Electronic Journal of Differential Equations, Vol. 2007(2007), No. 111, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

INFINITELY MANY RADIAL SOLUTIONS FOR A SUB-SUPER CRITICAL DIRICHLET BOUNDARY VALUE PROBLEM IN A BALL

ALFONSO CASTRO, JOHN KWON, CHEE MENG TAN

Abstract

We prove the existence of infinitely many solutions to a semilinear Dirichlet boundary value problem in a ball for a nonlinearity $g(u)$ that grows subcritically for u positive and supercritically for u negative.

1. Introduction

In this paper we consider the sub-super critical boundary-value problem

$$
\begin{gather*}
\Delta u+g(u(x))=0, \quad x \in \mathbb{R}^{N},\|x\| \leq 1 \\
u(x)=0 \quad \text { for }\|x\|=1 \tag{1.1}
\end{gather*}
$$

where

$$
g(u)= \begin{cases}u^{p}, & u \geq 0 \tag{1.2}\\ |u|^{q-1} u, & u<0\end{cases}
$$

with

$$
\begin{equation*}
1<p<\frac{N+2}{N-2}<q<\infty \tag{1.3}
\end{equation*}
$$

that is, g has subcritical growth for $u>0$ and supercritical growth for $u<0$. Our results hold for more general nonlinearities. For example, it is easy to see that 1.2 may be replaced by $\lim _{u \rightarrow+\infty} g(r, u) / u^{p} \in(0, \infty)$ and $\lim _{u \rightarrow-\infty} g(r, u) /\left(|u|^{q-1} u\right) \in$ $(0, \infty)$, uniformly for $r \in[0,1]$.

Our main result is as follows.
Theorem 1.1. Problem (1.1) has infinitely many radial solutions.
This theorem extends the results of [4] where it was established that if $1<p<$ $(N+1) /(N-1)$ and $q>1$, or $p, q \in(1,(N+2) /(N-2))$, or $p \in(1,(N+2) /(N-2))$ and $q=(N+2) /(N-2)$, then (1.1) has infinitely many radial solutions. This result is optimal in the sense that if $p, q \in[(N+2) /(N-2), \infty)$ then $u=0$ is the only solution to (1.1) (see [12]). For related results for quasilinear equations the reader is referred to [8] and [10]. Studies on positive solutions for sub-super critical problems may be found in [9]. For other studies on the critical case, $p=q=(N+2) /(N-2)$

[^0]and $\lim _{|u| \rightarrow \infty} /\left(u|u|^{p-1}\right) \in \mathbb{R}$, see [1, 3, 4, 6, 7, In [2] the reader can find a complete classification of the radial solutions to (1.1) for $1<p=q<(N+2) /(N-2)$. For a recent survey of radial solutions for elliptic boundary-value problems that includes the case where the Laplacian operator is replaced by the more general k-Hessian operator, see 11 .

Radial solutions to (1.1) are the solutions to the singular ordinary differential equation

$$
\begin{gather*}
u^{\prime \prime}+\frac{n}{t} u^{\prime}+g(u(t))=0 \tag{1.4}\\
u^{\prime}(0)=u(1)=0
\end{gather*}
$$

where, and henceforth, $n=N-1$.
For $d>0$ let $u(t, d)$ be the solution to the initial-value problem

$$
\begin{gather*}
u^{\prime \prime}+\frac{n}{t} u^{\prime}+g(u(t))=0 \tag{1.5}\\
u(0)=d, u^{\prime}(0)=0
\end{gather*}
$$

We define the energy function

$$
\begin{equation*}
E(t, d) \equiv \frac{\left(u^{\prime}(t, d)\right)^{2}}{2}+G(u(t, d)) \tag{1.6}
\end{equation*}
$$

where $G(u)=\int_{0}^{u} g(s) d s$. For future reference we note that

$$
\begin{equation*}
\frac{d E}{d t}(t)=-\frac{n}{t}\left(u^{\prime}(t)\right)^{2} \leq 0 \tag{1.7}
\end{equation*}
$$

The proof of Theorem 1.1 is based on the properties of the energy and the argument function defined below (see 1.9).
Theorem 1.2. There exists $D>0$ such that if $d \geq D$, then

$$
\begin{equation*}
t^{N-1}\left(t E(t)+\frac{N-2}{2} u(t) u^{\prime}(t)\right) \geq c d^{\xi} \quad \text { for all } t \geq \sqrt{N} d^{(1-p) / 2} \tag{1.8}
\end{equation*}
$$

where $\xi=\frac{N+2-p(N-2)}{2}$. Also $u(t) \geq d / 2$ for $t \in\left[0, \sqrt{N} d^{(1-p) / 2}\right]$.
As a consequence of Theorem 1.2 we see that, for $d \geq D, \rho(t, d) \equiv u^{2}(t, d)+$ $\left(u^{\prime}(t, d)\right)^{2}>0$ for all $t \in[0,1]$. Hence there exists a continuous function θ : $[0,1] \times[D, \infty) \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
u(t, d)=\rho(t, d) \cos (\theta(t, d)) \quad \text { and } \quad u^{\prime}(t, d)=-\rho(t, d) \sin (\theta(t, d)) \tag{1.9}
\end{equation*}
$$

In section 7 we prove that

$$
\begin{equation*}
\lim _{d \rightarrow \infty} \theta(1, d)=+\infty \tag{1.10}
\end{equation*}
$$

see 7.7 below.

