Electronic Journal of Differential Equations, Vol. 2007(2007), No. 117, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

SQUARE-MEAN ALMOST PERIODIC SOLUTIONS NONAUTONOMOUS STOCHASTIC DIFFERENTIAL EQUATIONS

PAUL H. BEZANDRY, TOKA DIAGANA

Abstract

This paper concerns the square-mean almost periodic solutions to a class of nonautonomous stochastic differential equations on a separable real Hilbert space. Using the so-called 'Acquistapace-Terreni' conditions, we establish the existence and uniqueness of a square-mean almost periodic mild solution to those nonautonomous stochastic differential equations.

1. Introduction

Let $(\mathbb{H},\|\cdot\|)$ be a real (separable) Hilbert space. The present paper is mainly concerned with the existence of mean-almost periodic solutions to the class of nonautonomous semilinear stochastic differential equations

$$
\begin{equation*}
d X(t)=A(t) X(t) d t+F(t, X(t)) d t+G(t, X(t)) d W(t), \quad t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

where $A(t)$ for $t \in \mathbb{R}$ is a family of densely defined closed linear operators satisfying the so-called 'Acquistapace-Terreni' conditions [1], that is, there exist constants $\lambda_{0} \geq 0, \theta \in\left(\frac{\pi}{2}, \pi\right), L, K \geq 0$, and $\alpha, \beta \in(0,1]$ with $\alpha+\beta>1$ such that

$$
\begin{equation*}
\Sigma_{\theta} \cup\{0\} \subset \rho\left(A(t)-\lambda_{0}\right), \quad\left\|R\left(\lambda, A(t)-\lambda_{0}\right)\right\| \leq \frac{K}{1+|\lambda|} \tag{1.2}
\end{equation*}
$$

and

$$
\left\|\left(A(t)-\lambda_{0}\right) R\left(\lambda, A(t)-\lambda_{0}\right)\left[R\left(\lambda_{0}, A(t)\right)-R\left(\lambda_{0}, A(s)\right)\right]\right\| \leq L|t-s|^{\alpha}|\lambda|^{\beta}
$$

for $t, s \in \mathbb{R}, \lambda \in \Sigma_{\theta}:=\{\lambda \in \mathbf{C}-\{0\}:|\arg \lambda| \leq \theta\}, F: \mathbb{R} \times L^{2}(\mathbf{P}, \mathbb{H}) \rightarrow L^{2}(\mathbf{P}, \mathbb{H})$ and $G: \mathbb{R} \times L^{2}(\mathbf{P}, \mathbb{H}) \rightarrow L^{2}\left(\mathbf{P}, L_{2}^{0}\right)$ are jointly continuous satisfying some additional conditions, and $W(t)$ is a Wiener process.

The existence of almost periodic (respectively, periodic) solutions to autonomous stochastic differential equations has been studied by many authors, see, e.g. [1, 3, 6, 12]. In Da Prato-Tudor [5], the existence of an almost periodic solution to (1.1) in the case when $A(t)$ is periodic, that is, $A(t+T)=A(t)$ for each $t \in \mathbb{R}$ for some $T>0$ was established. In this paper, it goes back to study the existence and uniqueness of a square-mean almost periodic solution to 1.1 when the operators $A(t)$ satisfy

[^0]'Acquistapace-Terreni' conditions (Theorem 3.3). Next, we make extensive use of our abstract result to establish the existence of mean-almost periodic solutions to a n-dimensional system of some stochastic (parabolic) partial differential equations.

The organization of this work is as follows: in Section 2, we recall some preliminary results that we will use in the sequel. In Section 3, we give some sufficient conditions for the existence and uniqueness of a square-mean almost periodic solution to (1.1). Finally, an example is given to illustrate our main results.

