Electronic Journal of Differential Equations, Vol. 2007(2007), No. 112, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR THIRD-ORDER THREE-POINT BOUNDARY-VALUE PROBLEMS

LI-JUN GUO, JIAN-PING SUN, YA-HONG ZHAO

Abstract. This paper concerns the nonlinear third-order three-point bound-ary-value problem

$$
\begin{gathered}
u^{\prime \prime \prime}(t)+h(t) f(u(t))=0, \quad t \in(0,1) \\
u(0)=u^{\prime}(0)=0, \quad u^{\prime}(1)=\alpha u^{\prime}(\eta)
\end{gathered}
$$

where $0<\eta<1$ and $1<\alpha<\frac{1}{\eta}$. First, we establish the existence of at least three positive solutions by using the well-known Leggett-Williams fixed point theorem. And then, we prove the existence of at least $2 m-1$ positive solutions for arbitrary positive integer m.

1. Introduction

Third-order differential equations arise in a variety of different areas of applied mathematics and physics, e.g., in the deflection of a curved beam having a constant or varying cross section, a three layer beam, electromagnetic waves or gravity driven flows and so on [5]. Recently, third-order boundary value problems (BVPs for short) have received much attention. For example, [3, 4, 8, 11, 15] discussed some third-order two-point BVPs, while $[1,2,12,13,14]$ studied some third-order threepoint BVPs. In particular, Anderson [1] obtained some existence results of positive solutions for the BVP

$$
\begin{gather*}
x^{\prime \prime \prime}(t)=f(t, x(t)), \quad t_{1} \leq t \leq t_{3} \tag{1.1}\\
x\left(t_{1}\right)=x^{\prime}\left(t_{2}\right)=0, \quad \gamma x\left(t_{3}\right)+\delta x^{\prime \prime}\left(t_{3}\right)=0 \tag{1.2}
\end{gather*}
$$

by using the well-known Guo-Krasnoselskii fixed point theorem [6, 9] and LeggettWilliams fixed point theorem [10]. In 2005, the author in [13] established various results on the existence of single and multiple positive solutions to some third-order differential equations satisfying the following three-point boundary conditions

$$
\begin{equation*}
x(0)=x^{\prime}(\eta)=x^{\prime \prime}(1)=0 \tag{1.3}
\end{equation*}
$$

where $\eta \in\left[\frac{1}{2}, 1\right)$. The main tool in [13] was the Guo-Krasnoselskii fixed point theorem.

[^0]Recently, motivated by the above-mentioned excellent works, we [7] considered the third-order three-point BVP

$$
\begin{gather*}
u^{\prime \prime \prime}(t)+h(t) f(u(t))=0, \quad t \in(0,1) \tag{1.4}\\
u(0)=u^{\prime}(0)=0, \quad u^{\prime}(1)=\alpha u^{\prime}(\eta) \tag{1.5}
\end{gather*}
$$

where $0<\eta<1$. By using the Guo-Krasnoselskii fixed point theorem, we obtained the existence of at least one positive solution for the BVP (1.4)-(1.5) under the assumption that $1<\alpha<\frac{1}{\eta}$ and f is either superlinear or sublinear.

In this paper, we will continue to study the BVP (1.4)-(1.5). First, some existence criteria for at least three positive solutions to the BVP (1.4)-(1.5) are established by using the well-known Leggett-Williams fixed point theorem. And then, for arbitrary positive integer m, existence results for at least $2 m-1$ positive solutions are obtained.

In the remainder of this section, we state some fundamental concepts and the Leggett-Williams fixed point theorem.

Let E be a real Banach space with cone P. A map $\sigma: P \rightarrow[0,+\infty)$ is said to be a nonnegative continuous concave functional on P if σ is continuous and

$$
\sigma(t x+(1-t) y) \geq t \sigma(x)+(1-t) \sigma(y)
$$

for all $x, y \in P$ and $t \in[0,1]$. Let a, b be two numbers such that $0<a<b$ and σ be a nonnegative continuous concave functional on P. We define the following convex sets

$$
\begin{gathered}
P_{a}=\{x \in P:\|x\|<a\}, \\
P(\sigma, a, b)=\{x \in P: a \leq \sigma(x),\|x\| \leq b\} .
\end{gathered}
$$

thm1.1 Theorem 1.1 (Leggett-Williams fixed point theorem). Let $A: \overline{P_{c}} \rightarrow \overline{P_{c}}$ be completely continuous and σ be a nonnegative continuous concave functional on P such that $\sigma(x) \leq\|x\|$ for all $x \in \overline{P_{c}}$. Suppose that there exist $0<d<a<b \leq c$ such that
(i) $\{x \in P(\sigma, a, b): \sigma(x)>a\} \neq \emptyset$ and $\sigma(A x)>a$ for $x \in P(\sigma, a, b)$;
(ii) $\|A x\|<d$ for $\|x\| \leq d$;
(iii) $\sigma(A x)>a$ for $x \in P(\sigma, a, c)$ with $\|A x\|>b$.