2. First Zero

Let $d>0$ and $t_{0}>0$ be such that $u\left(t_{0}\right)=d / 2$, and $u(t)>d / 2$ for $t \in\left(0, t_{0}\right)$. Following the arguments in [4, based on

$$
\begin{equation*}
-u^{\prime}(t)=t^{-n} \int_{0}^{t} s^{n} g(u(s)) d s \tag{2.1}
\end{equation*}
$$

it is easily seen that

$$
\begin{equation*}
\sqrt{N} d^{(1-p) / 2} \leq t_{0} \leq \sqrt{2^{p} N} d^{(1-p) / 2} \tag{2.2}
\end{equation*}
$$

Multiplying 1.5 by $r^{N-1} u$ and integrating on $[s, t]$, then multiplying the same equation by $r^{N} u^{\prime}$ and integrating also on $[s, t]$ one has the following identity, known as Pohozaev's identity,

$$
\begin{equation*}
t^{n} H(t)=s^{n} H(s)+\int_{s}^{t} r^{n}\left(N G(u(r))-\frac{N-2}{2} u(r) g(u(r))\right) d r \tag{2.3}
\end{equation*}
$$

where $H(x) \equiv x E(x)+\frac{N-2}{2} u^{\prime}(x) u(x)$. In particular, taking $s=0$ and $t=t_{0}$ we have

$$
\begin{equation*}
t_{0}^{n} H\left(t_{0}\right) \geq \frac{t_{0}^{N} \gamma d^{p+1}}{2^{p+1} N} \geq \frac{N^{(N-2) / 2} \gamma}{2^{p+1}} d^{\xi} \equiv c_{1} d^{\xi} \tag{2.4}
\end{equation*}
$$

where $\gamma=N /(p+1)-(N-2) / 2$ and ξ is as in 1.8). Also, from (2.3), if $u(r) \geq 0$ for all $r \in[0, t]$ we have

$$
\begin{equation*}
t^{N}\left(u^{\prime}(t)\right)^{2}=-(N-2) u \cdot t^{n} u^{\prime}-2 t^{N} \frac{u^{p+1}}{p+1}+2 \int_{0}^{t} \gamma r^{n} u^{p+1} d r \tag{2.5}
\end{equation*}
$$

Thus from (2.5) and the fact that $t^{-n} \int_{0}^{t} s^{n} u^{p+1} d s \geq-u(t) u^{\prime}(t)$ we have

$$
\begin{align*}
\left(\frac{-t u^{\prime}}{u}\right)^{\prime} & =\frac{\left(-t u^{\prime \prime}-u^{\prime}\right) u+t\left(u^{\prime}\right)^{2}}{u^{2}} \\
& =\frac{-t\left(-\frac{n}{t} u^{\prime}-u^{p}\right) u-u u^{\prime}+t\left(u^{\prime}\right)^{2}}{u^{2}} \\
& =\frac{(n-1) u u^{\prime}+t u^{p+1}+t\left(u^{\prime}\right)^{2}}{u^{2}} \tag{2.6}\\
& =\frac{2 t^{-n} \int_{0}^{t} s^{n} \gamma u^{p+1} d s-2 \frac{t u^{p+1}}{p+1}+t u^{p+1}}{u^{2}} \\
& =\frac{2 t^{-n} \int_{0}^{t} s^{n} \gamma u^{p+1} d s+t\left(\frac{p-1}{p+1}\right) u^{p+1}}{u^{2}} \\
& \geq \frac{2 \gamma}{t}\left(\frac{-t u^{\prime}(t)}{u(t)}\right)
\end{align*}
$$

provided $u(s)>0$ for $s \in(0, t)$. Integrating (2.6) on $\left[t_{0}, t\right)$ we have

$$
\ln \left(\frac{-t u^{\prime}(t) / u(t)}{-t_{0} u^{\prime}\left(t_{0}\right) / u\left(t_{0}\right)}\right) \geq \ln \left(\frac{t}{t_{0}}\right)^{\gamma}
$$

Letting $\Gamma=-t_{0} u^{\prime}\left(t_{0}\right) / u\left(t_{0}\right)$ we conclude that

$$
\frac{-t u^{\prime}(t)}{u(t)} \geq \Gamma\left(\frac{t}{t_{0}}\right)^{\gamma}
$$

