Electronic Journal of Differential Equations, Vol. 2007(2007), No. 113, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

A BLOW-UP RESULT FOR A VISCOELASTIC SYSTEM IN \mathbb{R}^n

MOHAMMAD KAFINI, SALIM A. MESSAOUDI

ABSTRACT. In this paper we consider a coupled system of nonlinear viscoelastic equations. Under suitable conditions on the initial data and the relaxation functions, we prove a finite-time blow-up result.

1. INTRODUCTION

In [7], Messaudi considered the following initial-boundary value problem

$$u_{tt} - \Delta u + \int_0^t g(t - \tau) \Delta u(\tau) d\tau + u_t |u_t|^{m-2} = u |u|^{p-2}, \quad \text{in } \Omega \times (0, \infty)$$
$$u(x, t) = 0, \quad x \in \partial\Omega, \ t \ge 0$$
$$u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad x \in \Omega,$$
(1.1)

where Ω is a bounded domain of \mathbb{R}^n $(n \ge 1)$ with a smooth boundary $\partial\Omega$, p > 2, $m \ge 1$, and $g: \mathbb{R}^+ \to \mathbb{R}^+$ is a positive non-increasing function. He showed, under suitable conditions on g, that solutions with initial negative energy blow up in finite time if p > m and continue to exist if $m \ge p$. This result has been later pushed, by the same author [11], to certain solutions with positive initial energy. A similar result been also obtained by Wu [15] using a different method.

In the absence of the viscoelastic term (g = 0), problem (1.1) has been extensively studied and many results concerning global existence and nonexistence have been proved. For instance, for the equation

$$u_{tt} - \Delta u + au_t |u_t|^m = b|u|^{\gamma} u, \quad \text{in } \Omega \times (0, \infty)$$

$$(1.2)$$

 $m, \gamma \geq 0$, it is well known that, for a = 0, the source term $bu|u|^{\gamma}$, $(\gamma > 0)$ causes finite time blow up of solutions with negative initial energy (see [1]). The interaction between the damping and the source terms was first considered by Levine [4], and in [5] the linear damping case (m = 0). He showed that solutions with negative initial energy blow up in finite time. Georgiev and Todorova [2] extended Levine's result to the nonlinear damping case (m > 0). In their work, the authors introduced a different method and showed that solutions with negative energy continue to exist globally "in time" if $m \geq \gamma$ and blow up in finite time if $\gamma > m$ and the initial energy is sufficiently negative. This last blow-up result has been extended

²⁰⁰⁰ Mathematics Subject Classification. 35B05, 35L05, 35L15, 35L55.

Key words and phrases. Blow up; coupled system; relaxation function; viscoelastic.

^{©2007} Texas State University - San Marcos.

Submitted February 14, 2007. Published August 18, 2007.

Supported by Project SABIC-2006/01 from KFUPM.

to solutions with negative initial energy by Messaoudi [8] and others. For results of same nature, we refer the reader to Levine and Serrin [3], and Vitillaro [12], Messaoudi and Said-Houari [10].

For problem (1.2) in \mathbb{R}^n , we mention, among others, the work of Levine Serrin and Park [6], Todorova [12, 13], Messaoudi [9], and Zhou [16].

In this work, we are concerned with the Cauchy problem

$$u_{tt} - \Delta u + \int_0^t g(t-s)\Delta u(x,s)ds = f_1(u,v), \quad \text{in } \mathbb{R}^n \times (0,\infty)$$

$$v_{tt} - \Delta v + \int_0^t h(t-s)\Delta v(x,s)ds = f_2(u,v), \quad \text{in } \mathbb{R}^n \times (0,\infty) \qquad (1.3)$$

$$u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x), \quad x \in \mathbb{R}^n$$

$$v(x,0) = v_0(x), \quad v_t(x,0) = v_1(x), \quad x \in \mathbb{R}^n$$

where g, h, u_0, u_1, v_0, v_1 are functions to be specified later. This type of problems arises in viscoelasticity and in systems governing the longitudinal motion of a viscoelastic configuration obeying a nonlinear Boltzmann's model. Our aim is to extend the result of [16], established for the wave equation, to our problem. To achieve this goal some conditions have to be imposed on the relaxation functions gand h.

