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RELATIONS BETWEEN THE SMALL FUNCTIONS AND THE
SOLUTIONS OF CERTAIN SECOND-ORDER DIFFERENTIAL

EQUATIONS

HUIFANG LIU, ZHIQIANG MAO

Abstract. In this paper, we investigate the relations between the small func-
tions and the solutions, first, second derivatives, and differential polynomial of

the solutions to the differential equation

f ′′ + A1eP (z)f ′ + A0eQ(z)f = 0,

where P (z) = anzn + · · · + a0, Q(z) = bnzn + · · · + b0 are polynomials with
degree n (n ≥ 1), ai, bi (i = 0, 1, . . . , n), anbn 6= 0 are complex constants,

Aj(z) 6≡ 0 (j = 0, 1) are entire functions with σ(Aj) < n.

1. Main Results

In this paper, we use the standard notation of Nevanlinna’s value distribution
theory [7]. In addition, we use notations σ(f), λ(f), λ(f) to denote the order
of growth, the exponent of convergence of the zero-sequence and the sequence of
distinct zeros of f(z) respectively. A meromorphic function g(z) is called a small
function of a meromorphic function f(z) if T (r, g) = o(T (r, f)), as r → +∞.

Consider the differential equation

f ′′ +A1e
P (z)f ′ +A0e

Q(z)f = 0, (1.1)

where P (z), Q(z) are polynomials with degree n (n ≥ 1), Aj(z) 6≡ 0 (j = 0, 1) are
entire functions with σ(A1) < degP , σ(A0) < degQ. If degP 6= degQ, then every
solution of (1.1) has infinite order [5, p. 419]. If degP = degQ, then equation (1.1)
may have a solution of finite order. Indeed f(z) = z satisfies f ′′ + zezf ′ − ezf = 0.
Kwon [8] studied the growth of solutions of equation (1.1) with degP = degQ, and
obtained the following result.

Theorem 1.1. Let Aj(z) 6≡ 0 (j = 0, 1) be entire functions with σ(Aj) < n,
P (z) = anz

n + · · · + a0, Q(z) = bnz
n + · · · + b0 be polynomials with degree n

(n ≥ 1), where ai, bi (i = 0, 1, . . . , n), anbn 6= 0 are complex constants such that
arg an 6= arg bn or an = cbn(0 < c < 1). Then every solution f 6≡ 0 of equation
(1.1) has infinite order.
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Chen and Shon [4] studied the differential equation

f ′′ +A1e
azf ′ +A0e

bzf = 0 (1.2)

and obtained

Theorem 1.2. Let Aj(z) 6≡ 0 (j = 0, 1) be entire functions with σ(Aj) < 1, a,
b be complex constants such that ab 6= 0 and arg a 6= arg b or a = cb(0 < c < 1).
If ϕ(z) 6≡ 0 is an entire function with finite order, then every solution f 6≡ 0 of
equation (1.2) satisfies λ(f − ϕ) = λ(f ′ − ϕ) = λ(f ′′ − ϕ) = ∞.

Theorem 1.3. Let Aj(z), a, b satisfy the hypotheses of Theorem 1.2, d0(z), d1(z),
d2(z) be polynomials not all equal to zero, ϕ(z) 6≡ 0 is an entire function of order
less than 1. If f 6≡ 0 is a solution of equation (1.2), then the differential polynomials
g(z) = d2f

′′ + d1f
′ + d0f satisfy λ(g − ϕ) = ∞.

In this paper we go deeply into the study of the relations of the small functions
and solutions of the differential equation (1.1) and obtain the following theorem.

Theorem 1.4. Let Aj(z) 6≡ 0 (j = 0, 1), P (z), Q(z) satisfy the hypotheses of
Theorem 1.1. If ϕ(z) 6≡ 0 is an entire function with finite order, then every solution
f 6≡ 0 of equation (1.1) satisfies λ(f − ϕ) = λ(f ′ − ϕ) = λ(f ′′ − ϕ) = ∞.

Theorem 1.5. Let Aj(z) 6≡ 0) (j = 0, 1), P (z), Q(z) satisfy the hypotheses of
Theorem 1.1, d0(z), d1(z), d2(z) be polynomials that are not all equal to zero,
ϕ(z) 6≡ 0 is an entire function of order that is less than n . If f 6≡ 0 is a solution
of equation (1.1), then the differential polynomials g(z) = d2f

′′ +d1f
′ +d0f satisfy

λ(g − ϕ) = ∞.