For future reference we note that

$$
\begin{equation*}
\Gamma \geq 2^{1-p} \tag{2.7}
\end{equation*}
$$

where we have used (2.2), and $-u^{\prime}\left(t_{0}\right) \geq t_{0} d^{p} /\left(2^{p} N\right)$ (see 2.1). Integrating again in $\left[t_{0}, t\right]$ yields

$$
\ln \left(\frac{u\left(t_{0}\right)}{u(t)}\right) \geq \frac{\Gamma}{\gamma t_{0}^{\gamma}}\left[t^{\gamma}-t_{0}^{\gamma}\right]
$$

Assuming that $u(t) \geq 0$ for all $t \in\left[t_{0}, t_{0} \ln ^{1 / \gamma}(d) \equiv T\right]$ we have

$$
u(T) \leq u\left(t_{0}\right)\left(e d^{-1}\right)^{\Gamma / \gamma}=\frac{e^{\Gamma / \gamma}}{2} d^{1-\Gamma / \gamma}
$$

Now we estimate E for $t \geq t_{0}$ with $u(s) \geq 0$ for $s \in\left(t_{0}, t\right]$. Since $E^{\prime}(t) \geq-2 n E(t) / t$,

$$
\begin{equation*}
E(t) \geq E(s)(s / t)^{2 n} \quad \text { for any } \quad 0 \leq s \leq t \leq 1 \tag{2.8}
\end{equation*}
$$

Thus

$$
\begin{align*}
\frac{\left(u^{\prime}(T)\right)^{2}}{2} & \geq E\left(t_{0}\right)\left(\frac{t_{0}}{T}\right)^{2 n}-\frac{u^{p+1}(T)}{p+1} \\
& \geq \frac{d^{p+1}}{(p+1) 2^{p+1} \ln ^{2 n / \gamma}(d)}-\frac{1}{p+1}\left(\frac{e^{\Gamma / \gamma}}{2} d^{1-\Gamma / \gamma}\right)^{p+1} \tag{2.9}\\
& \geq \frac{d^{p+1}}{(p+1) 2^{p+2} \ln ^{2 n / \gamma}(d)},
\end{align*}
$$

for d sufficiently large.

Let us suppose now that that $u(t)>0$, for any $t \in[T, 2 T]$. Arguing as in 2.9) we have

$$
\begin{align*}
\frac{\left(u^{\prime}(t)\right)^{2}}{2} & \geq E(T)\left(\frac{T}{t}\right)^{2 n}-\frac{u^{p+1}(T)}{p+1} \\
& \geq \frac{d^{p+1}}{(p+1) 2^{p+1+2 n} \ln ^{2 n / \gamma}(d)}-\frac{1}{p+1}\left(\frac{e^{\Gamma / \gamma}}{2} d^{1-\Gamma / \gamma}\right)^{p+1} \tag{2.10}\\
& \geq \frac{d^{p+1}}{(p+1) 2^{p+2+2 n} \ln ^{2 n / \gamma}(d)}
\end{align*}
$$

for d large. Integrating on $[T, t]$ we have

$$
\begin{align*}
0 \leq u(t) & =u(T)+\int_{T}^{t} u^{\prime}(s) d s \\
& \leq \frac{e^{\Gamma / \gamma}}{2} d^{1-\Gamma / \gamma}-(t-T) \frac{\sqrt{2} d^{(p+1) / 2}}{2^{1+n+(p / 2)} \ln ^{n / \gamma}(d) \sqrt{p+1}} \tag{2.11}
\end{align*}
$$

Hence u has a zero in $\left[d^{(1-p) / 2}, T+e^{\Gamma / \gamma} d^{(1-p) / 2-\Gamma / \gamma} 2^{n+(p / 2)} \ln ^{n / \gamma}(d) \sqrt{p+1}\right]$. We summarize the above in the following lemma.

Lemma 2.1. For $d>0$ sufficiently large, there exists

$$
\begin{equation*}
t_{1} \in\left(\sqrt{N} d^{(1-p) / 2}, 2 \sqrt{N} d^{(1-p) / 2} \ln ^{1 / \gamma}(d)\right) \tag{2.12}
\end{equation*}
$$

such that $u\left(t_{1}\right)=0, u(s)>0$ for $s \in\left[0, t_{1}\right)$, and

$$
\begin{equation*}
\frac{d^{p+1}}{(p+1) 2^{p+2+2 n} \ln ^{2 n}(d)} \leq E\left(t_{1}\right) \leq \frac{d^{p+1}}{p+1} \tag{2.13}
\end{equation*}
$$

