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SQUARE-MEAN ALMOST PERIODIC SOLUTIONS
NONAUTONOMOUS STOCHASTIC DIFFERENTIAL

EQUATIONS

PAUL H. BEZANDRY, TOKA DIAGANA

Abstract. This paper concerns the square-mean almost periodic solutions

to a class of nonautonomous stochastic differential equations on a separable

real Hilbert space. Using the so-called ‘Acquistapace-Terreni’ conditions, we
establish the existence and uniqueness of a square-mean almost periodic mild

solution to those nonautonomous stochastic differential equations.

1. Introduction

Let (H, ‖·‖) be a real (separable) Hilbert space. The present paper is mainly con-
cerned with the existence of mean-almost periodic solutions to the class of nonau-
tonomous semilinear stochastic differential equations

dX(t) = A(t)X(t) dt + F (t, X(t)) dt + G(t, X(t)) dW (t), t ∈ R, (1.1)

where A(t) for t ∈ R is a family of densely defined closed linear operators satisfying
the so-called ‘Acquistapace-Terreni’ conditions [1], that is, there exist constants
λ0 ≥ 0, θ ∈ (π

2 , π), L,K ≥ 0, and α, β ∈ (0, 1] with α + β > 1 such that

Σθ ∪ {0} ⊂ ρ(A(t)− λ0), ‖R(λ, A(t)− λ0)‖ ≤
K

1 + |λ|
(1.2)

and

‖(A(t)− λ0)R(λ, A(t)− λ0)[R(λ0, A(t))−R(λ0, A(s))]‖ ≤ L|t− s|α|λ|β

for t, s ∈ R, λ ∈ Σθ := {λ ∈ C − {0} : | arg λ| ≤ θ}, F : R × L2(P, H) → L2(P, H)
and G : R×L2(P, H) → L2(P, L0

2) are jointly continuous satisfying some additional
conditions, and W (t) is a Wiener process.

The existence of almost periodic (respectively, periodic) solutions to autonomous
stochastic differential equations has been studied by many authors, see, e.g. [1, 3, 6,
12]. In Da Prato-Tudor [5], the existence of an almost periodic solution to (1.1) in
the case when A(t) is periodic, that is, A(t+T ) = A(t) for each t ∈ R for some T > 0
was established. In this paper, it goes back to study the existence and uniqueness
of a square-mean almost periodic solution to (1.1) when the operators A(t) satisfy
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‘Acquistapace-Terreni’ conditions (Theorem 3.3). Next, we make extensive use of
our abstract result to establish the existence of mean-almost periodic solutions to a
n-dimensional system of some stochastic (parabolic) partial differential equations.

The organization of this work is as follows: in Section 2, we recall some prelim-
inary results that we will use in the sequel. In Section 3, we give some sufficient
conditions for the existence and uniqueness of a square-mean almost periodic solu-
tion to (1.1). Finally, an example is given to illustrate our main results.

2. Preliminaries

Throughout the rest of this paper, we assume that (K, ‖ · ‖K) and (H, ‖ · ‖)
are real separable Hilbert spaces, and (Ω,F ,P) is a probability space. The space
L2(K, H) stands for the space of all Hilbert-Schmidt operators acting from K into
H, equipped with the Hilbert-Schmidt norm ‖ · ‖2.

For a symmetric nonnegative operator Q ∈ L2(K, H) with finite trace we assume
that {W (t), t ∈ R} is a Q-Wiener process defined on (Ω,F ,P) with values in K.
Recall that W can obtained as follows: let {Wi(t), t ∈ R}, i = 1, 2, be independent
K-valued Q-Wiener processes, then

W (t) =

{
W1(t) if t ≥ 0,

W2(−t) if t ≤ 0,

is Q-Wiener process with R as time parameter. We let Ft = σ{W (s), s ≤ t}.
The collection of all strongly measurable, square-integrable H-valued random

variables, denoted by L2(P, H), is a Banach space when it is equipped with norm
‖X‖L2(P,H) = (E‖X‖2)1/2, where the expectation E is defined by

E[g] =
∫

Ω

g(ω)dP(ω).

Let K0 = Q1/2K and let L0
2 = L2(K0, H) with respect to the norm

‖Φ‖2L0
2

= ‖Φ Q1/2‖22 = Trace(Φ QΦ∗) .