Then A has at least three fixed points x_{1}, x_{2}, x_{3} in $\overline{P_{c}}$ satisfying

$$
\left\|x_{1}\right\|<d, \quad a<\sigma\left(x_{2}\right), \quad\left\|x_{3}\right\|>d, \quad \sigma\left(x_{3}\right)<a
$$

2. Preliminary Lemmas

In this section, we present several important lemmas whose proof can be found in [7].
lem2.1 Lemma 2.1. Let $\alpha \eta \neq 1$. Then for $y \in C[0,1]$, the $B V P$

$$
\begin{gather*}
u^{\prime \prime \prime}(t)+y(t)=0, \quad t \in(0,1) \tag{2.1}\\
u(0)=u^{\prime}(0)=0, \quad u^{\prime}(1)=\alpha u^{\prime}(\eta) \tag{2.2}
\end{gather*}
$$

has a unique solution $u(t)=\int_{0}^{1} G(t, s) y(s) d s$, where

$$
G(t, s)=\frac{1}{2(1-\alpha \eta)} \begin{cases}\left(2 t s-s^{2}\right)(1-\alpha \eta)+t^{2} s(\alpha-1), & s \leq \min \{\eta, t\} \tag{2.3}\\ t^{2}(1-\alpha \eta)+t^{2} s(\alpha-1), & t \leq s \leq \eta \\ \left(2 t s-s^{2}\right)(1-\alpha \eta)+t^{2}(\alpha \eta-s), & \eta \leq s \leq t \\ t^{2}(1-s), & \max \{\eta, t\} \leq s\end{cases}
$$

is called the Green's function.
For convenience, we denote

$$
\begin{equation*}
g(s)=\frac{1+\alpha}{1-\alpha \eta} s(1-s), \quad s \in[0,1] . \tag{2.4}
\end{equation*}
$$

For the Green's function $G(t, s)$, we have the following two lemmas.
lem2.2 Lemma 2.2. Let $1<\alpha<\frac{1}{\eta}$. Then for any $(t, s) \in[0,1] \times[0,1]$,

$$
0 \leq G(t, s) \leq g(s)
$$

lem2.3 Lemma 2.3. Let $1<\alpha<\frac{1}{\eta}$. Then for any $(t, s) \in\left[\frac{\eta}{\alpha}, \eta\right] \times[0,1]$,

$$
\gamma g(s) \leq G(t, s)
$$

where $0<\gamma=\frac{\eta^{2}}{2 \alpha^{2}(1+\alpha)} \min \{\alpha-1,1\}<1$.

3. Main results

In the remainder of this paper, we assume that the following conditions are satisfied:
(A1) $1<\alpha<\frac{1}{\eta}$;
(A2) $f \in C([0, \infty),[0, \infty))$;
(A3) $h \in C([0,1],[0, \infty))$ and is not identical zero on $\left[\frac{\eta}{\alpha}, \eta\right]$.
For convenience, we let

$$
\begin{aligned}
D & =\max _{t \in[0,1]} \int_{0}^{1} G(t, s) h(s) d s \\
C & =\min _{t \in\left[\frac{\eta}{\alpha}, \eta\right]} \int_{\frac{\eta}{\alpha}}^{\eta} G(t, s) h(s) d s
\end{aligned}
$$

thm3.1 Theorem 3.1. Assume that there exist numbers d_{0}, d_{1} and c with $0<d_{0}<d_{1}<$ $\frac{d_{1}}{\gamma}<c$ such that

$$
\begin{gather*}
f(u)<\frac{d_{0}}{D}, \quad u \in\left[0, d_{0}\right] \tag{tabular}\\
f(u)>\frac{d_{1}}{C}, \quad u \in\left[d_{1}, \frac{d_{1}}{\gamma}\right] \tag{3.2}\\
f(u)<\frac{c}{D}, \quad u \in[0, c] \tag{3.3}
\end{gather*}
$$