3. First local minimum

Let $t \in\left(t_{1}, t_{1}+(1 / 2)(2 /(q+1))^{q /(q+1)}\left|u^{\prime}\left(t_{1}\right)\right|^{(1-q) /(1+q)} \equiv t_{1}+\tau\right)$. From 2.12 and 2.13,

$$
\begin{align*}
\frac{t_{1}}{t} & \geq 1-\frac{\tau}{t_{1}+\tau} \geq 1-\frac{\tau}{t_{1}} \\
& \geq 1-\frac{(1 / 2)(2 /(q+1))^{q /(q+1)}\left|u^{\prime}\left(t_{1}\right)\right|^{(1-q) /(1+q)}}{\sqrt{N} d^{(1-p) / 2}} \tag{3.1}\\
& \geq 1-\frac{(1 / 2)(2 /(q+1))^{q /(q+1)}\left(d^{(p+1) / 2} / \sqrt{p+1}\right)^{(1-q) /(1+q)}}{\sqrt{N} d^{(1-p) / 2}} \\
& \equiv 1-m d^{(p-q) /(1+q)} \geq 0.9^{1 / n} .
\end{align*}
$$

for d large. Hence for d positive and large

$$
\begin{align*}
u^{\prime}(t) & =t^{-n}\left[t_{1}^{n} u^{\prime}\left(t_{1}\right)-\int_{t_{1}}^{t} s^{n}|u(s)|^{q-1} u(s) d s\right] \\
& \leq 0.9 u^{\prime}\left(t_{1}\right)+\left(t-t_{1}\right)\left(\frac{q+1}{2}\right)^{q /(q+1)}\left|u^{\prime}\left(t_{1}\right)\right|^{(2 q) /(q+1)} \tag{3.2}\\
& \leq 0.4 u^{\prime}\left(t_{1}\right)
\end{align*}
$$

where we have used that, since $E^{\prime} \leq 0,|u(t)|^{q+1} \leq(q+1)\left(u^{\prime}\left(t_{1}\right)\right)^{2} / 2$ for $t \geq t_{1}$ with $u(t) \leq 0$. This and (3.2) yield

$$
\begin{equation*}
u\left(t_{1}+\tau\right) \leq 0.4 u^{\prime}\left(t_{1}\right) \tau \leq-0.2(2 /(q+1))^{q /(q+1)}\left|u^{\prime}\left(t_{1}\right)\right|^{2 /(1+q)} \tag{3.3}
\end{equation*}
$$

Now for $t \geq t_{1}+\tau$ with $u(s) \leq-0.2(2 /(q+1))^{q /(q+1)}\left|u^{\prime}\left(t_{1}\right)\right|^{2 /(1+q)}$ for all $s \in$ $\left(t_{1}+\tau, t\right)$ we have

$$
u^{\prime}(t)
$$

$$
=t^{-n}\left[t_{1}^{n} u^{\prime}\left(t_{1}\right)-\int_{t_{1}}^{t} s^{n}|u(s)|^{q-1} u(s) d s\right]
$$

$$
\geq u^{\prime}\left(t_{1}\right)+t^{-n}\left(0.2(2 /(q+1))^{q /(q+1)}\right)^{q}\left|u^{\prime}\left(t_{1}\right)\right|^{2 q /(1+q)} \int_{t_{1}+\tau}^{t} s^{n} d s
$$

$$
\geq-u^{\prime}\left(t_{1}\right)\left[-1+t^{-n}\left(0.2(2 /(q+1))^{q /(q+1)}\right)^{q}\left|u^{\prime}\left(t_{1}\right)\right|^{(q-1) /(1+q)} \frac{t^{N}-\left(t_{1}+\tau\right)^{N}}{N}\right]
$$

$$
\begin{equation*}
\geq-u^{\prime}\left(t_{1}\right)\left[-1+\frac{\left(0.2(2 /(q+1))^{q /(q+1)}\right)^{q}}{N}\left|u^{\prime}\left(t_{1}\right)\right|^{(q-1) /(1+q)}\left(t-\left(t_{1}+\tau\right)\right)\right] \tag{3.4}
\end{equation*}
$$

This and the definition of τ imply the following lemma.
Lemma 3.1. There exists τ_{1} in

$$
\begin{aligned}
& \left(t_{1}, t_{1}+\left\{(1 / 2)(2 /(q+1))^{q /(q+1)}+\frac{N}{\left(.2(2 /(q+1))^{q /(q+1)}\right)^{q}}\right\}\left|u^{\prime}\left(t_{1}\right)\right|^{(1-q) /(1+q)}\right] \\
& \equiv\left(t_{1}, t_{1}+\kappa_{1}\left|u^{\prime}\left(t_{1}\right)\right|^{(1-q) /(1+q)}\right]
\end{aligned}
$$

such that $u^{\prime}\left(\tau_{1}\right)=0$.

4. SECOND ZERO

Let $\tau_{0}>\tau_{1}$ be such that $u(s) \leq 0.5 u\left(\tau_{1}\right)$ for all $s \in\left[\tau_{1}, \tau_{0}\right]$. Imitating the arguments leading to 2.2 we see that

$$
\begin{equation*}
\tau_{1}+\left|u\left(\tau_{1}\right)\right|^{(1-q) / 2} \leq \tau_{0} \leq \tau_{1}+\sqrt{2^{q} N}\left|u\left(\tau_{1}\right)\right|^{(1-q) / 2} \tag{4.1}
\end{equation*}
$$