2. Preliminaries

Throughout the rest of this paper, we assume that $\left(\mathbb{K},\|\cdot\|_{K}\right)$ and ($\mathbb{H},\|\cdot\|$) are real separable Hilbert spaces, and $(\Omega, \mathcal{F}, \mathbf{P})$ is a probability space. The space $L_{2}(\mathbb{K}, \mathbb{H})$ stands for the space of all Hilbert-Schmidt operators acting from \mathbb{K} into \mathbb{H}, equipped with the Hilbert-Schmidt norm $\|\cdot\|_{2}$.

For a symmetric nonnegative operator $Q \in L_{2}(\mathbb{K}, \mathbb{H})$ with finite trace we assume that $\{W(t), t \in \mathbb{R}\}$ is a Q-Wiener process defined on $(\Omega, \mathcal{F}, \mathbf{P})$ with values in \mathbb{K}. Recall that W can obtained as follows: let $\left\{W_{i}(t), t \in \mathbb{R}\right\}, i=1,2$, be independent K-valued Q-Wiener processes, then

$$
W(t)= \begin{cases}W_{1}(t) & \text { if } t \geq 0 \\ W_{2}(-t) & \text { if } t \leq 0\end{cases}
$$

is Q-Wiener process with \mathbb{R} as time parameter. We let $\mathcal{F}_{t}=\sigma\{W(s), s \leq t\}$.
The collection of all strongly measurable, square-integrable \mathbb{H}-valued random variables, denoted by $L^{2}(\mathbf{P}, \mathbb{H})$, is a Banach space when it is equipped with norm $\|X\|_{L^{2}(\mathbf{P}, \mathbb{H})}=\left(\mathbf{E}\|X\|^{2}\right)^{1 / 2}$, where the expectation \mathbf{E} is defined by

$$
\mathbf{E}[g]=\int_{\Omega} g(\omega) d \mathbf{P}(\omega)
$$

Let $\mathbb{K}_{0}=Q^{1 / 2} K$ and let $L_{2}^{0}=L_{2}\left(\mathbb{K}_{0}, \mathbb{H}\right)$ with respect to the norm

$$
\|\Phi\|_{\mathbb{L}_{2}^{0}}^{2}=\left\|\Phi Q^{1 / 2}\right\|_{2}^{2}=\operatorname{Trace}\left(\Phi Q \Phi^{*}\right)
$$

Throughout, we assume that $A(t): D(A(t)) \subset L^{2}(\mathbf{P} ; \mathbb{H}) \rightarrow L^{2}(\mathbf{P} ; \mathbb{H})$ is a family of densely defined closed linear operators on a common domain $D=D(A(t))$, which is independent of t and dense in $L^{2}(\mathbf{P} ; \mathbb{H})$, and $F: \mathbb{R} \times L^{2}(\mathbf{P} ; \mathbb{H}) \mapsto L^{2}(\mathbf{P} ; \mathbb{H})$ and $G: \mathbb{R} \times L^{2}(\mathbf{P} ; \mathbb{H}) \mapsto L^{2}\left(\mathbf{P} ; L_{2}^{0}\right)$ are jointly continuous functions.

We suppose that the system

$$
\begin{gather*}
u^{\prime}(t)=A(t) u(t) \quad t \geq s \\
u(s)=x \in L^{2}(\mathbf{P} ; \mathbb{H}) \tag{2.1}
\end{gather*}
$$

has an associated evolution family of operators $\{U(t, s): t \geq s$ with $t, s \in \mathbb{R}\}$, which is uniformly asymptotically stable.

If $\mathbb{B}_{1}, \mathbb{B}_{2}$ are Banach spaces, then the notation $\mathcal{L}\left(\mathbb{B}_{1}, \mathbb{B}_{2}\right)$ stands for the Banach space of bounded linear operators from \mathbb{B}_{1} into B_{2}. When $\mathbb{B}_{1}=B_{2}$, this is simply denoted $\mathcal{L}\left(\mathbb{B}_{1}\right)$.