Then the BVP (1.4)-(1.5) has at least three positive solutions.
Proof. Let the Banach space $E=C[0,1]$ be equipped with the norm

$$
\|u\|=\max _{0 \leq t \leq 1}|u(t)|
$$

We denote

$$
P=\{u \in E: u(t) \geq 0, t \in[0,1]\}
$$

Then, it is obvious that P is a cone in E. For $u \in P$, we define

$$
\sigma(u)=\min _{t \in\left[\frac{\eta}{\alpha}, \eta\right]} u(t)
$$

and

$$
\begin{equation*}
A u(t)=\int_{0}^{1} G(t, s) h(s) f(u(s)) d s, \quad t \in[0,1] . \tag{3.4}
\end{equation*}
$$

It is easy to check that σ is a nonnegative continuous concave functional on P with $\sigma(u) \leq\|u\|$ for $u \in P$ and that $A: P \rightarrow P$ is completely continuous and fixed points of A are solutions of the BVP (1.4)-(1.5).

We first assert that if there exists a positive number r such that $f(u)<\frac{r}{D}$ for $u \in[0, r]$, then $A: \overline{P_{r}} \rightarrow P_{r}$. Indeed, if $u \in \overline{P_{r}}$, then for $t \in[0,1]$,

$$
\begin{aligned}
(A u)(t) & =\int_{0}^{1} G(t, s) h(s) f(u(s)) d s \\
& <\frac{r}{D} \int_{0}^{1} G(t, s) h(s) d s \\
& \leq \frac{r}{D} \max _{t \in[0,1]} \int_{0}^{1} G(t, s) h(s) d s=r .
\end{aligned}
$$

Thus, $\|A u\|<r$, that is, $A u \in P_{r}$. Hence, we have shown that if (3.1) and (3.3) hold, then A maps $\overline{P_{d_{0}}}$ into $P_{d_{0}}$ and $\overline{P_{c}}$ into P_{c}.

Next, we assert that $\left\{u \in P\left(\sigma, d_{1}, d_{1} / \gamma\right): \sigma(u)>d_{1}\right\} \neq \emptyset$ and $\sigma(A u)>d_{1}$ for all $u \in P\left(\sigma, d_{1}, d_{1} / \gamma\right)$. In fact, the constant function

$$
\frac{d_{1}+d_{1} / \gamma}{2} \in\left\{u \in P\left(\sigma, d_{1}, d_{1} / \gamma\right): \sigma(u)>d_{1}\right\}
$$

Moreover, for $u \in P\left(\sigma, d_{1}, d_{1} / \gamma\right)$, we have

$$
d_{1} / \gamma \geq\|u\| \geq u(t) \geq \min _{t \in\left[\frac{\eta}{\alpha}, \eta\right]} u(t)=\sigma(u) \geq d_{1}
$$

for all $t \in\left[\frac{\eta}{\alpha}, \eta\right]$. Thus, in view of (3.2), we see that

$$
\begin{aligned}
\sigma(A u) & =\min _{t \in\left[\frac{\eta}{\alpha}, \eta\right]} \int_{0}^{1} G(t, s) h(s) f(u(s)) d s \\
& \geq \min _{t \in\left[\frac{\eta}{\alpha}, \eta\right]} \int_{\frac{\eta}{\alpha}}^{\eta} G(t, s) h(s) f(u(s)) d s \\
& >\frac{d_{1}}{C} \min _{t \in\left[\frac{\eta}{\alpha}, \eta\right]} \int_{\frac{\eta}{\alpha}}^{\eta} G(t, s) h(s) d s=d_{1}
\end{aligned}
$$

as required.
Finally, we assert that if $u \in P\left(\sigma, d_{1}, c\right)$ and $\|A u\|>d_{1} / \gamma$, then $\sigma(A u)>d_{1}$. To see this, we suppose that $u \in P\left(\sigma, d_{1}, c\right)$ and $\|A u\|>d_{1} / \gamma$, then, by Lemma 2.2
and Lemma 2.3, we have

$$
\begin{aligned}
\sigma(A u) & =\min _{t \in\left[\frac{\eta}{\alpha}, \eta\right]} \int_{0}^{1} G(t, s) h(s) f(u(s)) d s \\
& \geq \gamma \int_{0}^{1} g(s) h(s) f(u(s)) d s \geq \gamma \int_{0}^{1} G(t, s) h(s) f(u(s)) d s
\end{aligned}
$$

for all $t \in[0,1]$. Thus

$$
\sigma(A u) \geq \gamma \max _{t \in[0,1]} \int_{0}^{1} G(t, s) h(s) f(u(s)) d s=\gamma\|A u\|>\gamma \frac{d_{1}}{\gamma}=d_{1}
$$