Hence

$$
\begin{align*}
u^{\prime}\left(\tau_{0}\right) & =\tau_{0}^{-n} \int_{\tau_{1}}^{\tau_{0}} s^{n}|u(s)|^{q} d s \\
& \geq \frac{\left|u\left(\tau_{1}\right)\right|^{q}\left(\tau_{0}^{N}-\tau_{1}^{N}\right)}{N 2^{q} \tau_{0}^{n}} \tag{4.2}\\
& \geq \frac{\left|u\left(\tau_{1}\right)\right|^{q}\left(\tau_{0}-\tau_{1}\right)}{2^{q} N} \\
& \geq \frac{\left|u\left(\tau_{1}\right)\right|^{(1+q) / 2}}{2^{q} N}
\end{align*}
$$

and

$$
\begin{equation*}
\tau_{0}^{n} \geq .9 s^{n} \quad \text { for any } s \in\left(\tau_{0}, \tau_{0}+2^{q+2} N\left|u\left(\tau_{1}\right)\right|^{(1-q) / 2}\right] \tag{4.3}
\end{equation*}
$$

for $d>0$ sufficiently large.
Suppose now that for all $s \in\left[\tau_{0}, r \equiv \tau_{0}+2^{q+1} N\left|u\left(\tau_{1}\right)\right|^{(1-q) / 2}\right]$ we have $u(s) \leq 0$. Then

$$
\begin{equation*}
u^{\prime}(s) \geq 0.9 u^{\prime}\left(\tau_{0}\right) \quad \text { for all } s \in\left[\tau_{0}, r\right] \tag{4.4}
\end{equation*}
$$

This and and the definition of r give

$$
\begin{aligned}
0 \geq u(r) & \geq \frac{u\left(\tau_{1}\right)}{2}+.9\left(r-\tau_{0}\right) u^{\prime}(r) \\
& \geq \frac{u\left(\tau_{1}\right)}{2}+.9\left(2^{q+1}\right) N\left|u\left(\tau_{1}\right)\right|^{(1-q) / 2} \frac{\left|u\left(\tau_{1}\right)\right|^{(1+q) / 2}}{2^{q} N} \\
& =1.3\left|u\left(\tau_{1}\right)\right|
\end{aligned}
$$

which is a contradiction. From (3.3), $\left|u\left(\tau_{0}\right)\right| \geq 0.2(2 /(q+1))^{q /(q+1)}\left|u^{\prime}\left(t_{1}\right)\right|^{2 /(1+q)}$.
 3.1 and 4.2). Thus

$$
\begin{aligned}
& \tau_{0}+2^{q+1} N\left|u\left(\tau_{1}\right)\right|^{(1-q) / 2} \\
& \leq t_{1}+\left(\kappa_{1}+.2\left(2^{q+2} N\right)(2 /(q+1))^{q /(q+1)}\right)\left|u^{\prime}\left(t_{1}\right)\right|^{(1-q) /(1+q)} \\
& \equiv t_{1}+k_{2}\left|u^{\prime}\left(t_{1}\right)\right|^{(1-q) /(1+q)}
\end{aligned}
$$

Thus we have proven the following lemma.
Lemma 4.1. There exists $t_{2} \in\left[t_{1}, t_{1}+k_{2}\left|u^{\prime}\left(t_{1}\right)\right|^{(1-q) /(1+q)}\right]$ such that $u\left(t_{2}\right)=0$ and $u(s)<0$ in $\left(t_{1}, t_{2}\right)$.

5. First positive maximum

Let $t>t_{2}$ be such that $u^{\prime}(s)>0$ on $\left[t_{2}, t\right]$. Thus $u^{\prime \prime} \leq 0$ in $\left[t_{2}, t\right]$. Hence $u(s) \leq u^{\prime}\left(t_{2}\right)\left(s-t_{2}\right)$ for all $s \in\left[t_{2}, t\right]$. Integrating 1.5) on $\left[t_{2}, s\right]$, we have

$$
\begin{align*}
s^{n} u^{\prime}(s) & =t_{2}^{n} u^{\prime}\left(t_{2}\right)-\int_{t_{2}}^{s} r^{n}|u(r)|^{p-1} u(r) d r \\
& \geq t_{2}^{n} u^{\prime}\left(t_{2}\right)-s^{n} \frac{\left|u^{\prime}\left(t_{2}\right)\right|^{p}\left(s-t_{2}\right)^{p+1}}{p+1} \tag{5.1}\\
& \geq u^{\prime}\left(t_{2}\right)\left(t_{2}^{n}-\frac{s^{n}}{p+1}\right)
\end{align*}
$$

for $s \leq t_{2}+u^{\prime}\left(t_{2}\right)^{(1-p) /(1+p)}$. Since $t_{2}^{N}\left|u^{\prime}\left(t_{2}\right)\right|^{2} \geq 2 c_{1} d^{\xi}$ (see 2.4) and $\left(u^{\prime}\left(t_{2}\right)\right)^{2} \leq$ $2 d^{p+1} /(p+1)$, we have

$$
\begin{equation*}
t_{2}^{N} \geq 2 c_{1}\left(\frac{p+1}{2}\right)^{\xi /(p+1)}\left|u^{\prime}\left(t_{2}\right)\right|^{N(1-p) /(1+p)} \tag{5.2}
\end{equation*}
$$