Definition 2.1. A family of bounded linear operators $\{U(t, s): t \geq s$ with $t, s \in$ $\mathbb{R}\}$ on $L^{2}(\mathbf{P} ; \mathbb{H})$ is called an evolution family of operators for 2.1 whenever the following conditions hold:
(a) $U(t, s) U(s, r)=U(t, r)$ for every $r \leq s \leq t$;
(b) for each $x \in \mathbb{X}$ the function $(t, s) \rightarrow U(t, s) x$ is continuous and $U(t, s) \in$ $\mathcal{L}\left(L^{2}(\mathbf{P} ; \mathbb{H}), D\right)$ for every $t>s$; and
(c) the function $(s, t] \rightarrow \mathcal{L}\left(L^{2}(\mathbf{P} ; \mathbb{H})\right), t \rightarrow U(t, s)$ is differentiable with

$$
\frac{\partial}{\partial t} U(t, s)=A(t) U(t, s)
$$

For additional details on evolution families, we refer the reader to the book by Lunardi 9 .

For the reader's convenience, we review some basic definitions and results for the notion of square-mean almost periodicity.

Let $(\mathbb{B},\|\cdot\|)$ be a Banach space.
Definition 2.2. A stochastic process $X: \mathbb{R} \rightarrow L^{2}(\mathbf{P} ; \mathbb{B})$ is said to be continuous whenever

$$
\lim _{t \rightarrow s} \mathbf{E}\|X(t)-X(s)\|^{2}=0
$$

Definition 2.3. 3] A continuous stochastic process $X: \mathbb{R} \rightarrow L^{2}(\mathbf{P} ; \mathbb{B})$ is said to be square-mean almost periodic if for each $\varepsilon>0$ there exists $l(\varepsilon)>0$ such that any interval of length $l(\varepsilon)$ contains at least a number τ for which

$$
\sup _{t \in \mathbf{R}} \mathbf{E}\|X(t+\tau)-X(t)\|^{2}<\varepsilon
$$

The collection of all stochastic processes $X: \mathbb{R} \rightarrow L^{2}(\mathbf{P} ; \mathbb{B})$ which are squaremean almost periodic is then denoted by $A P\left(\mathbb{R} ; L^{2}(\mathbf{P} ; \mathbb{B})\right)$.

The next lemma provides with some properties of the square-mean almost periodic processes.

Lemma 2.4 (3). If X belongs to $A P\left(\mathbb{R} ; L^{2}(\mathbf{P} ; \mathbb{B})\right)$, then
(i) the mapping $t \rightarrow \mathbf{E}\|X(t)\|^{2}$ is uniformly continuous;
(ii) there exists a constant $M>0$ such that $\mathbf{E}\|X(t)\|^{2} \leq M$, for all $t \in \mathbb{R}$.

Let $\mathbf{C U B}\left(\mathbb{R} ; L^{2}(\mathbf{P} ; \mathbb{B})\right)$ denote the collection of all stochastic processes $X: \mathbb{R} \mapsto$ $L^{2}(\mathbf{P} ; \mathbb{B})$, which are continuous and uniformly bounded. It is then easy to check that $\mathbf{C U B}\left(\mathbb{R} ; L^{2}(\mathbf{P} ; \mathbb{B})\right)$ is a Banach space when it is equipped with the norm:

$$
\|X\|_{\infty}=\sup _{t \in \mathbb{R}}\left(\mathbf{E}\|X(t)\|^{2}\right)^{1 / 2}
$$

Lemma $2.5\left([\underline{3}) . A P\left(\mathbb{R} ; L^{2}(\mathbf{P} ; \mathbb{B})\right) \subset \mathbf{C U B}\left(\mathbb{R} ; L^{2}(\mathbf{P} ; \mathbb{B})\right)\right.$ is a closed subspace.
In view of the above, the space $A P\left(\mathbb{R} ; L^{2}(\mathbf{P} ; \mathbb{B})\right)$ of square-mean almost periodic processes equipped with the norm $\|\cdot\|_{\infty}$ is a Banach space.