2. Auxiliary Lemmas

Lemma 2.1 ([3]). Let f(z) be a transcendental meromorphic function with σ(f) =
σ < +∞. Then for any given ε > 0, there is a set E ⊂ [0, 2π) that has linear
measure zero, such that if ϕ ∈ [0, 2π)\E, then there is a constant R0 = R0(ϕ) > 1,
such that for all z satisfying arg z = ϕ and |z| ≥ R0, we have exp {−rσ+ε} ≤
|f(z)| ≤ exp {rσ+ε}.

Lemma 2.2. Let P (z) = (α + iβ)zn + . . . (α, β are real, |α| + |β| 6= 0) be a
polynomial with degree n ≥ 1, A(z) 6≡ 0 be a meromorphic function with σ(A) < n.
Set g(z) = A(z)eP (z), z = reiθ, δ(P, θ) = α cosnθ − β sinnθ, then for any given
ε > 0, there is a set H1 ⊂ [0, 2π) that has linear measure zero, such that for any
θ ∈ [0, 2π) \ (H1

⋃
H2) and a sufficiently large r, we have

(i) If δ(P, θ) > 0, then

exp {(1− ε)δ(P, θ)rn} ≤ |g(reiθ)| ≤ exp {(1 + ε)δ(P, θ)rn};
(ii) If δ(P, θ) < 0, then

exp {(1 + ε)δ(P, θ)rn} ≤ |g(reiθ)| ≤ exp {(1− ε)δ(P, θ)rn},
where H2 = {θ ∈ [0, 2π); δ(P, θ) = 0} is a finite set.

Proof. Rewrite g(z) as g(z) = we(α+iβ)zn

, where w(z) = A(z)eP (z)−(α+iβ)zn

is
a meromorphic function with σ(w) = s < n. By lemma 2.1, for any given
ε(0 < ε < n − s), there is a set H1 ⊂ [0, 2π) that has linear measure zero, such
that, if θ ∈ [0, 2π) \ H1, then there exists a constant R = R(θ) > 1, for all z
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satisfying arg z = θ and |z| ≥ R, we have exp {−rs+ε} ≤ |w(z)| ≤ exp {rs+ε}. By
|e(α+iβ)zn | = eRe(α+iβ)zn=eδ(P,θ)rn

, when θ ∈ [0, 2π)\(H1

⋃
H2) and |z| = r > R, we

have exp {−rs+ε + δ(P, θ)rn} ≤ |g(z)| ≤ exp {rs+ε + δ(P, θ)rn}. So by the above
inequality and δ(P, θ) > 0 or δ(P, θ) < 0, we complete the proof. �

Lemma 2.3 ([4]). Let f(z) be an entire function with infinite order, dj(z) (j =
0, 1, 2) be polynomials that are not all equal to zero. Then

w(z) = d2f
′′ + d1f

′ + d0f

has infinite order.

Lemma 2.4. Let ai, bi(i = 0, 1 . . . n) be complex constants such that anbn 6= 0
and arg an 6= arg bn or an = cbn(0 < c < 1), P (z) = anz

n + · · · + a0, Q(z) =
bnz

n + · · ·+ b0. We denote index sets by

Λ1 = {0, P};
Λ2 = {0, P,Q, 2P, P +Q};

Λ3 = {0, P,Q, 2P, P +Q, 2Q, 3P, 2P +Q,P + 2Q};
Λ4 =

{
0, P,Q, 2P, P +Q, 2Q, 3P, 2P +Q,P + 2Q,

3Q, 4P, 3P +Q, 2P + 2Q,P + 3Q
}
.

Then
(i) If Hj (j ∈ Λ1) and HQ are all meromorphic functions of orders that are less

than n, HQ 6≡ 0, setting ψ1(z) = Σj∈Λ1Hj(z)ej, then ψ1(z) +HQe
Q 6≡ 0.

(ii) If Hj (j ∈ Λ2) and H2Q are all meromorphic functions of orders that
are less than n, H2Q 6≡ 0, setting ψ2(z) = Σj∈Λ2Hj(z)ej, then ψ2(z) +
H2Qe

2Q 6≡ 0.
(iii) If Hj(j ∈ Λ3) and H3Q are all meromorphic functions of orders that are less

than n, H3Q 6≡ 0, setting ψ3(z) = Σj∈Λ3Hj(z)ej, then ψ3(z)+H3Qe
3Q 6≡ 0.