Now for

$$
s \in\left[t_{2}, \min \left\{2^{1 / n}, 1+\left(2 c_{1}\right)^{-1 / N}\left(\frac{2}{p+1}\right)^{\frac{\xi}{N(p+1)}}\right\} t_{2} \equiv \alpha t_{2}\right],
$$

from (5.1) and (5.2), we have

$$
\begin{equation*}
u^{\prime}(s) \geq u^{\prime}\left(t_{2}\right)\left(\frac{t_{2}^{n}}{s^{n}}-\frac{1}{p+1}\right) \geq u^{\prime}\left(t_{2}\right) \frac{p-1}{p+1} \tag{5.3}
\end{equation*}
$$

Integration on $\left[t_{2}, \alpha t_{2}\right]$ yields

$$
\begin{equation*}
u\left(\alpha t_{2}\right) \geq \frac{p-1}{p+1} \alpha t_{2} u^{\prime}\left(t_{2}\right) \tag{5.4}
\end{equation*}
$$

Therefore, assuming again that $u^{\prime}>0$ on $\left[t_{2}, t\right]$, we have

$$
\begin{align*}
t^{n} u^{\prime}(t) & \leq t_{2}^{n} u^{\prime}\left(t_{2}\right)-\int_{\alpha t_{2}}^{t} r^{n}|u(r)|^{p-1} u(r) d r \tag{5.5}\\
& \leq t_{2}^{n} u^{\prime}\left(t_{2}\right)-t_{2}^{n}\left(t-\alpha t_{2}\right)\left(\frac{p-1}{p+1} \alpha t_{2} u^{\prime}\left(t_{2}\right)\right)^{p}
\end{align*}
$$

This and 5.2 imply

$$
\begin{align*}
t-\alpha t_{2} & \leq\left(\frac{p-1}{p+1} \alpha\right)^{-p} t_{2}^{-p}\left|u^{\prime}\left(t_{2}\right)\right|^{1-p} \\
& \leq\left(\frac{p-1}{p+1} \alpha\right)^{-p}\left(2 c_{1}\right)^{-p / N}\left(\frac{p+1}{2}\right)^{-p \xi /(N(p+1))}\left|u^{\prime}\left(t_{2}\right)\right|^{(1-p) /(p+1)} \tag{5.6}\\
& \equiv \kappa_{2}\left|u^{\prime}\left(t_{2}\right)\right|^{(1-p) /(p+1)}
\end{align*}
$$

This proves the following result.
Lemma 5.1. There exists $\tau_{2} \in\left[t_{2}, \alpha t_{2}+\kappa_{2}\left|u^{\prime}\left(t_{2}\right)\right|^{(1-p) /(p+1)}\right]$ such that $u^{\prime}\left(\tau_{2}\right)=0$ and $u^{\prime}(s)>0$ on $\left[t_{2}, \tau_{2}\right)$.

6. Energy on the interval $\left[t_{0}, \tau_{2}\right]$

Now we estimate the energy on $\left[t_{0}, \tau_{2}\right]$.
Lemma 6.1. For $t \in\left[t_{0}, \tau_{2}\right]$,

$$
\begin{equation*}
t^{n} H(t) \geq c_{1} d^{\xi} \tag{6.1}
\end{equation*}
$$

Proof. Let us prove first that

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}} t^{n} \gamma u^{p+1}(t) d t \geq \int_{t_{1}}^{t_{2}} t^{n} \gamma_{1}\left|u(t)^{q+1}\right| d t \tag{6.2}
\end{equation*}
$$

where $\gamma_{1}=((q+1)(N-2)-2 N) /(2(q+1))$. Let $\hat{t}_{0} \in\left[t_{0}, t_{1}\right]$ be such that $u\left(\hat{t}_{0}\right)=d / 4$. Then, for $t \in\left[t_{0}, \hat{t}_{0}\right]$, we have

$$
\begin{equation*}
-u^{\prime}(t)=t^{-n} \int_{0}^{t} s^{n} u^{p}(s) d s \leq \frac{t d^{p}}{N} \tag{6.3}
\end{equation*}
$$

Integrating on $\left[t_{0}, \hat{t}_{0}\right]$ we have $(d / 4) \leq\left(\hat{t}_{0}^{2}-t_{0}^{2}\right) d^{p} /(2 N)$. This and 2.2 yield

$$
\begin{equation*}
\hat{t}_{0} \geq \sqrt{\frac{N d^{1-p}}{2}+t_{0}^{2}}=t_{0} \sqrt{1+\frac{N d^{1-p}}{2 t_{0}^{2}}} \geq t_{0} \sqrt{1+\frac{1}{2^{p+1}}} \tag{6.4}
\end{equation*}
$$

which combined with 2.2 gives

$$
\begin{align*}
\int_{t_{0}}^{t_{1}} t^{n} \gamma u^{p+1}(t) d t & \geq \int_{t_{0}}^{\hat{t}_{0}} t^{n} \gamma u^{p+1}(t) d t \\
& \geq \gamma(d / 4)^{p+1} \frac{\hat{t}_{0}^{N}-t_{0}^{N}}{N} \tag{6.5}\\
& \geq \frac{\gamma}{4^{p+1} N} t_{0}^{N}\left(\left(1+\frac{1}{2^{p+1}}\right)^{N / 2}-1\right) d^{p+1} \\
& \geq \frac{\gamma}{4^{p+1} N}\left(\left(1+\frac{1}{2^{p+1}}\right)^{N / 2}-1\right) N^{N / 2} d^{\xi} .
\end{align*}
$$