Let $\left(\mathbb{B}_{1},\|\cdot\|_{1}\right)$ and $\left(\mathbb{B}_{2},\|\cdot\|_{2}\right)$ be Banach spaces and let $L^{2}\left(\mathbf{P} ; \mathbb{B}_{1}\right)$ and $L^{2}\left(\mathbf{P} ; \mathbb{B}_{2}\right)$ be their corresponding L^{2}-spaces, respectively.

Definition 2.6. 3] A function $\left.F: \mathbb{R} \times L^{2}\left(\mathbf{P} ; \mathbb{B}_{1}\right) \rightarrow L^{2}\left(\mathbf{P} ; \mathbb{B}_{2}\right)\right),(t, Y) \mapsto F(t, Y)$, which is jointly continuous, is said to be square-mean almost periodic in $t \in \mathbb{R}$ uniformly in $Y \in \mathbb{K}$ where $\mathbb{K} \subset L^{2}\left(\mathbf{P} ; \mathbb{B}_{1}\right)$ is a compact if for any $\varepsilon>0$, there exists $l(\varepsilon, \mathbb{K})>0$ such that any interval of length $l(\varepsilon, \mathbb{K})$ contains at least a number τ for which

$$
\sup _{t \in \mathbf{R}} \mathbf{E}\|F(t+\tau, Y)-F(t, Y)\|_{2}^{2}<\varepsilon
$$

for each stochastic process $Y: \mathbb{R} \rightarrow \mathbb{K}$.

Theorem $2.7\left([3)\right.$. Let $F: \mathbb{R} \times L^{2}\left(\mathbf{P} ; \mathbb{B}_{1}\right) \rightarrow L^{2}\left(\mathbf{P} ; \mathbb{B}_{2}\right),(t, Y) \mapsto F(t, Y)$ be a square-mean almost periodic process in $t \in \mathbb{R}$ uniformly in $Y \in \mathbb{K}$, where $\mathbb{K} \subset$ $L^{2}\left(\mathbf{P} ; \mathbb{B}_{1}\right)$ is compact. Suppose that F is Lipschitz in the following sense:

$$
\mathbf{E}\|F(t, Y)-F(t, Z)\|_{2}^{2} \leq M \mathbf{E}\|Y-Z\|_{1}^{2}
$$

for all $Y, Z \in L^{2}\left(\mathbf{P} ; \mathbb{B}_{1}\right)$ and for each $t \in \mathbb{R}$, where $M>0$. Then for any square-mean almost periodic process $\Phi: \mathbb{R} \rightarrow L^{2}\left(\mathbf{P} ; \mathbb{B}_{1}\right)$, the stochastic process $t \mapsto F(t, \Phi(t))$ is square-mean almost periodic.

3. Main Result

Throughout this section, we require the following assumptions:
(H0) The operators $A(t), U(r, s)$ commute and that the evolution family $U(t, s)$ is asymptotically stable. Namely, there exist some constants $M, \delta>0$ such that

$$
\|U(t, s)\| \leq M e^{-\delta(t-s)} \quad \text { for every } t \geq s
$$

In addition, $R\left(\lambda_{0}, A(\cdot)\right) \in A P\left(\mathbb{R} ; \mathcal{L}\left(L^{2}(\mathbf{P}, \mathbb{H})\right)\right)$ for λ_{0} in 1.2;
(H1) The function $F: \mathbb{R} \times L^{2}(\mathbf{P} ; \mathbb{H}) \rightarrow L^{2}(\mathbf{P} ; \mathbb{H}),(t, X) \mapsto F(t, X)$ be a squaremean almost periodic in $t \in \mathbb{R}$ uniformly in $X \in \mathcal{O}\left(\mathcal{O} \subset L^{2}(\mathbf{P} ; \mathbb{H})\right.$ being a compact subspace). Moreover, F is Lipschitz in the following sense: there exists $K>0$ for which