To sum up, all the hypotheses of the Leggett-Williams theorem are satisfied. Hence A has at least three fixed points, that is, the BVP (1.4)-(1.5) has at least three positive solutions u, v, and w such that

$$
\|u\|<d_{0}, \quad d_{1}<\min _{t \in\left[\frac{\eta}{\alpha}, \eta\right]} v(t), \quad\|w\|>d_{0}, \quad \min _{t \in\left[\frac{\eta}{\alpha}, \eta\right]} w(t)<d_{1}
$$

thm3.2 Theorem 3.2. Let m be an arbitrary positive integer. Assume that there exist numbers $d_{i}(1 \leq i \leq m)$ and $a_{j}(1 \leq j \leq m-1)$ with $0<d_{1}<a_{1}<\frac{a_{1}}{\gamma}<d_{2}<$ $a_{2}<\frac{a_{2}}{\gamma}<\cdots<d_{m-1}<a_{m-1}<\frac{a_{m-1}}{\gamma}<d_{m}$ such that

$$
\begin{gather*}
f(u)<\frac{d_{i}}{D}, \quad u \in\left[0, d_{i}\right], \quad 1 \leq i \leq m \tag{3.5}\\
f(u)>\frac{a_{j}}{C}, \quad u \in\left[a_{j}, \frac{a_{j}}{\gamma}\right], \quad 1 \leq j \leq m-1 . \tag{3.6}
\end{gather*}
$$

Then, the BVP (1.4)-(1.5) has at least $2 m-1$ positive solutions in $\overline{P_{d_{m}}}$.
Proof. We use induction on m. First, for $m=1$, we know from (3.5) that $A: \overline{P_{d_{1}}} \rightarrow$ $P_{d_{1}}$, then, it follows from Schauder fixed point theorem that the BVP (1.4)-(1.5) has at least one positive solution in $\overline{P_{d_{1}}}$.

Next, we assume that this conclusion holds for $m=k$. In order to prove that this conclusion also holds for $m=k+1$, we suppose that there exist numbers d_{i} $(1 \leq i \leq k+1)$ and $a_{j}(1 \leq j \leq k)$ with $0<d_{1}<a_{1}<\frac{a_{1}}{\gamma}<d_{2}<a_{2}<\frac{a_{2}}{\gamma}<\cdots<$ $d_{k}<a_{k}<\frac{a_{k}}{\gamma}<d_{k+1}$ such that

$$
\begin{gather*}
f(u)<\frac{d_{i}}{D}, \quad u \in\left[0, d_{i}\right], 1 \leq i \leq k+1 \tag{3.7}\\
f(u)>\frac{a_{j}}{C}, \quad u \in\left[a_{j}, \frac{a_{j}}{\gamma}\right], 1 \leq j \leq k \tag{3.8}
\end{gather*}
$$

By assumption, the BVP (1.4)-(1.5) has at least $2 k-1$ positive solutions $u_{i}(i=$ $1,2, \ldots, 2 k-1$) in $\overline{P_{d_{k}}}$. At the same time, it follows from Theorem 3.1, (3.7) and (3.8) that the BVP (1.4)-(1.5) has at least three positive solutions u, v, and w in $\overline{P_{d_{k+1}}}$ such that

$$
\|u\|<d_{k}, \quad a_{k}<\min _{t \in\left[\frac{\eta}{\alpha}, \eta\right]} v(t), \quad\|w\|>d_{k}, \quad \min _{t \in\left[\frac{\eta}{\alpha}, \eta\right]} w(t)<a_{k} .
$$

Obviously, v and w are different from $u_{i}(i=1,2, \ldots, 2 k-1)$. Therefore, the BVP (1.4)-(1.5) has at least $2 k+1$ positive solutions in $\overline{P_{d_{k+1}}}$, which shows that this conclusion also holds for $m=k+1$.