(iv) If Hj(j ∈ Λ4) and H4Q are all meromorphic functions of orders that are less
than n, H4Q 6≡ 0, setting ψ4(z) = Σj∈Λ4Hj(z)ej, then ψ4(z)+H4Qe

4Q 6≡ 0.
(v) The derived function of ψj(z) (j = 1, . . . , 4) keep the above properties of

ψj(z), and also it can be expressed by ψj(z). ψj(z) may be different at
different places, but preserve the above properties. ψ2(z)ψ2(z)( it denotes
the product of two ψ2(z), and two ψ2(z) may be different.) is of properties
of ψ4(z), we write ψ2(z)ψ2(z) = ψ4(z). Similarly we have

ψ1(z)ψ1(z) = ψ2(z), ψ1(z)ψ2(z) = ψ3(z), ψ1(z)ψ3(z) = ψ4(z).

(vi) let ψ20(z), ψ21(z), ψ22(z) have the form of ψ2(z) which is defined as in (ii),
ϕ(z) 6≡ 0 is a meromorphic function with finite order and H2Q 6≡ 0 are all
meromorphic functions of orders that are less than n. Then

ϕ′′(z)
ϕ(z)

ψ22(z) +
ϕ′(z)
ϕ(z)

ψ21(z) + ψ20(z) +H2Qe
2Q 6≡ 0.

Proof. Properties (i)–(iv) are similar, and the properties of ψj(z) (j = 1, . . . , 4) in
(v) are clear, so we only prove (ii) and (vi). For the proof of (ii). We consider two
cases:
Case 1: arg an 6= arg bn. Then arg(an + bn), arg an, arg bn are three distinct
arguments. Set σ(H0) = β < n, by Lemma 2.1, for any given ε(0 < ε < min{ 1

5 , n−
β}), there exists a set E0 ⊂ [0, 2π) that has linear measure zero, such that if
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θ ∈ [0, 2π)\E0, then there is a constant R = R(θ) > 1, such that for all z satisfying
arg z = θ and |z| = r ≥ R, we have

|H0(z)| ≤ exp {rβ+ε}. (2.1)

By lemma 2.2, there exists a ray arg z = θ ∈ [0, 2π) \ (E0 ∪ E1 ∪ E2), where
E1 ⊂ [0, 2π) has linear measure zero, E2 = {θ ∈ [0, 2π); δ(P, θ) = 0 or δ(Q, θ) = 0
or δ(P+Q, θ) = 0} is a finite set, such that δ(P, θ) < 0, δ(P+Q, θ) < 0, δ(Q, θ) > 0,
and for the above given ε, we have, when r is sufficiently large,

|H2Qe
2Q| ≥ exp {(1− ε)2δ(Q, θ)rn}, (2.2)

|HQe
Q| ≤ exp {(1 + ε)δ(Q, θ)rn}, (2.3)

|HP+Qe
P+Q| ≤ exp {(1− ε)δ(P +Q, θ)rn} < 1, (2.4)

|H2P e
2P | ≤ exp {(1− ε)2δ(P, θ)rn} < 1, (2.5)

|HP e
P | ≤ exp {(1− ε)δ(P, θ)rn} < 1. (2.6)

If ψ2(z) +H2Qe
2Q ≡ 0, then by (2.1)-(2.6), we have

exp {(1− ε)2δ(Q, θ)rn} ≤ |H2Qe
2Q|

≤ exp {rβ+ε}+ exp {(1 + ε)δ(Q, θ)rn}+ 3

≤ 3 exp {rβ+ε} exp {(1 + ε)δ(Q, θ)rn}.

Because 2(1− ε)− (1 + ε) = 1− 3ε > 2
5 , we have

exp {2
5
δ(Q, θ)rn} ≤ 3 exp {rβ+ε}.

This is a contradiction to β + ε < n. Hence ψ2(z) +H2Qe
2Q 6≡ 0.

Case 2: an = cbn(0 < c < 1). Set σ(H0) = β < n. By Lemmas 2.1 and 2.2, for
any given ε(0 < ε < min{ 1−c

5 , n− β}), there exist set Ej ⊂ [0, 2π)(j = 0, 1, 2) that
have linear measure zero, Ej are defined as in the case (1) respectively. We take
the ray θ ∈ [0, 2π) \ (E0 ∪ E1 ∪ E2), such that δ(Q, θ) > 0, and when |z| = r is
sufficiently large, we have (2.1)-(2.3) and

|HP+Qe
P+Q| ≤ exp {(1 + ε)(1 + c)δ(Q, θ)rn}, (2.7)

|H2P e
2P | ≤ exp {(1 + ε)2cδ(Q, θ)rn}, (2.8)

|HP e
P | ≤ exp {(1 + ε)cδ(Q, θ)rn}. (2.9)

If ψ2(z) +H2Qe
2Q ≡ 0, then by (2.1)-(2.3), and (2.7)-(2.9), we have

exp {(1− ε)2δ(Q, θ)rn} ≤ |H2Qe
2Q|

≤ exp {rβ+ε}+ 2 exp {(1 + ε)(1 + c)δ(Q, θ)rn}
+ exp {(1 + ε)2cδ(Q, θ)rn}+ exp {(1 + ε)cδ(Q, θ)rn}.