Throughout, we assume that A(t) : D(A(t)) ⊂ L2(P; H) → L2(P; H) is a family of
densely defined closed linear operators on a common domain D = D(A(t)), which
is independent of t and dense in L2(P; H), and F : R× L2(P; H) 7→ L2(P; H) and
G : R× L2(P; H) 7→ L2(P;L0

2) are jointly continuous functions.
We suppose that the system

u′(t) = A(t)u(t) t ≥ s,

u(s) = x ∈ L2(P; H),
(2.1)

has an associated evolution family of operators {U(t, s) : t ≥ s with t, s ∈ R},
which is uniformly asymptotically stable.

If B1, B2 are Banach spaces, then the notation L(B1, B2) stands for the Banach
space of bounded linear operators from B1 into B2. When B1 = B2, this is simply
denoted L(B1).

Definition 2.1. A family of bounded linear operators {U(t, s) : t ≥ s with t, s ∈
R} on L2(P; H) is called an evolution family of operators for (2.1) whenever the
following conditions hold:

(a) U(t, s)U(s, r) = U(t, r) for every r ≤ s ≤ t;
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(b) for each x ∈ X the function (t, s) → U(t, s)x is continuous and U(t, s) ∈
L(L2(P; H), D) for every t > s; and

(c) the function (s, t] → L(L2(P; H)), t → U(t, s) is differentiable with

∂

∂t
U(t, s) = A(t)U(t, s).

For additional details on evolution families, we refer the reader to the book by
Lunardi [9].

For the reader’s convenience, we review some basic definitions and results for the
notion of square-mean almost periodicity.

Let (B, ‖ · ‖) be a Banach space.

Definition 2.2. A stochastic process X : R → L2(P; B) is said to be continuous
whenever

lim
t→s

E‖X(t)−X(s)‖2 = 0.

Definition 2.3. [3] A continuous stochastic process X : R → L2(P; B) is said to
be square-mean almost periodic if for each ε > 0 there exists l(ε) > 0 such that any
interval of length l(ε) contains at least a number τ for which

sup
t∈R

E‖X(t + τ)−X(t)‖2 < ε.

The collection of all stochastic processes X : R → L2(P; B) which are square-
mean almost periodic is then denoted by AP (R;L2(P; B)).

The next lemma provides with some properties of the square-mean almost peri-
odic processes.

Lemma 2.4 ([3]). If X belongs to AP (R;L2(P; B)), then
(i) the mapping t → E‖X(t)‖2 is uniformly continuous;
(ii) there exists a constant M > 0 such that E‖X(t)‖2 ≤ M , for all t ∈ R.

Let CUB(R;L2(P; B)) denote the collection of all stochastic processes X : R 7→
L2(P; B), which are continuous and uniformly bounded. It is then easy to check
that CUB(R;L2(P; B)) is a Banach space when it is equipped with the norm:

‖X‖∞ = sup
t∈R

(
E‖X(t)‖2

)1/2
.

Lemma 2.5 ([3]). AP (R;L2(P; B)) ⊂ CUB(R;L2(P; B)) is a closed subspace.

In view of the above, the space AP (R;L2(P; B)) of square-mean almost periodic
processes equipped with the norm ‖ · ‖∞ is a Banach space.

Let (B1, ‖ · ‖1) and (B2, ‖ · ‖2) be Banach spaces and let L2(P; B1) and L2(P; B2)
be their corresponding L2-spaces, respectively.

Definition 2.6. [3] A function F : R×L2(P; B1) → L2(P; B2)), (t, Y ) 7→ F (t, Y ),
which is jointly continuous, is said to be square-mean almost periodic in t ∈ R
uniformly in Y ∈ K where K ⊂ L2(P; B1) is a compact if for any ε > 0, there exists
l(ε, K) > 0 such that any interval of length l(ε, K) contains at least a number τ for
which

sup
t∈R

E‖F (t + τ, Y )− F (t, Y )‖22 < ε

for each stochastic process Y : R → K.
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Theorem 2.7 ([3]). Let F : R × L2(P; B1) → L2(P; B2), (t, Y ) 7→ F (t, Y ) be a
square-mean almost periodic process in t ∈ R uniformly in Y ∈ K, where K ⊂
L2(P; B1) is compact. Suppose that F is Lipschitz in the following sense:

E‖F (t, Y )− F (t, Z)‖22 ≤ ME‖Y − Z‖21
for all Y, Z ∈ L2(P; B1) and for each t ∈ R, where M > 0. Then for any
square-mean almost periodic process Φ : R → L2(P; B1), the stochastic process
t 7→ F (t,Φ(t)) is square-mean almost periodic.