$$
\mathbf{E}\|F(t, X)-F(t, Y)\|^{2} \leq K \mathbf{E}\|X-Y\|^{2}
$$

for all stochastic processes $X, Y \in L^{2}(\mathbf{P} ; \mathbb{H})$ and $t \in \mathbb{R}$;
(H2) The function $G: \mathbb{R} \times L^{2}(\mathbf{P} ; \mathbb{H}) \rightarrow L^{2}\left(\mathbf{P} ; \mathbb{L}_{2}^{0}\right),(t, X) \mapsto F(t, X)$ be a squaremean almost periodic in $t \in \mathbb{R}$ uniformly in $X \in \mathcal{O}^{\prime}\left(\mathcal{O}^{\prime} \subset L^{2}(\mathbf{P} ; \mathbb{H})\right.$ being a compact subspace). Moreover, G is Lipschitz in the following sense: there exists $K^{\prime}>0$ for which

$$
\mathbf{E}\|G(t, X)-G(t, Y)\|_{\mathbb{L}_{2}^{0}}^{2} \leq K^{\prime} \mathbf{E}\|X-Y\|^{2}
$$

for all stochastic processes $X, Y \in L^{2}(\mathbf{P} ; \mathbb{H})$ and $t \in \mathbb{R}$.
In order to study 1.1 we need the following lemma which can be seen as an immediate consequence of [10, Proposition 4.4].

Lemma 3.1. Suppose $A(t)$ satisfies the 'Acquistapace-Terreni' conditions, $U(t, s)$ is exponentially stable and $R\left(\lambda_{0}, A(\cdot)\right) \in A P\left(\mathbb{R} ; \mathcal{L}\left(L^{2}(\mathbf{P}, \mathbb{H})\right)\right)$. Let $h>0$. Then, for any $\varepsilon>0$, there exists $l(\varepsilon)>0$ such that every interval of length l contains at least a number τ with the property that

$$
\|U(t+\tau, s+\tau)-U(t, s)\| \leq \varepsilon e^{-\frac{\delta}{2}(t-s)}
$$

for all $t-s \geq h$.
Definition 3.2. A \mathcal{F}_{t}-progressively process $\{X(t)\}_{t \in \mathbb{R}}$ is called a mild solution of (1.1) on \mathbb{R} if

$$
\begin{align*}
X(t)= & U(t, s) X(s)+\int_{s}^{t} U(t, \sigma) F(\sigma, X(\sigma)) d \sigma \\
& +\int_{s}^{t} U(t, \sigma) G(\sigma, X(\sigma)) d W(\sigma) \tag{3.1}
\end{align*}
$$

for all $t \geq s$ for each $s \in \mathbb{R}$.
Now, we are ready to present our main result.

Theorem 3.3. Under assumptions (H0)-(H2), then (1.1) has a unique squaremean almost period mild solution, which can be explicitly expressed as follows:
$X(t)=\int_{-\infty}^{t} U(t, \sigma) F(\sigma, X(\sigma)) d \sigma+\int_{-\infty}^{t} U(t, \sigma) G(\sigma, X(\sigma)) d W(\sigma) \quad$ for each $t \in \mathbb{R}$ whenever

$$
\Theta:=M^{2}\left(2 \frac{K}{\delta^{2}}+\frac{K^{\prime} \cdot \operatorname{Tr}(Q)}{\delta}\right)<1
$$

Proof. First of all, note that

$$
\begin{equation*}
X(t)=\int_{-\infty}^{t} U(t, \sigma) F(\sigma, X(\sigma)) d \sigma+\int_{-\infty}^{t} U(t, \sigma) G(\sigma, X(\sigma)) d W(\sigma) \tag{3.2}
\end{equation*}
$$

is well-defined and satisfies

$$
X(t)=U(t, s) X(s)+\int_{s}^{t} U(t, \sigma) F(\sigma, X(\sigma)) d \sigma+\int_{s}^{t} U(t, \sigma) G(\sigma, X(\sigma)) d W(\sigma)
$$

for all $t \geq s$ for each $s \in \mathbb{R}$, and hence X given by (3.1) is a mild solution to (1.1).
Define

$$
\begin{gathered}
\Phi X(t):=\int_{-\infty}^{t} U(t, \sigma) F(\sigma, X(\sigma)) d \sigma \\
\Psi X(t):=\int_{-\infty}^{t} U(t, \sigma) G(\sigma, X(\sigma)) d W(\sigma) .
\end{gathered}
$$