2. Preliminaries

In this section we present some material needed in the proof of our main result. So, we make the following assumption

(G1) $g, h : \mathbb{R}_+ \to \mathbb{R}_+$ are nonincreasing differentiable functions satisfying

$$1 - \int_0^\infty g(s)ds = l > 0, \quad g'(t) \le 0, \quad t \ge 0.$$

$$1 - \int_0^\infty h(s)ds = k > 0, \quad h'(t) \le 0, \quad t \ge 0.$$

(G2) There exists a function $I(u, v) \ge 0$ such that

$$\frac{\partial I}{\partial u} = f_1(u, v), \quad \frac{\partial I}{\partial v} = f_2(u, v).$$

(G3) There exists a constant $\rho > 2$ such that

$$\int_{\mathbb{R}^n} [uf_1(u,v) + vf_2(u,v) - \rho I(u,v)] dx \ge 0.$$

(G4) There exists a constant d > 0 such that

.)

$$\begin{aligned} |f_1(\xi,\varsigma)| &\leq d(|\xi|^{\beta_1} + |\varsigma|^{\beta_2}), \quad \forall (\xi,\varsigma) \in \mathbb{R}^2, \\ |f_2(\xi,\varsigma)| &\leq d(|\xi|^{\beta_3} + |\varsigma|^{\beta_4}), \quad \forall (\xi,\varsigma) \in \mathbb{R}^2, \end{aligned}$$

where

$$\beta_i \ge 1$$
, $(n-2)\beta_i \le n$, $i = 1, 2, 3, 4$.

Note that (G1) is necessary to guarantee the hyperbolicity of the system (1.3). As an example of functions satisfying (G2)-(G4), we have

$$I(u,v) = -\frac{a}{\rho} |u-v|^{\rho}, \quad \rho > 2, \quad (n-2)\rho \le 2(n-1).$$

Condition (G4) is necessary for the existence of a local solution to (1.3).

EJDE-2007/113

We introduce the "modified" energy functional

$$E(t) := \frac{1}{2} \|u_t\|_2^2 + \frac{1}{2} \|v_t\|_2^2 + \frac{1}{2} (1 - \int_0^t g(s) ds) \|\nabla u\|_2^2 + \frac{1}{2} (1 - \int_0^t h(s) ds) \|\nabla v\|_2^2 + \frac{1}{2} (g \circ \nabla u) + \frac{1}{2} (h \circ \nabla v) - \int_{\mathbb{R}^n} I(u, v) dx,$$

$$(2.1)$$

where

$$(g \circ \nabla u)(t) = \int_0^t g(t-\tau) ||u(t) - \nabla u(\tau)||_2^2 d\tau.$$

$$(h \circ \nabla v)(t) = \int_0^t h(t-\tau) ||\nabla v(t) - \nabla v(\tau)||_2^2 d\tau.$$

(2.2)

3. Blow up results

In this section we state and prove our main result.

Theorem 3.1. Assume that (G1)–(G4) hold and that

$$\max\left\{\int_{0}^{+\infty} g(s)ds, \int_{0}^{+\infty} h(s)ds\right\} \le \frac{\rho(\rho-2)}{1+\rho(\rho-2)}.$$
(3.1)

Then for initial data $(u_0, v_0), (u_1, v_1) \in H^1(\mathbb{R}^N) \times L^2(\mathbb{R}^N)$, with compact support, satisfying

$$E(0) = \frac{1}{2} \|u_1\|_2^2 + \frac{1}{2} \|\nabla u_0\|_2^2 + \frac{1}{2} \|v_1\|_2^2 + \frac{1}{2} \|\nabla v_0\|_2^2 - \int_{\mathbb{R}^n} I(u_0, v_0) dx < 0, \quad (3.2)$$

the corresponding solution (of (1.3)) blows up in finite time.

Proof. Multiplying (1.3) by u_t and v_t respectively, integrating over \mathbb{R}^n , using integration by parts, and repeating the same computations as in [7], we obtain

$$E'(t) = \frac{1}{2}(g' \circ \nabla u) + \frac{1}{2}(h' \circ \nabla v) - \frac{1}{2}g(s)\|\nabla u\|_2^2 - \frac{1}{2}h(s)\|\nabla v\|_2^2 \le 0.$$
(3.3)