3. Main Result

Throughout this section, we require the following assumptions:
(H0) The operators A(t), U(r, s) commute and that the evolution family U(t, s)

is asymptotically stable. Namely, there exist some constants M, δ > 0 such
that

‖U(t, s)‖ ≤ Me−δ(t−s) for every t ≥ s.

In addition, R(λ0, A(·)) ∈ AP (R;L(L2(P, H))) for λ0 in (1.2);
(H1) The function F : R× L2(P; H) → L2(P; H), (t, X) 7→ F (t, X) be a square-

mean almost periodic in t ∈ R uniformly in X ∈ O (O ⊂ L2(P; H) being a
compact subspace). Moreover, F is Lipschitz in the following sense: there
exists K > 0 for which

E‖F (t, X)− F (t, Y )‖2 ≤ KE‖X − Y ‖2

for all stochastic processes X, Y ∈ L2(P; H) and t ∈ R;
(H2) The function G : R×L2(P; H) → L2(P; L0

2), (t, X) 7→ F (t,X) be a square-
mean almost periodic in t ∈ R uniformly in X ∈ O′ (O′ ⊂ L2(P; H) being a
compact subspace). Moreover, G is Lipschitz in the following sense: there
exists K ′ > 0 for which

E‖G(t, X)−G(t, Y )‖2L0
2
≤ K ′E‖X − Y ‖2

for all stochastic processes X, Y ∈ L2(P; H) and t ∈ R.
In order to study (1.1) we need the following lemma which can be seen as an

immediate consequence of [10, Proposition 4.4].

Lemma 3.1. Suppose A(t) satisfies the ‘Acquistapace-Terreni’ conditions, U(t, s)
is exponentially stable and R(λ0, A(·)) ∈ AP (R;L(L2(P, H))). Let h > 0. Then,
for any ε > 0, there exists l(ε) > 0 such that every interval of length l contains at
least a number τ with the property that

‖U(t + τ, s + τ)− U(t, s)‖ ≤ εe−
δ
2 (t−s)

for all t− s ≥ h.

Definition 3.2. A Ft-progressively process {X(t)}t∈R is called a mild solution of
(1.1) on R if

X(t) = U(t, s)X(s) +
∫ t

s

U(t, σ)F (σ,X(σ)) dσ

+
∫ t

s

U(t, σ)G(σ,X(σ)) dW (σ)
(3.1)

for all t ≥ s for each s ∈ R.

Now, we are ready to present our main result.
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Theorem 3.3. Under assumptions (H0)—(H2), then (1.1) has a unique square-
mean almost period mild solution, which can be explicitly expressed as follows:

X(t) =
∫ t

−∞
U(t, σ)F (σ,X(σ)) dσ+

∫ t

−∞
U(t, σ)G(σ,X(σ)) dW (σ) for each t ∈ R

whenever

Θ := M2
(
2
K

δ2
+

K ′ · Tr(Q)
δ

)
< 1.

Proof. First of all, note that

X(t) =
∫ t

−∞
U(t, σ)F (σ,X(σ)) dσ +

∫ t

−∞
U(t, σ)G(σ,X(σ)) dW (σ) (3.2)

is well-defined and satisfies

X(t) = U(t, s)X(s) +
∫ t

s

U(t, σ)F (σ,X(σ)) dσ +
∫ t

s

U(t, σ)G(σ,X(σ)) dW (σ)

for all t ≥ s for each s ∈ R, and hence X given by (3.1) is a mild solution to (1.1).
Define

ΦX(t) :=
∫ t

−∞
U(t, σ)F (σ,X(σ)) dσ,

ΨX(t) :=
∫ t

−∞
U(t, σ)G(σ,X(σ)) dW (σ).

Let us show that ΦX(·) is square-mean almost periodic whenever X is. Indeed,
assuming that X is square-mean almost periodic and using (H1), Theorem 2.7, and
Lemma 3.1, given ε > 0, one can find l(ε) > 0 such that any interval of length l(ε)
contains at least τ with the property that

‖U(t + τ, s + τ)− U(t, s)‖ ≤ εe−
δ
2 (t−s)

for all t− s ≥ ε, and

E ‖F (σ + τ,X(σ + τ))− F (σ,X(σ))‖2 < η

for each σ ∈ R, where η(ε) → 0 as ε → 0. Moreover, it follows from Lemma 2.4 (ii)
that there exists a positive constant K1 such that

sup
σ∈R

E‖F (σ,X(σ))‖2 ≤ K1 .