(2.10)
Because 0 < ε < min{ 1−c

5 , n− β}, when r → +∞, we have

exp {rβ+ε}
exp {(1− ε)2δ(Q, θ)rn}

→ 0, (2.11)

exp {(1 + ε)(1 + c)δ(Q, θ)rn}
exp {(1− ε)2δ(Q, θ)rn}

→ 0, (2.12)
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exp {(1 + ε)2cδ(Q, θ)rn}
exp {(1− ε)2δ(Q, θ)rn}

→ 0, (2.13)

exp {(1 + ε)cδ(Q, θ)rn}
exp {(1− ε)2δ(Q, θ)rn}

→ 0. (2.14)

By (2.10)-(2.14), we get a contradiction. Hence ψ2(z) +H2Qe
2Q 6≡ 0.

Proof of (vi). By σ(ϕ) < ∞ and [6, p. 89] we know, for any given ε > 0, there
exists a set E ⊂ [0, 2π) that has linear measure zero, if θ ∈ [0, 2π) \ E, then there
exists a constant R = R(θ) > 1, such that for all z satisfying arg z = θ and |z| ≥ R,
we have

|ϕ
(k)(z)
ϕ(z)

| ≤ |z|k(σ(ϕ)−1+ε) (k = 1, 2).

So on the ray arg z = θ ∈ [0, 2π) \ E, ϕ(k)(z)
ϕ(z) Hj(z)ej (k = 1, 2, j ∈ Λ2) keep the

properties of Hje
j which are defined as in (2.1), (2.3)–(2.6) or (2.1), (2.3), (2.7)–

(2.9). Using a similar reasoning to that in the proof of (ii), we can prove (vi). �

Lemma 2.5 ([2]). Suppose that A0, . . . , Ak−1, F 6≡ 0 are finite-order meromorphic
functions. If f is an infinite-order meromorphic solution of the equation

f (k) +Ak−1f
(k−1) + · · ·+A0f = F,

then f satisfies λ(f) = λ(f) = σ(f) = ∞.

3. Proofs of Theorems

Proof of Theorem 1.4. Suppose that f(z) 6≡ 0 is a solution of (1.1). First of all we
prove that λ(f−ϕ) = ∞. Set g0 = f−ϕ, then σ(g0) = σ(f) = ∞,λ(g0) = λ(f−ϕ).
Substituting f = g0 + ϕ,f ′ = g′0 + ϕ′,f ′′ = g′′0 + ϕ′′ into equation (1.1), we have

g′′0 +A1e
P (z)g′0 +A0e

Q(z)g0 = −(ϕ′′ +A1e
P (z)ϕ′ +A0e

Q(z)ϕ). (3.1)

We remark that (3.1) may have finite-order solution (For example when ϕ(z) = z,
g0 = −z solves the equation (3.1)). But here we discuss only the case σ(g0) = ∞.

By ϕ(z) being a finite-order entire function and Theorem 1.1, we know ϕ′′ +
A1e

P (z)ϕ′ + A0e
Q(z)ϕ 6≡ 0. Hence by lemma 2.5, we have λ(g0) = σ(g0) = ∞, i.e.

λ(f − ϕ) = ∞.
Secondly we prove λ(f ′−ϕ) = ∞. Set g1 = f ′−ϕ, then σ(g1) = σ(f ′) = σ(f) =

∞,λ(g1) = λ(f ′ − ϕ). Differentiating both sides of equation (1.1), we get

f ′′′ +A1e
P (z)f ′′ + [(A1e

P (z))′ +A0e
Q(z)]f ′ + (A0e

Q(z))′f = 0. (3.2)

Substituting f = − 1
A0eQ(z) [f ′′ +A1e

P (z)f ′] into (3.2), we get

f ′′′ + [A1e
P (z)− (A0e

Q(z))′

A0eQ(z)
]f ′′ + [(A1e

P (z))′ +A0e
Q(z)− (A0e

Q(z))′

A0eQ(z)
A1e

P (z)]f ′ = 0.