Hence,

$$E(t) \le E(0) < 0. \tag{3.4}$$

We then define

$$F(t) = \frac{1}{2} \int_{\mathbb{R}^n} [|u(x,t)|^2 + |v(x,t)|^2] dx + \frac{1}{2}\beta(t+t_0)^2,$$
(3.5)

for $t_0 > 0$ and $\beta > 0$ to be chosen later. By differentiating F twice we get

$$F'(t) = \int_{\mathbb{R}^n} (u_t u + v_t v) dx + \beta(t + t_0),$$
(3.6)

$$F''(t) = \int_{\mathbb{R}^n} (u_{tt}u + v_{tt}v)dx + \int_{\mathbb{R}^n} (|u_t|^2 + |v_t|^2)dx + \beta.$$
(3.7)

To estimate the term $\int_{\mathbb{R}^n} (u_{tt}u + v_{tt}v) dx$ in (3.7), we multiply the equations in (1.3) by u and v respectively and integrate by parts over \mathbb{R}^n to get

$$\begin{split} \int_{\mathbb{R}^n} (uu_{tt} + vv_{tt}) dx &= -\int_{\mathbb{R}^n} (|\nabla u|^2 + |\nabla v|^2) dx + \int_{\mathbb{R}^n} [uf_1(u, v) + vf_2(u, v)] dx \\ &+ \int_0^t g(t-s) \int_{\mathbb{R}^n} \nabla u(x, t) \cdot \nabla u(x, s) \, dx \, ds \\ &+ \int_0^t h(t-s) \int_{\mathbb{R}^n} \nabla v(x, t) \cdot \nabla v(x, s) \, dx \, ds. \end{split}$$

Using Young's inequality and (G3) we arrive at

$$\int_{\mathbb{R}^n} (uu_{tt} + vv_{tt}) dx \ge \left[-1 - \delta + \int_0^t g(s) ds \right] \|\nabla u\|_2^2 + \rho \int_{\mathbb{R}^n} I(u, v) dx$$
$$- \frac{1}{4\delta} \left(\int_0^t g(s) ds \right) (g \circ \nabla u) + \left[-1 - \delta + \int_0^t h(s) ds \right] \|\nabla v\|_2^2$$
$$- \frac{1}{4\delta} \left(\int_0^t h(s) ds \right) (h \circ \nabla v) + \int_{\mathbb{R}^n} \left(|u_t|^2 + |v_t|^2 \right) dx,$$
(3.8)

we then insert (3.8) in (3.7) to obtain

$$F''(t) \ge (-1 - \delta + \int_0^t g(s)ds) \|\nabla u\|_2^2 - \frac{1}{4\delta} (\int_0^t g(s)ds)(g \circ \nabla u) + (-1 - \delta + \int_0^t h(s)ds) \|\nabla v\|_2^2 - \frac{1}{4\delta} (\int_0^t h(s)ds)(h \circ \nabla v) + \rho \int_{\mathbb{R}^n} I(u,v)dx + 2 \int_{\mathbb{R}^n} (|u_t|^2 + |v_t|^2)dx + \beta.$$
(3.9)

Now, we exploit (2.1) to substitute for $\int_{\mathbb{R}^n} I(u,v) dx$, thus (3.9) takes the form

$$F''(t) \geq -\rho E(t) + \beta + [(-1 - \delta + \int_0^t g(s)ds) + \frac{\rho}{2} \left(1 - \int_0^t g(s)ds\right)] \|\nabla u\|_2^2 + [(-1 - \delta + \int_0^t h(s)ds) + \frac{\rho}{2} (1 - \int_0^t h(s)ds)] \|\nabla v\|_2^2 + \left[\frac{\rho}{2} - \frac{1}{4\delta} \left(\int_0^t g(s)ds\right)\right] (g \circ \nabla u) + \left[\frac{\rho}{2} - \frac{1}{4\delta} \left(\int_0^t h(s)ds\right)\right] (h \circ \nabla v) + (\frac{\rho}{2} + 2) [\|u_t\|_2^2 + \|v_t\|_2^2].$$
(3.10)

At this point, we introduce

$$G(t) := F^{-\gamma}(t),$$

for $\gamma>0$ to be chosen properly. By differentiating G twice we arrive at

$$G'(t) = -\gamma F^{-(\gamma+1)}(t)F'(t), \quad G''(t) = -\gamma F^{-(\gamma+2)}(t)Q(t),$$