Now∥∥(ΦX)(t + τ)− (ΦX)(t)
∥∥

=
∥∥∫ t+τ

−∞
U(t + τ, s)F (s,X(s)) ds−

∫ t

−∞
U(t, s)F (s,X(s)) ds

∥∥
= ‖

∫ ∞

0

U(t + τ, t + τ − s) F (t + τ − s,X(t + τ − s)) ds

−
∫ ∞

0

U(t, t− s) F (t− s,X(t− s)) ds‖

≤
∥∥∫ ∞

0

U(t + τ, t + τ − s)[F (t + τ − s,X(t + τ − s))− F (t− s,X(t− s))] ds
∥∥

+
∥∥( ∫ ∞

ε

+
∫ ε

0

)
[U(t + τ, t + τ − s))− U(t, t− s)]F (t− s,X(t− s)) ds

∥∥.
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Consequently,

E‖ΦX(t + τ)− ΦX(t)‖2

≤ 3E
[ ∫ ∞

0

‖U(t + τ, t + τ − s)‖‖F (t + τ − s,X(t + τ − s))

− F (t− s,X(t− s))‖ ds
]2

+ 3E
[ ∫ ∞

ε

‖U(t + τ, t + τ − s)− U(t, t− s)‖‖F (t− s,X(t− s))‖ ds
]2

+ 3E
[ ∫ ε

0

‖U(t + τ, t + τ − s)− U(t, t− s)‖‖F (t− s,X(t− s))‖ ds
]2

≤ 3M2E
[ ∫ ∞

0

e−δs‖F (t + τ − s,X(t + τ − s))− F (t− s,X(t− s))‖ ds
]2

+ 3ε2E
[ ∫ ∞

ε

e−
δ
2 s‖F (t− s,X(t− s))‖ ds

]2

+ 3M2E
[ ∫ ε

0

2e−δs‖F (t− s,X(t− s))‖ ds
]2

.

Using Cauchy-Schwarz inequality it follows that

E‖ΦX(t + τ)− ΦX(t)‖2

≤ 3M2
( ∫ ∞

0

e−δs ds
)

×
( ∫ ∞

0

e−δsE‖F (t + τ − s,X(t + τ − s))− F (t− s,X(t− s))‖2 ds
)

+ 3ε2
( ∫ ∞

ε

e−
δ
2 s ds

)( ∫ ∞

ε

e−
δ
2 sE‖F (t− s,X(t− s))‖2 ds

)
+ 12M2

( ∫ ∞

0

e−δs ds
)( ∫ ε

0

e−δsE‖F (t− s,X(t− s))‖2 ds
)2

≤ 3M2
( ∫ ∞

0

e−δs ds
)2

sup
σ∈R

E‖F (σ + τ,X(σ + τ))− F (σ,X(σ))‖2

+ 3ε2
( ∫ ∞

ε

e−
δ
2 s ds

)
sup
σ∈R

E‖F (σ,X(σ))‖2

+ 12M2
( ∫ ∞

0

e−δs ds
)

sup
σ∈R

E‖F (σ,X(σ))‖2

≤ 3
M2

δ2
η + 3ε2 4

δ2
K1 + 12M2ε2K1 ,

which implies that ΦX(·) is square-mean almost periodic.
Similarly, assuming that X is square-mean almost periodic and using (H2), The-

orem 2.7, and Lemma 3.1, given ε > 0, one can find l(ε) > 0 such that any interval
of length l(ε) contains at least τ with the property that

‖U(t + τ, s + τ)− U(t, s)‖ ≤ εe−
δ
2 (t−s)

for all t− s ≥ ε, and

E ‖G(σ + τ,X(σ + τ))−G(σ,X(σ))‖2L0
2

< η
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for each σ ∈ R, where η(ε) → 0 as ε → 0. Moreover, it follows from Lemma 2.4 (ii)
that there exists a positive constant K2 such that

sup
σ∈R

E‖G(σ,X(σ))‖2L0
2
≤ K2.

The next step consists of proving the square-mean almost periodicity of ΨX(·). Of
course, this is more complicated than the previous case because of the involvement
of the Wiener process W . To overcome such a difficulty, we make extensive use of
the properties of W̃ defined by W̃ (s) := W (s + τ)−W (τ) for each s. Note that W̃
is also a Wiener process and has the same distribution as W .