Using (1.7), we have $|u(t)|^{q+1} \leq(q+1) d^{p+1} /(p+1)$. Also from 2.3) and 2.4), we have $t_{1}^{N}\left|u^{\prime}\left(t_{1}\right)\right|^{2} / 2=t_{1} H\left(t_{1}\right) \geq c_{1} d^{\xi}$. This implies that $k_{2}\left|u^{\prime}\left(t_{1}\right)\right|^{(1-q) /(1+q)}<t_{1}$ for $d>0$ large. These inequalities and Lemma 4.1imply

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} t^{n}|u(t)|^{q+1} d t & \leq\left(\frac{q+1}{p+1} d^{p+1}\right) \frac{t_{2}^{N}-t_{1}^{N}}{N} \\
& \leq\left(\frac{q+1}{p+1} d^{p+1}\right) \frac{\left(t_{1}+k_{2}\left|u^{\prime}\left(t_{1}\right)\right|^{(1-q) /(1+q)}\right)^{N}-t_{1}^{N}}{N} \\
& \leq\left(\frac{q+1}{p+1} d^{p+1}\right) t_{1}^{n} \frac{\left(2^{N}-1\right) k_{2}\left|u^{\prime}\left(t_{1}\right)\right|^{(1-q) /(1+q)}}{N} \\
& \leq\left(\frac{q+1}{p+1} d^{p+1}\right) \frac{\left(2^{N}-1\right) k_{2}}{N} t_{1}^{n}\left(d^{\xi / 2} t_{1}^{-N / 2}\right)^{(1-q) /(1+q)} \\
& =\left(\frac{q+1}{p+1}\right) \frac{\left(2^{N}-1\right) k_{2}}{N} d^{p+1+(\xi(1-q) /(2(1+q))} t_{1}^{N-1-N(1-q) /(2(1+q))} \\
& \leq\left(\frac{q+1}{p+1}\right) \frac{\left(2^{N}-1\right) k_{2}}{N} \ln ^{M / \gamma}(d) d^{\eta} \tag{6.6}
\end{align*}
$$

where

$$
\begin{gathered}
\eta=p+1+\frac{\xi(1-q)+(1-p)(2(N-1)(1+q)-N(1-q))}{2(1+q)} \\
M=(2(N-1)(1+q)-N(1-q)) /(2(1+q))
\end{gathered}
$$

An elementary calculation shows that $\xi>\eta$. Thus from (6.5 and 6.6, 6.2 follows. Thus for $t \in\left[t_{1}, \tau_{2}\right]$,

$$
\begin{align*}
t^{n} H(t) & =t_{0}^{n} H\left(t_{0}\right)+\int_{t_{0}}^{t} s^{n}\left(N G(u(s))-\frac{N-2}{2} u(s) g(u(s))\right) d s \\
& \geq t_{0}^{n} H\left(t_{0}\right)+\int_{t_{0}}^{t_{2}} s^{n}\left(N G(u(s))-\frac{N-2}{2} u(s) g(u(s))\right) d s \tag{6.7}\\
& \geq t_{0}^{n} H\left(t_{0}\right) \\
& \geq c_{1} d^{\xi}
\end{align*}
$$

which proves the lemma.

7. Proof of Theorem 1.1

Arguing as in Lemmas 2.1 and 4.1, we see that for $d>0$ sufficiently large there exist numbers

$$
\begin{equation*}
t_{3}<\cdots<t_{k} \leq 1 \tag{7.1}
\end{equation*}
$$

such that
$u(t)<0 \quad$ in $\left(t_{2 i-1}, t_{2 i}\right), \quad$ and $\quad u(t)>0 \quad$ in $\left(t_{2 i}, t_{2 i+1}\right), i=1, \ldots \min \left\{\frac{k}{2}, \frac{k+1}{2}\right\}$.
Imitating the arguments leading to $\sqrt{6.2}$, one sees that

$$
\begin{equation*}
\int_{t_{2 i}}^{t_{2 i+1}} t^{n} \gamma u^{p+1}(t) d t \geq \int_{t_{2 i+1}}^{t_{2 i+2}} t^{n} \gamma_{1}\left|u(t)^{q+1}\right| d t \tag{7.3}
\end{equation*}
$$