(3.3)
Substituting f ′ = g1 + ϕ, f ′′ = g′1 + ϕ′, f ′′′ = g′′1 + ϕ′′ into equation (3.3), we get

g′′1 + h1g
′
1 + h0g1 = h, (3.4)

where h1 = A1e
P (z) − (A0eQ(z))′

A0eQ(z) ,

h0 = (A1e
P (z))′ +A0e

Q(z) − (A0e
Q(z))′

A0eQ(z)
A1e

P (z),
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−h = ϕ′′ − (
A′

0

A0
+Q′)ϕ′ + [A1ϕ

′ +A′
1ϕ+ P ′A1ϕ−

A′
0

A0
A1ϕ−Q′A1ϕ]eP +A0ϕe

Q.

Now we prove h 6≡ 0. If h ≡ 0, then

ϕ′′

ϕ
− (

A′
0

A0
+Q′)

ϕ′

ϕ
+ [

ϕ′

ϕ
+
A′

1

A1
+ P ′ − A′

0

A0
−Q′]A1e

P +A0e
Q = 0. (3.5)

By σ(ϕ) <∞, σ(Aj) < n (j = 0, 1) and [6, p. 89], for any given 0 < ε < 1−c
1+2c (c is

defined as in Theorem 1.4), there exists a set E0 ⊂ [0, 2π) that has linear measure
zero, if θ ∈ [0, 2π) \ E0, then there exists a constant R = R(θ) > 1, such that for
all z satisfying arg z = θ and |z| ≥ R, we have

|ϕ
(k)(z)
ϕ(z)

| ≤ |z|k(σ(ϕ)−1+ε) (k = 1, 2), (3.6)

|
A′

j(z)
Aj(z)

| ≤ |z|σ(Aj)−1+ε (j = 0, 1). (3.7)

Since P (z), Q(z) are polynomials with degree n, when |z| = r is sufficiently large,
we have

|P ′(z)| ≤ rn and |Q′(z)| ≤ rn. (3.8)

So by (3.6)-(3.8), there exists a positive constant M , such that for all z satisfying
arg z = θ ∈ [0, 2π) \ E0, we have, when |z| = r is sufficiently large,∣∣(A′

0

A0
+Q′)

ϕ′

ϕ

∣∣ ≤ rM , (3.9)∣∣ϕ′
ϕ

+
A′

1

A1
+ P ′ − A′

0

A0
−Q′∣∣ ≤ rM . (3.10)

If arg an 6= arg bn, then by lemma 2.2, there exists a ray arg z = θ ∈ [0, 2π) \ (E0 ∪
E1 ∪E2), E1 ⊂ [0, 2π) having linear measure zero, E2 = {θ ∈ [0, 2π); δ(P, θ) = 0 or
δ(Q, θ) = 0} being a finite set, such that δ(P, θ) < 0, δ(Q, θ) > 0, and for the above
given ε, we have, when r is sufficiently large,

|A0e
Q| ≥ exp {(1− ε)δ(Q, θ)rn}, (3.11)

|A1e
P | ≤ exp {(1− ε)δ(P, θ)rn} < 1. (3.12)

So by (3.5),(3.6) and (3.9)-(3.12), we get

exp {(1− ε)δ(Q, θ)rn} ≤ |A0e
Q| ≤ r2(σ(ϕ)−1+ε) + rM + rM .

This is absurd.
If an = cbn(0 < c < 1), then by lemma 2.2, there exists a ray arg z = θ ∈

[0, 2π) \ (E0 ∪ E1 ∪ E2), where E0, E1 and E2 are defined as the above, such that
δ(Q, θ) > 0, and for the above given ε, when r is sufficiently large, we have (3.11)
and

|A1e
P | ≤ exp {(1 + ε)cδ(Q, θ)rn}. (3.13)

So by (3.5), (3.6), (3.9)-(3.11) and (3.13), we get

exp {(1− ε)δ(Q, θ)rn} ≤ |A0e
Q|

≤ r2(σ(ϕ)−1+ε) + rM + rM exp {(1 + ε)cδ(Q, θ)rn}
≤ 3 exp {(1 + 2ε)cδ(Q, θ)rn}.
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This is a contradiction to 0 < ε < 1−c
1+2c . From the above proof, we get h 6≡ 0. From

h 6≡ 0 and lemma 2.5 we get λ(g1) = σ(g1) = ∞. Hence λ(f ′ − ϕ) = ∞.
Finally we prove that λ(f ′′ − ϕ) = ∞. Set g2 = f ′′ − ϕ, then σ(g2) = σ(f ′′) =