EJDE-2007/113

where

$$\begin{aligned} Q(t) &= F(t)F''(t) - (\gamma+1)(F')^{2}(t) \\ &\geq F(t)\Big\{-\rho E(t) + \beta + \Big[(-1-\delta+\frac{\rho}{2}) - (\frac{\rho}{2}-1)\int_{0}^{t}g(s)ds)\Big]\|\nabla u\|_{2}^{2} \\ &+ \Big[(-1-\delta+\frac{\rho}{2}) - (\frac{\rho}{2}-1)\int_{0}^{t}h(s)ds)\Big]\|\nabla v\|_{2}^{2} \\ &+ \Big[\frac{\rho}{2} - \frac{1}{4\delta}(\int_{0}^{t}g(s)ds)\Big](g\circ\nabla u) + \Big[\frac{\rho}{2} - \frac{1}{4\delta}(\int_{0}^{t}h(s)ds)\Big](h\circ\nabla v) \\ &+ (\frac{\rho}{2}+2)[\|u_{t}\|_{2}^{2} + \|v_{t}\|_{2}^{2}]\Big\} - (\gamma+1)\Big[\int_{\mathbb{R}^{n}}(u_{t}u+v_{t}v)dx + \beta(t+t_{0})\Big]^{2}. \end{aligned}$$
(3.11)

\$(3.11)\$ Using Young's and Cauchy-Schwartz inequalities, we estimate the last term in (3.11) as follows:

$$\begin{split} \left[\int_{\mathbb{R}^n} (u_t u + v_t v) dx + \beta(t+t_0) \right]^2 \\ &\leq \left(\int_{\mathbb{R}^n} (u_t u + v_t v) dx \right)^2 + 2 \left[\frac{\varepsilon}{2} \left(\int_{\mathbb{R}^n} (u_t u + v_t v) dx \right)^2 \right. \\ &\quad + \frac{1}{2\varepsilon} \beta^2 (t+t_0)^2 \right] + \beta^2 (t+t_0)^2 \\ &\leq (1+\varepsilon) \left(\int_{\mathbb{R}^n} (u_t u + v_t v) dx \right)^2 + (1+\frac{1}{\varepsilon}) \beta^2 (t+t_0)^2 \\ &\leq (1+\varepsilon) \left[\int_{\mathbb{R}^n} u^2 dx + \int_{\mathbb{R}^n} v^2 dx \right] \left[\int_{\mathbb{R}^n} u^2_t dx + \int_{\mathbb{R}^n} v^2_t dx \right] \\ &\quad + (1+\frac{1}{\varepsilon}) \beta^2 (t+t_0)^2 \\ &\leq 2F(x) \left[(1+\varepsilon) \left(\int_{\mathbb{R}^n} u^2_t dx + \int_{\mathbb{R}^n} v^2_t dx \right) + (1+\frac{1}{\varepsilon}) \beta \right]. \end{split}$$

Hence, (3.11) becomes

$$\begin{aligned} Q(t) &\geq F(t) \Big\{ \Big[(-1 - \delta + \frac{\rho}{2}) - (\frac{\rho}{2} - 1) \int_{0}^{t} g(s) ds) \Big] \|\nabla u\|_{2}^{2} \\ &+ \Big[(-1 - \delta + \frac{\rho}{2}) - (\frac{\rho}{2} - 1) \int_{0}^{t} h(s) ds) \Big] \|\nabla v\|_{2}^{2} \\ &+ [\frac{\rho}{2} - \frac{1}{4\delta} \int_{0}^{t} g(s) ds] (g \circ \nabla u) + [\frac{\rho}{2} - \frac{1}{4\delta} \int_{0}^{t} h(s) ds] (h \circ \nabla v) \\ &+ [\frac{\rho}{2} + 2 - 2(\gamma + 1)(1 + \varepsilon)] [\|u_{t}\|_{2}^{2} + \|v_{t}\|_{2}^{2}] \\ &- \rho E_{0} - 2(\gamma + 1)(1 + \frac{1}{\varepsilon}) \beta \Big\}, \quad \forall \varepsilon > 0. \end{aligned}$$

We choose $\varepsilon < \rho/4, \, 0 < \gamma < (\rho - 4\varepsilon)/(4(1 + \varepsilon))$, and β small so that

$$-\rho E_0 - [2 + \frac{2}{\varepsilon} + \gamma(2 + \frac{2}{\varepsilon})]\beta \ge 0.$$