Now, let us make an appropriate change of variables to get

E‖(ΨX)(t + τ)− (ΨX)(t)‖2

= ‖
∫ ∞

0

U(t + τ, t + τ − s) G(t + τ − s,X(t + τ − s)) dW̃ (s)

−
∫ ∞

0

U(t, t− s) G(t− s,X(t− s)) dW̃ (s)‖2

≤ 3E‖
∫ ∞

0

U(t + τ, t + τ − s) [G(t + τ − s,X(t + τ − s))

−G(t− s,X(t− s))] dW̃ (s)‖2

+ 3E‖
∫ ∞

ε

[U(t + τ, t + τ − s)− U(t, t− s)]G(t− s,X(t− s)) dW̃ (s)‖2

+ 3E‖
∫ ε

0

[U(t + τ, t + τ − s)− U(t, t− s)]G(t− s,X(t− s)) dW̃ (s)‖2.

Then using an estimate on the Ito integral established in [7, Proposition 1.9], we
obtain

E‖(ΨX)(t + τ)− (ΨX)(t)‖2

≤ 3 TrQ

∫ ∞

0

‖U(t + τ, t + τ − s)‖2E‖G(t + τ − s,X(t + τ − s))

−G(t− s,X(t− s))‖2L0
2
ds

+ 3 Tr Q

∫ ∞

ε

‖U(t + τ, t + τ − s)− U(t, t− s)‖2E‖G(t− s,X(t− s))‖2L0
2
ds

+ 3 Tr Q

∫ ε

0

‖U(t + τ, t + τ − s)− U(t, t− s)‖2E‖G(t− s,X(t− s))‖2L0
2
ds

≤ 3 TrQM2
( ∫ ∞

0

e−2δs ds
)

sup
σ∈R

‖G(σ + τ,X(σ + τ))−G(σ,X(σ))‖2L0
2

+ 3 TrQε2
( ∫ ∞

ε

e−δ s ds
)

sup
σ∈R

E‖G(σ,X(σ))‖2L0
2

+ 6 Tr QM2
( ∫ ε

0

e−2δs ds
)

sup
σ∈R

E‖G(σ,X(σ))‖2L0
2

≤ 3 TrQ
[
η
M2

2δ
+ ε

K2

δ
+ 2ε K2

]
,
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which implies that ΨX(·) is square-mean almost periodic. Define

(ΛX)(t) :=
∫ t

−∞
U(t, s)F (s,X(s)) ds +

∫ t

−∞
U(t, s)G(s,X(s)) dW (s) .

In view of the above, it is clear that Λ maps AP (R;L2(P; H)) into itself. To
complete the proof, it suffices to prove that Λ has a unique fixed-point. Clearly,

‖(ΛX)(t)− (ΛY )(t)‖

= ‖
∫ t

−∞
U(t, s)[F (s,X(s))− F (s, Y (s))] ds

+
∫ t

−∞
U(t, s)[G(s,X(s))−G(s, Y (s))] dW (s)‖

≤ M

∫ t

−∞
e−δ(t−s)‖F (s,X(s))− F (s, Y (s))‖ ds

+ ‖
∫ t

−∞
U(t, s)[G(s,X(s))−G(s, Y (s))] dW (s)‖ .

Since (a + b)2 ≤ 2a2 + 2b2, we can write

E‖(ΛX)(t)− (ΛY )(t)‖2

≤ 2M2E
( ∫ t

−∞
e−δ(t−s)‖F (s,X(s))− F (s, Y (s))‖ ds

)2

+ 2E
(
‖

∫ t

−∞
U(t, s)[G(s,X(s))−G(s, Y (s))] dW (s)‖

)2

.