σ(f) = ∞, λ(g2) = λ(f ′′ − ϕ). Differentiating both sides of equation (3.2), we get

f (4) +A1e
P f ′′′ + [2(A1e

P )′ +A0e
Q]f ′′ + [(A1e

P )′′ + 2(A0e
Q)′]f ′ + (A0e

Q)′′f = 0.
(3.14)

Substituting f = − 1
A0eQ [f ′′ +A1e

P f ′] into (3.14), we get

f (4) +A1e
P f ′′′ + [2(A1e

P )′ +A0e
Q − (A0e

Q)′′

A0eQ
]f ′′

+[(A1e
P )′′ + 2(A0e

Q)′ − (A0e
Q)′′

A0eQ
A1e

P ]f ′ = 0.
(3.15)

By (3.3) and (3.15), we have

f (4) +H3f
′′′ +H2f

′′ = 0, (3.16)

where

H3 = A1e
P − ϕ1(z)

ϕ2(z)
, (3.17)

H2 = 2(A1e
P )′ +A0e

Q − (A0e
Q)′′

A0eQ
− ϕ1(z)
ϕ2(z)

[A1e
P − (A0e

Q)′

A0eQ
], (3.18)

ϕ1(z) = (A1e
P )′′ + 2(A0e

Q)′ − (A0e
Q)′′

A0eQ
A1e

P , (3.19)

ϕ2(z) = (A1e
P )′ +A0e

Q − (A0e
Q)′

A0eQ
A1e

P , (3.20)

and ϕ2(z) 6≡ 0 by Lemma 2.4 (i). Clearly, H3,H2, ϕ1(z), ϕ2(z) are meromorphic
functions with σ(ϕk) ≤ n(k = 1, 2), σ(Hj) ≤ n(j = 2, 3).

Substituting f ′′ = g2 + ϕ,f ′′′ = g′2 + ϕ′,f (4) = g′′2 + ϕ′′ into (3.16),

g′′2 +H3g
′
2 +H2g2 = −(ϕ′′ +H3ϕ

′ +H2ϕ).

If we can prove that −(ϕ′′ +H3ϕ
′ +H2ϕ) 6≡ 0, then by lemma 2.5, we get λ(g2) =

σ(g2) = ∞. Hence λ(f ′′−ϕ) = ∞. Now we prove −(ϕ′′+H3ϕ
′+H2ϕ) 6≡ 0. Notice

that

(A1e
P )′ = (A′

1 +A1P
′)eP , (A1e

P )′′ = (A′′
1 + 2A′

1P
′ +A1(P ′)2 +A1P

′′)eP ,

(A0e
Q)′

A0eQ
=
A′

0

A0
+Q′,

(A0e
Q)′′

A0eQ
=
A′′

0

A0
+ 2

A′
0

A0
Q′ + (Q′)2 +Q′′.

So by (3.17)-(3.20), we have

ϕ1(z) = B1e
P + 2(A′

0 +A0Q
′)eQ, (3.21)

ϕ2(z) = B2e
P +A0e

Q, (3.22)

H3 =
1

ϕ2(z)
H4, (3.23)

H2 =
1

ϕ2(z)
[A2

0e
2Q +H5], (3.24)



8 H. LIU, Z. MAO EJDE-2007/108

where

H5 = [2A0(A′
1 +A1P

′) +A0B2 − 2A1(A′
0 +A0Q

′)]eP+Q

+ [2B2(A′
1 +A1P

′)−A1B1]e2P − [A′′
0 + 2A′

0Q
′ +A0(Q′)2

+A0Q
′′ − 2(

A′
0

A0
+Q′)(A′

0 +A0Q
′)]eQ

− [B2(
A′′

0

A0
+ 2

A′
0

A0
Q′ + (Q′)2 +Q′′)−B1(

A′
0

A0
+Q′)]eP ,

H4 = A1A0e
P+Q +A1B2e

2P − 2(A′
0 +A0Q

′)eQ −B1e
P ,

B1 = A′′
1 + 2A′

1P
′ +A1(P ′)2 +A1P

′′ − A1

A0
(A′′

0 + 2A′
0Q

′ +A0(Q′)2 +A0Q
′′),

B2 = A′
1 +A1P

′ −A1(
A′

0

A0
+Q′).