Next, we choose $\delta > 0$ so that

$$-1 - \delta + \int_0^t g(s)ds + \frac{\rho}{2}(1 - \int_0^t g(s)ds) \ge 0, \quad \frac{\rho}{2} - \frac{1}{4\delta}\int_0^t g(s)ds \ge 0,$$

and

$$-1 - \delta + \int_0^t h(s)ds + \frac{\rho}{2} \left(1 - \int_0^t h(s)ds \right) \ge 0, \quad \frac{\rho}{2} - \frac{1}{4\delta} \int_0^t h(s)ds \ge 0.$$

This is, of course, possible by (3.1), we then conclude, from (3.12), that $Q(t) \ge 0$, for all $t \ge 0$. Therefore $G''(t) \le 0$ for all $t \ge 0$; which implies that G' is decreasing. By choosing t_0 large enough we get

$$F'(0) = \int_{\mathbb{R}^n} (u_0 u_1 + v_0 v_1) dx + \beta t_0 > 0,$$

hence G'(0) < 0. Finally Taylor expansion of G yields

$$G(t) \le G(0) + tG'(0), \quad \forall t \ge 0,$$

which shows that G(t) vanishes at a time $t_m \leq -\frac{G(0)}{G'(0)}$. Consequently F(t) must become infinite at time t_m .

Acknowledgments. The authors would like to express their sincere thanks to King Fahd University of Petroleum and Minerals for its support.

References

- J. Ball; Remarks on blow up and nonexistence theorems for nonlinear evolutions equations, Quart. J. Math. Oxford 28 (1977), 473-486.
- [2] V. Georgiev, G.Todorova; Existence of solutions of the wave equation with nonlinear damping and source terms, J. Diff. Eqs. 109 (1994), 295-308.
- [3] H. A. Levine, J. Serrin; A global nonexistence theorem for quasilinear evolution equation with dissipation, Arch. Rational Mech. Anal. 137 (1997), 341-361.
- [4] H. A. Levine; Instability and nonexistence of global solutions of nonlinear wave equation of the form $Pu_{tt} = Au + F(u)$, Trans. Amer. Math. Soc. **192** (1974), 1-21.
- [5] H. A. Levine; Some additional remarks on the nonexistence of global solutions to nonlinear wave equation, SIAM J. Math. Anal. 5 (1974), 138-146.
- [6] H. A. Levine, S. R. Park, J. Serrin; Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation, J. Math. Anal. Appl. 228 (1998), 181-205.
- [7] S. A. Messaoudi; Blow up and global existence in a nonlinear viscoelastic wave equation, Mathematische Nachrichten Vol. 260 (2003), 58-66.
- [8] S. A. Messaoudi; Blow up in a nonlinearly damped wave equation, Mathematische Nachrichten 231 (2001), 1-7.
- [9] S. A. Messaoudi; Blow up in the Cauchy problem for a nonlinearly damped wave equation, Comm. On Applied. Analysis 7 no. 3 (2003), 379-386.
- [10] S. A. Messaoudi, B. Said-Houari; Blow up of solutions of a class of wave equations with nonlinear damping and source terms, *Math. Methods Appl. Sci.* no. 27 (2004), 1687-1696
- [11] S. A. Messaoudi; Blow up of solutions with positive initial energy in a nonlinear viscoelastic equation, J. Math. Anal. Appl. Vol. 320 (2006), 902-915
- [12] G. Todorova; Cauchy problem for a nonlinear wave with nonlinear damping and source terms, C. R. Acad. Sci. Paris Ser. I 326 (1998), 191-196.
- [13] G. Todorova; Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms, J. Math. Anal. Appl. 239 (1999), 213-226.
- [14] E. Vitillaro; Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Rational Mech. Anal. 149 (1999), 155-182.
- [15] S. T. Wu; Blow-up of solutions for an integro-differential equation with a nonlinear source, *Electron. J. Diff. Eqs.* Vol. 2006 no. textbf45 (2006), 1-9.

EJDE-2007/113

[16] Y. Zhou; A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in \mathbb{R}^n , Applied Math Letters 18 (2005), 281-286.

Mohammad Kafini

DAMMAM COMMUNITY COLLEGE, DAMMAM, SAUDI ARABIA E-mail address: mkafini@kfupm.edu.sa

Salim A. Messaoudi

MATHEMATICAL SCIENCES DEPARTMENT, KFUPM, DHAHRAN 31261, SAUDI ARABIA $E\text{-mail}\ address: {\tt messaoud@kfupm.edu.sa}$