Let us show that $\Phi X(\cdot)$ is square-mean almost periodic whenever X is. Indeed, assuming that X is square-mean almost periodic and using (H1), Theorem 2.7, and Lemma 3.1, given $\varepsilon>0$, one can find $l(\varepsilon)>0$ such that any interval of length $l(\varepsilon)$ contains at least τ with the property that

$$
\|U(t+\tau, s+\tau)-U(t, s)\| \leq \varepsilon e^{-\frac{\delta}{2}(t-s)}
$$

for all $t-s \geq \varepsilon$, and

$$
\mathbf{E}\|F(\sigma+\tau, X(\sigma+\tau))-F(\sigma, X(\sigma))\|^{2}<\eta
$$

for each $\sigma \in \mathbb{R}$, where $\eta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Moreover, it follows from Lemma 2.4 (ii) that there exists a positive constant K_{1} such that

$$
\sup _{\sigma \in \mathbb{R}} \mathbf{E}\|F(\sigma, X(\sigma))\|^{2} \leq K_{1}
$$

Now

$$
\begin{aligned}
\| & (\Phi X)(t+\tau)-(\Phi X)(t) \| \\
= & \left\|\int_{-\infty}^{t+\tau} U(t+\tau, s) F(s, X(s)) d s-\int_{-\infty}^{t} U(t, s) F(s, X(s)) d s\right\| \\
= & \| \int_{0}^{\infty} U(t+\tau, t+\tau-s) F(t+\tau-s, X(t+\tau-s)) d s \\
& -\int_{0}^{\infty} U(t, t-s) F(t-s, X(t-s)) d s \| \\
\leq & \left\|\int_{0}^{\infty} U(t+\tau, t+\tau-s)[F(t+\tau-s, X(t+\tau-s))-F(t-s, X(t-s))] d s\right\| \\
& \left.+\|\left(\int_{\varepsilon}^{\infty}+\int_{0}^{\varepsilon}\right)[U(t+\tau, t+\tau-s))-U(t, t-s)\right] F(t-s, X(t-s)) d s \|
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \mathbf{E}\|\Phi X(t+\tau)-\Phi X(t)\|^{2} \\
& \leq 3 \mathbf{E}\left[\int_{0}^{\infty}\|U(t+\tau, t+\tau-s)\| \| F(t+\tau-s, X(t+\tau-s))\right. \\
&-F(t-s, X(t-s)) \| d s]^{2} \\
&+3 \mathbf{E}\left[\int_{\varepsilon}^{\infty}\|U(t+\tau, t+\tau-s)-U(t, t-s)\|\|F(t-s, X(t-s))\| d s\right]^{2} \\
&+3 \mathbf{E}\left[\int_{0}^{\varepsilon}\|U(t+\tau, t+\tau-s)-U(t, t-s)\|\|F(t-s, X(t-s))\| d s\right]^{2} \\
& \leq 3 M^{2} \mathbf{E}\left[\int_{0}^{\infty} e^{-\delta s}\|F(t+\tau-s, X(t+\tau-s))-F(t-s, X(t-s))\| d s\right]^{2} \\
&+3 \varepsilon^{2} \mathbf{E}\left[\int_{\varepsilon}^{\infty} e^{-\frac{\delta}{2} s}\|F(t-s, X(t-s))\| d s\right]^{2} \\
&+3 M^{2} \mathbf{E}\left[\int_{0}^{\varepsilon} 2 e^{-\delta s}\|F(t-s, X(t-s))\| d s\right]^{2} .
\end{aligned}
$$

