi_{2}, \quad-d_{2}^{2} A_{1} A_{0}^{2} e^{(P+2 Q)} \psi_{1}, \\
-d_{2}^{2} A_{1} A_{0}^{2}\left[d_{2} A_{0} \varphi^{\prime}-\left(d_{2} A_{0}\right)^{\prime} \varphi-Q^{\prime} d_{2} A_{0} \varphi-d_{1} A_{0} \varphi\right] e^{P+3 Q}, \\
\psi_{2} \varphi d_{2} A_{0}^{2} e^{2 Q}, \quad A_{0} e^{Q} \psi_{1} \psi_{2}, \quad-d_{2}^{2} A_{0}^{3} e^{3 Q} \psi_{1}
\end{gathered}
$$

having all forms of ψ_{4}, by 3.33), we obtain

$$
\begin{equation*}
-F=-\varphi d_{2}^{3} A_{0}^{4} e^{4 Q}+\psi_{4} \tag{3.34}
\end{equation*}
$$

By lemma 2.4 (iii)-(iv) and $d_{2} \not \equiv 0, \varphi \not \equiv 0, A_{0} \not \equiv 0$ and $\sigma(\varphi)<n$, we see that

$$
\begin{equation*}
F \not \equiv 0, \quad-d_{2}^{3} A_{0}^{3} e^{3 Q}+\psi_{3} \not \equiv 0 \tag{3.35}
\end{equation*}
$$

By equation (3.32), lemma 2.5, $\sigma(w)=\infty$ and (3.35), we obtain $\bar{\lambda}(w)=\sigma(w)=\infty$.
Now suppose $d_{2} \equiv 0, d_{1} \not \equiv 0, d_{0} \not \equiv 0$. Using a similar reasoning to that above, we get $\bar{\lambda}(w)=\sigma(w)=\infty$. Finally, if $d_{2} \equiv 0, d_{1} \not \equiv 0, d_{0} \equiv 0$ or $d_{2} \equiv 0, d_{1} \equiv 0$, $d_{0} \not \equiv 0$, then for $w=d_{j} f^{(j)}-\varphi(j=1$ or 0$)$, we can consider $\frac{w}{d_{j}}=f^{(j)}-\frac{\varphi}{d_{j}}$. Since $\bar{\lambda}(w)=\bar{\lambda}\left(\frac{w}{d_{j}}\right)\left(d_{j}\right.$ being polynomials), using a similar reasoning as in Theorem 1.4 and $\sigma(w)=\infty$, we get $\bar{\lambda}(w)=\sigma(w)=\infty$.

References

[1] Z.-X. Chen. On the rate of growth of meromorphic solutions of higher order linear differential equations. Acta Mathematica Sinica, 1999,42(3):551-558 (in Chinese).
[2] Z.-X. Chen. Zeros of meromorphic solutions of higher order linear differential equations. Analysis, 1994,14, 425-438.
[3] Z.-X. Chen, K. H. Shon. On the growth and fixed points of solutions of second order differential equations with Meromorphic Coefficients. Acta Mathematica Sinica, 2005,21(4):753-764.
[4] Z.-X. Chen, K. H. Shon. The relation between Solutions of a class of Second Order Differential Equations with functions of small growth. Chinese Annals of Mathematics 2006,27A(4): 431442 (in Chinese).
[5] G. Gundersen. Finite order solutions of second order linear differential equations. Trans. Amer. Math. Soc. 1988,305:415-429.
[6] G. Gundersen. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. London Math. Soc. 1988,37(2):88-104.
[7] W. Hayman. Meromorphic Function. Oxford: Clarendon Press, 1964.
[8] K. H. Kwon. Nonexistence of finite order solutions of certain second order linear differential equations. Kodai Math. 1996,19:378-387.

Huifang Liu
School of Mathematics, South China Normal University, Guangzhou 510631, China.
Institute of Mathematics and Informatics, Jiangxi Normal University, Nanchang 330027, China

E-mail address: liuhuifang73@sina.com
Zhiqiang Mao
School of Mathematics, South China Normal University, Guangzhou 510631, China.
Depatment of Mathematics, Jiangxi Science and Teachers college, Nanchang 330013, China

E-mail address: maozhiqiang1@sina.com

[^0]: 2000 Mathematics Subject Classification. 34M10.
 Key words and phrases. Entire function; exponent of convergence of the zero-sequence.
 (C) 2007 Texas State University - San Marcos.

 Submitted February 12, 2007. Published August 7, 2007.
 Supported by grant 04010360 from the Natural Science Foundation of Guangdong, China.