We evaluate the first term of the right-hand side as follows:

E
( ∫ t

−∞
e−δ(t−s)‖F (s,X(s))− F (s, Y (s))‖ ds

)2

≤ E
[( ∫ t

−∞
e−δ(t−s)ds

)( ∫ t

−∞
e−δ(t−s)‖F (s,X(s))− F (s, Y (s))‖2 ds

)]
≤

( ∫ t

−∞
e−δ(t−s) ds

)( ∫ t

−∞
e−δ(t−s)E‖F (s,X(s))− F (s, Y (s))‖2 ds

)
≤ K ·

( ∫ t

−∞
e−δ(t−s) ds

)( ∫ t

−∞
e−δ(t−s)E‖X(s))− Y (s))‖2 ds

)
≤ K ·

( ∫ t

−∞
e−δ(t−s) ds

)2

sup
t∈R

E‖X(t)− Y (t)‖2

= K ·
( ∫ t

−∞
e−δ(t−s) ds

)2

‖X − Y ‖∞

≤ K

δ2
· ‖X − Y ‖∞ .
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As to the second term, we use again an estimate on the Ito integral established in
[7] to obtain:

E
(
‖

∫ t

−∞
U(t, s) [G(s,X(s))−G(s, Y (s))] dW (s)‖

)2

≤ Tr Q ·E
[ ∫ t

−∞
‖U(t, s) [G(s,X(s))−G(s, Y (s))]‖2 ds

]
≤ TrQ ·E

[ ∫ t

−∞
‖U(t, s)‖2‖G(s,X(s))−G(s, Y (s))‖2L0

2
ds

]
≤ TrQ ·M2

∫ t

−∞
e−2δ(t−s)E‖G(s,X(s))−G(s, Y (s))‖2L0

2
ds

≤ TrQ ·M2K ′ ·
( ∫ t

−∞
e−2δ(t−s) ds

)
sup
t∈R

E‖X(s))− Y (s))‖2

≤ TrQ · M2K ′

2δ
· ‖X − Y ‖∞ .

Thus, by combining, it follows that

E‖(ΛX)(t)− (ΛY )(t)‖ ≤ M2
(
2
K

δ2
+

K ′ · TrQ

δ

)
‖X − Y ‖∞,

and therefore,

‖ΛX − ΛY ‖∞ ≤ M2
(
2
K

δ2
+

K ′ · TrQ

δ

)
‖X − Y ‖∞ = Θ · ‖X − Y ‖∞.

Consequently, if Θ < 1, then (1.1) has a unique fixed-point, which obviously is the
unique square-mean almost periodic solution to (1.1). �

4. Example

Let O ⊂ Rn be a bounded subset whose boundary ∂O is of class C2 and being
locally on one side of O.

Consider the parabolic stochastic partial differential equation

dtX(t, ξ) = {A(t, ξ)X(t, ξ) + F (t, X(t, ξ))} dt + G(t,X(t, ξ)) dW (t), (4.1)
n∑

i,j=1

ni(ξ)aij(t, ξ)diX(t, ξ) = 0, t ∈ R, ξ ∈ ∂O, (4.2)

where dt = d
dt , di = d

dξi
, n(ξ) = (n1(ξ), n2(ξ), . . . , nn(ξ)) is the outer unit normal

vector, the family of operators A(t, ξ) are formally given by

A(t, ξ) =
n∑

i,j=1

∂

∂xi

(
aij(t, ξ)

∂

∂xj

)
+ c(t, ξ), t ∈ R, ξ ∈ O,

W is a real valued Brownian motion, and aij , c (i, j = 1, 2, . . . , n) satisfy the fol-
lowing conditions:
(H3)

(i) The coefficients (aij)i,j=1,...,n are symmetric, that is, aij = aji for all i, j =
1, . . . , n. Moreover, aij ∈ Cµ

b (R, L2(P, C(O))) ∩ Cb(R, L2(P, C1(O))) ∩
AP (R;L2(P, L2(O))) for all i, j = 1, . . . n, and c ∈ Cµ

b (R, L2(P, L2(O))) ∩
Cb(R, L2(P, C(O))) ∩AP (R;L2(P, L1(O))) for some µ ∈ (1/2, 1].
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(ii) There exists ε0 > 0 such that
n∑

i,j=1

aij(t, ξ)ηiηj ≥ ε0|η|2,

for all (t, ξ) ∈ R×O and η ∈ Rn.
Under above assumptions, the existence of an evolution family U(t, s) satisfying
(H0) is obtained, see, eg., [10].

Set H = L2(O). For each t ∈ R define an operator A(t) on L2(P;H) by

D(A(t)) = {X ∈ L2(P,H2(O)) :
n∑

i,j=1

ni(·)aij(t, ·)diX(t, ·) = 0 on ∂O}

and A(t)X = A(t, ξ)X(ξ) for all X ∈ D(A(t)).
Thus under assumptions (H1)–(H3), then the system (4.1)–(4.2) has a unique

mild solution, which obviously is square-mean almost periodic, whenever M is small
enough.
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