Clearly, B1, B2 are meromorphic functions with σ(Bj) < n (j = 1, 2). By (3.22)-
(3.24), we see that

−(
ϕ′′

ϕ
+H3

ϕ′

ϕ
+H2) = − 1

ϕ2(z)
{ϕ

′′

ϕ
ϕ2(z) +

ϕ′

ϕ
H4 +H5 +A2

0e
2Q}.

As ϕ2(z), H4, H5 have the form of ψ2(z) which is defined as in lemma 2.4 (ii), so
by lemma 2.4 (i) and (vi), we get ϕ′′

ϕ ϕ2(z) + ϕ′

ϕ H4 +H5 + A2
0e

2Q 6≡ 0, ϕ2(z) 6≡ 0.
Hence −(ϕ′′ +H3ϕ

′ +H2ϕ) 6≡ 0. �

Proof of Theorem 1.5. First, we suppose d2 6≡ 0. Suppose that f 6≡ 0 is a solution
of equation (1.1), by Theorem 1.1 we have σ(f) = ∞. Set w = d2f

′′+d1f
′+d0f−ϕ,

then σ(w) = σ(g) = σ(f) = ∞ by lemma 2.3.
To prove that λ(g−ϕ) = ∞, we need to prove only that λ(w) = ∞. Substituting

f ′′ = −A1e
P f ′ −A0e

Qf into w, we get

w = (d1 − d2A1e
P )f ′ + (d0 − d2A0e

Q)f − ϕ. (3.25)

Differentiating both sides of equation (3.25), and replacing f ′′ with f ′′ = −A1e
P f ′−

A0e
Qf , we obtain

w′ = [d2A
2
1e

2P − ((d2A1)′ + P ′d2A1 + d1A1)eP − d2A0e
Q + d0 + d′1]f

′

+ [d2A0A1e
P+Q − ((d2A0)′ +Q′d2A0 + d1A0)eQ + d′0]f − ϕ′.

(3.26)

Set

α1 = d1 − d2A1e
P , α0 = d0 − d2A0e

Q,

β1 = d2A
2
1e

2P − ((d2A1)′ + P ′d2A1 + d1A1)eP − d2A0e
Q + d0 + d′1,

β0 = d2A0A1e
P+Q − ((d2A0)′ +Q′d2A0 + d1A0)eQ + d′0.

Then we have

α1f
′ + α0f = w + ϕ

β1f
′ + β0f = w′ + ϕ′.
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Set

h = α1β0 − α0β1

= [d1 − d2A1e
P ][d2A0A1e

P+Q − ((d2A0)′ +Q′d2A0 + d1A0)eQ + d′0]

− [d0 − d2A0e
Q][d2A

2
1e

2P − ((d2A1)′ + P ′d2A1 + d1A1)eP

− d2A0e
Q + d0 + d′1].

(3.27)

Now check all terms of h. Since the term ±d2
2A

2
1A0e

2P+Q is eliminated, by (3.27)
we can write

h = ψ2(z)− d2
2A

2
0e

2Q, (3.28)

where ψ2(z) is defined as in lemma 2.4 (ii). By d2 6≡ 0, A0 6≡ 0 and lemma 2.4 (ii),
we see that h 6≡ 0. By (3.25) and (3.26), we obtain

f ′ =
1
h
{−(d0 − d2A0e

Q)(w′ + ϕ′)

+ [d2A0A1e
P+Q − ((d2A0)′ +Q′d2A0 + d1A0)eQ + d′0](w + ϕ)}

=
1
h
{−(d0 − d2A0e

Q)w′ + Φ10w + ϕd2A0A1e
P+Q

+ [d2A0ϕ
′ − ((d2A0)′ +Q′d2A0 + d1A0)ϕ]eQ + ψ1},

(3.29)

where Φ10 is an entire function with σ(Φ10) ≤ n, ψ1 is defined as in lemma 2.4 (i).

f =
1
h
{(d1 − d2A1e

P )(w′ + ϕ′)

− [d2A
2
1e

2P − ((d2A1)′ + P ′d2A1 + d1A1)eP − d2A0e
Q + d0 + d′1](w + ϕ)}

=
1
h
{(d1 − d2A1e

P )w′ + Φ00w − ϕd2A
2
1e

2P + ϕd2A0e
Q + ψ1},

(3.30)
where Φ00 is an entire function with σ(Φ00) ≤ n, ψ1 is defined as in lemma 2.4 (i).
Differentiating both sides of equation (3.29), and by (3.28), we get

f ′′ =
1
h2
{(−d3

2A
3
0e

3Q + ψ3)w′′ + Φ21w
′ + Φ20w + ψ4}, (3.31)

where Φ21 and Φ20 are entire functions with σ(Φ21) ≤ n, σ(Φ20) ≤ n, ψ3, ψ4 are
defined as in lemma 2.4 (iii)-(iv). Substituting (3.28)-(3.31) into (1.1), we obtain