This in turn (see 6.7) leads to

$$
\begin{equation*}
t^{n} H(t) \geq c_{1} d^{\xi} \quad \text { for all } t \in\left[t_{0}, 1\right] \tag{7.4}
\end{equation*}
$$

This, together with Lemma 2.1. proves Theorem 1.2 . From (7.4 we see that

$$
\begin{equation*}
\rho^{2}(t) \equiv u^{2}(t)+\left(u^{\prime}(t)\right)^{2} \rightarrow \infty \quad \text { as } d \rightarrow+\infty \tag{7.5}
\end{equation*}
$$

uniformly for $t \in[0,1]$. Therefore, there exists a continuous argument function $\theta(t, d) \equiv \theta(t)$ such that

$$
\begin{equation*}
u(t)=\rho(t) \cos (\theta(t)) \quad \text { and } \quad u^{\prime}(t)=-\rho(t) \sin (\theta(t)) \tag{7.6}
\end{equation*}
$$

From this we see that $\theta^{\prime}(t)=\left\{\left((n / t) u^{\prime}(t)+g(u(t))\right) u(t)+\left(u^{\prime}(t)\right)^{2}\right\} / \rho^{2}(t)$. Thus $\theta^{\prime}(t)>0$ for $\theta(t)=j \pi / 2$ with $j=1, \ldots$, which implies that if $\theta(t)=j \pi / 2$ then $\theta(s)>j \pi / 2$ for all $s \in(t, 1]$.

Imitating the arguments of Lemmas 2.1 and 4.1, we see that $t_{2 i}-t_{2(i-1)} \leq$ $c_{3} \ln ^{1 / \gamma}(d) d^{(1-p) / 2}$. Thus $k \geq c_{4} \ln ^{-1 / \gamma}(d) d^{(p-1) / 2}$ (see 7.1), which implies that

$$
\begin{equation*}
\lim _{d \rightarrow+\infty} \theta(1, d)=+\infty \tag{7.7}
\end{equation*}
$$

By the continuity of θ and the intermediate value theorem we see that there exists a sequence $d_{1}<\cdots<d_{j}<\cdots \rightarrow \infty$ such that $\theta\left(1, d_{j}\right)=j \pi+(\pi / 2)$. Hence $u\left(t, d_{j}\right)$ is a solution to 1.1 having exactly j zeroes in $(0,1)$, which proves Theorem 1.1.

References

[1] F. Atkinson, H. Brezis and L. Peletier; Solutions d'équations elliptiques avec exposant de Sobolev critique que changent de signe, C. R. Acad. Sci. Paris Serie I 306 (1988), pp. 711714.
[2] R. Benguria, J. Dolbeault, and M. Esteban; Classification of the solutions of semilinear elliptic problems in a ball, J. Differential Equations 167 (2000), no. 2, pp. 438-466.
[3] H. Brezis and L. Nirenberg; Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, pp. 437-477.
[4] A. Castro and A. Kurepa; Infinitely many solutions to a superlinear Dirichlet problem in a ball, Proc. Amer. Math. Soc., 101 (1987), No. 1, pp. 57-64.
[5] A. Castro and A. Kurepa; Radially symmetric solutions to a superlinear Dirichlet problem with jumping nonlinearities, Trans. Amer. Math. Soc. 315 (1989), pp. 353-372
[6] A. Castro and A. Kurepa, Radially symmetric solutions to a Dirichlet problem involving critical exponents, Trans. Amer. Math. Soc., 348 (1996), no. 2, pp. 781-798.
[7] G. Cerami, S. Solimini, M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986), 289-306.
[8] A. El Hachimi and F. de Thelin; Infinitely many radially symmetric solutions for a quasilinear elliptic problem in a ball, J. Differential Equations 128 (1996), pp. 78-102.
[9] L. Erbe and M. Tang; Structure of positive radial solutions of semilinear elliptic equations, J. Differential Equations 133 (1997), pp. 179-202.
[10] M. García-Huidobro, R. Mansevich, and F. Zanolin; Infinitely many solutions for a Dirichlet problem with a nonhomogeneous p-Laplacian-like operator in a ball. Adv. Differential Equations (1997), no. 2, pp. 203-230.
[11] J. Jacobsen, and K. Schmitt; Radial solutions of quasilinear elliptic differential equations. Handbook of differential equations, pp. 359-435, Elsevier/North-Holland, Amsterdam, (2004).
[12] S. I. Pohozaev; On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$. Dokl. Akad. Nauk SSSR 165 (1965), pp. 36-39.

Departament of Mathematics, Harvey Mudd College, Claremont, CA 91711, USA
E-mail address, A. Castro: castro@math.hmc.edu
E-mail address, J. Kwon: kwonjy@math.uci.edu
E-mail address, C. M. Tan: ctan@hmc.edu

[^0]: 2000 Mathematics Subject Classification. 35J65, 34B16.
 Key words and phrases. Sub-super critical; radial solutions; nonlinear elliptic equation; Pohozaev identity.
 © 2007 Texas State University - San Marcos.
 Submitted February 4, 2007. Published August 14, 2007.