Example 3.3. We consider the BVP

$$
\begin{align*}
& u^{\prime \prime \prime}(t)+24 f(u(t))=0, \quad t \in(0,1) \tag{3.9}\\
& u(0)=u^{\prime}(0)=0, \quad u^{\prime}(1)=\frac{3}{2} u^{\prime}\left(\frac{1}{2}\right) \tag{3.10}
\end{align*}
$$

where

$$
f(u)= \begin{cases}\frac{u^{2}+1}{28}, & u \in\left[0, \frac{1}{2}\right] \\ \frac{275}{56} u-\frac{135}{56}, & u \in\left[\frac{1}{2}, 1\right] \\ 2 u^{\frac{1}{4}}+\frac{1}{2}, & u \in[1,90] \\ \frac{u-90}{20}\left(160 \cdot 110^{\frac{1}{8}}-2 \cdot 90^{\frac{1}{4}}-\frac{1}{2}\right)+2 \cdot 90^{\frac{1}{4}}+\frac{1}{2}, & u \in[90,110] \\ 160 u^{\frac{1}{8}}, & u \in[110, \infty)\end{cases}
$$

A simple calculation shows that

$$
D=11, \quad C=\frac{11}{27}, \quad \gamma=\frac{1}{90} .
$$

Let $m=3$. If we choose

$$
d_{1}=\frac{1}{2}, \quad d_{2}=90.1, \quad d_{3}=11000, \quad a_{1}=1, \quad a_{2}=110
$$

then the conditions (3.5) and (3.6) are satisfied. Therefore, it follows from Theorem 3.2 that the BVP (3.9)-(3.10) has at least five positive solutions.

References

a1 [1] D. R. Anderson, Green's function for a third-order generalized right focal problem, J. Math. Anal. Appl., 288 (2003), 1-14.
[2] D. R. Anderson and J. M. Davis, Multiple solutions and eigenvalues for three-order right focal boundary value problems, J. Math. Anal. Appl., 267 (2002), 135-157.
[3] Z. J. Du, W. G. Ge and X. J. Lin, Existence of solutions for a class of third-order nonlinear boundary value problems, J. Math. Anal. Appl., 294 (2004), 104-112.
[4] Y. Feng and S. Liu, Solvability of a third-order two-point boundary value problem, Applied Mathematics Letters, 18 (2005), 1034-1040.
[5] M. Gregus, Third Order Linear Differential Equations, Math. Appl., Reidel, Dordrecht, 1987.
[6] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, NewYork, 1988.
[7] L. J. Guo, J. P. Sun and Y. H. Zhao, Existence of positive solution for nonlinear thirdorder three-point boundary value problem, Nonlinear Analysis, (2007), doi: 10.1016/ j.na.2007.03.008.
[8] B. Hopkins and N. Kosmatov, Third-order boundary value problems with sign-changing solutions, Nonlinear Analysis, 67 (2007), 126-137.
[9] M. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[10] R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688.
12 [11] S. Li, Positive solutions of nonlinear singular third-order two-point boundary value problem, J. Math. Anal. Appl., 323 (2006), 413-425.
$\mathrm{m} 1 \quad$ [12] R. Ma, Multiplicity results for a third order boundary value problem at resonance, Nonlinear Analysis, 32 (4) (1998), 493-499.
[13] Y. Sun, Positive solutions of singular third-order three-point boundary value problem, J. Math. Anal. Appl., 306 (2005), 589-603.
y1 [14] Q. Yao, The existence and multiplicity of positive solutions for a third-order three-point boundary value problem, Acta Math. Appl. Sinica, 19 (2003), 117-122.
[15] Q. Yao and Y. Feng, The existence of solution for a third-order two-point boundary value problem, Applied Mathematics Letters, 15 (2002), 227-232.

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China

E-mail address, L.-J. Guo: school520@lut.cn
E-mail address, J.-P. Sun (Corresponding author): jpsun@lut.cn
E-mail address, Y.-H. Zhao: zhaoyahong88@sina.com

[^0]: 2000 Mathematics Subject Classification. 34B10, 34B18.
 Key words and phrases. Third-order boundary value problem; positive solution; three-point boundary value problem; existence; cone; fixed point.
 © 2007 Texas State University - San Marcos.
 Submitted April 18, 2007. Published August 18, 2007.
 Supported by the NSF of Gansu Province of China.