(−d3
2A

3
0e

3Q + ψ3)w′′ + Φ21w
′ + Φ20w + ψ4

+A1e
P (z)(ψ2(z)− d2

2A
2
0e

2Q){−(d0 − d2A0e
Q)w′ + Φ10w + ϕd2A0A1e

P+Q

+ [d2A0ϕ
′ − ((d2A0)′ +Q′d2A0 + d1A0)ϕ]eQ + ψ1}

+A0e
Q(z)(ψ2(z)− d2

2A
2
0e

2Q){(d1 − d2A1e
P )w′

+ Φ00w − ϕd2A
2
1e

2P + ϕd2A0e
Q + ψ1} = 0,

namely

(−d3
2A

3
0e

3Q + ψ3)w′′ + Φ1w
′ + Φ0w = F, (3.32)
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where Φ1 and Φ0 are entire functions with σ(Φ1) ≤ n, σ(Φ0) ≤ n, and

−F = ψ4 + (A1e
Pψ2 − d2

2A1A
2
0e

(P+2Q))(ϕd2A0A1e
P+Q

+ [d2A0ϕ
′ − ((d2A0)′ +Q′d2A0 + d1A0)ϕ]eQ + ψ1))

+ (A0e
Qψ2 − d2

2A
3
0e

3Q)(−ϕd2A
2
1e

2P + ϕd2A0e
Q + ψ1)

= ψ4 +A2
1A0ψ2ϕd2e

2P+Q +A1ψ2[d2A0ϕ
′ − (d2A0)′ϕ−Q′d2A0ϕ

− d1A0ϕ]eP+Q +A1e
Pψ1ψ2 − d2

2A1A
2
0e

(P+2Q)ψ1 − d2
2A1A

2
0[d2A0ϕ

′

− (d2A0)′ϕ−Q′d2A0ϕ− d1A0ϕ]eP+3Q − d3
2A

3
0A

2
1ϕe

2P+3Q

− ϕψ2d2A0A
2
1e

2P+Q + ϕd3
2A

2
1A

3
0e

2P+3Q + ψ2ϕd2A
2
0e

2Q

− ϕd3
2A

4
0e

4Q +A0e
Qψ1ψ2 − d2

2A
3
0e

3Qψ1.

(3.33)

Since every ψ2 in (3.33) is equal to that in (3.28), so the terms ±A2
1A0ψ2ϕd2e

2P+Q

and ±ϕd3
2A

2
1A

3
0e

2P+3Q are eliminated. By lemma 2.4 (iv), we know that

A1ψ2[d2A0ϕ
′ − (d2A0)′ϕ−Q′d2A0ϕ− d1A0ϕ]eP+Q,

A1e
Pψ1ψ2, −d2

2A1A
2
0e

(P+2Q)ψ1,

−d2
2A1A

2
0[d2A0ϕ

′ − (d2A0)′ϕ−Q′d2A0ϕ− d1A0ϕ]eP+3Q,

ψ2ϕd2A
2
0e

2Q, A0e
Qψ1ψ2, −d2

2A
3
0e

3Qψ1

having all forms of ψ4, by (3.33), we obtain

−F = −ϕd3
2A

4
0e

4Q + ψ4. (3.34)

By lemma 2.4 (iii)-(iv) and d2 6≡ 0, ϕ 6≡ 0, A0 6≡ 0 and σ(ϕ) < n, we see that

F 6≡ 0, −d3
2A

3
0e

3Q + ψ3 6≡ 0. (3.35)

By equation (3.32), lemma 2.5, σ(w) = ∞ and (3.35), we obtain λ(w) = σ(w) = ∞.
Now suppose d2 ≡ 0, d1 6≡ 0, d0 6≡ 0. Using a similar reasoning to that above,

we get λ(w) = σ(w) = ∞. Finally, if d2 ≡ 0, d1 6≡ 0, d0 ≡ 0 or d2 ≡ 0, d1 ≡ 0,
d0 6≡ 0, then for w = djf

(j) −ϕ (j = 1 or 0), we can consider w
dj

= f (j) − ϕ
dj

. Since

λ(w) = λ( w
dj

) (dj being polynomials), using a similar reasoning as in Theorem 1.4

and σ(w) = ∞, we get λ(w) = σ(w) = ∞. �
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