Using Cauchy-Schwarz inequality it follows that

$$
\begin{aligned}
& \mathbf{E}\|\Phi X(t+\tau)-\Phi X(t)\|^{2} \\
& \leq 3 M^{2}\left(\int_{0}^{\infty} e^{-\delta s} d s\right) \\
& \times\left(\int_{0}^{\infty} e^{-\delta s} \mathbf{E}\|F(t+\tau-s, X(t+\tau-s))-F(t-s, X(t-s))\|^{2} d s\right) \\
&+3 \varepsilon^{2}\left(\int_{\varepsilon}^{\infty} e^{-\frac{\delta}{2} s} d s\right)\left(\int_{\varepsilon}^{\infty} e^{-\frac{\delta}{2} s} \mathbf{E}\|F(t-s, X(t-s))\|^{2} d s\right) \\
&+12 M^{2}\left(\int_{0}^{\infty} e^{-\delta s} d s\right)\left(\int_{0}^{\varepsilon} e^{-\delta s} \mathbf{E}\|F(t-s, X(t-s))\|^{2} d s\right)^{2} \\
& \leq 3 M^{2}\left(\int_{0}^{\infty} e^{-\delta s} d s\right)^{2} \sup _{\sigma \in \mathbb{R}} \mathbf{E}\|F(\sigma+\tau, X(\sigma+\tau))-F(\sigma, X(\sigma))\|^{2} \\
&+3 \varepsilon^{2}\left(\int_{\varepsilon}^{\infty} e^{-\frac{\delta}{2} s} d s\right) \sup _{\sigma \in \mathbb{R}} \mathbf{E}\|F(\sigma, X(\sigma))\|^{2} \\
&+12 M^{2}\left(\int_{0}^{\infty} e^{-\delta s} d s\right) \sup _{\sigma \in \mathbb{R}} \mathbf{E}\|F(\sigma, X(\sigma))\|^{2} \\
& \leq 3 \frac{M^{2}}{\delta^{2}} \eta+3 \varepsilon^{2} \frac{4}{\delta^{2}} K_{1}+12 M^{2} \varepsilon^{2} K_{1},
\end{aligned}
$$

which implies that $\Phi X(\cdot)$ is square-mean almost periodic.
Similarly, assuming that X is square-mean almost periodic and using (H2), Theorem 2.7, and Lemma 3.1, given $\varepsilon>0$, one can find $l(\varepsilon)>0$ such that any interval of length $l(\varepsilon)$ contains at least τ with the property that

$$
\|U(t+\tau, s+\tau)-U(t, s)\| \leq \varepsilon e^{-\frac{\delta}{2}(t-s)}
$$

for all $t-s \geq \varepsilon$, and

$$
\mathbf{E}\|G(\sigma+\tau, X(\sigma+\tau))-G(\sigma, X(\sigma))\|_{\mathbb{L}_{2}^{0}}^{2}<\eta
$$

for each $\sigma \in \mathbb{R}$, where $\eta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Moreover, it follows from Lemma 2.4 (ii) that there exists a positive constant K_{2} such that

$$
\sup _{\sigma \in \mathbb{R}} \mathbf{E}\|G(\sigma, X(\sigma))\|_{\mathbb{L}_{2}^{0}}^{2} \leq K_{2}
$$

The next step consists of proving the square-mean almost periodicity of $\Psi X(\cdot)$. Of course, this is more complicated than the previous case because of the involvement of the Wiener process W. To overcome such a difficulty, we make extensive use of the properties of \tilde{W} defined by $\tilde{W}(s):=W(s+\tau)-W(\tau)$ for each s. Note that \tilde{W} is also a Wiener process and has the same distribution as W.

Now, let us make an appropriate change of variables to get

$$
\begin{aligned}
\mathbf{E} \| & (\Psi X)(t+\tau)-(\Psi X)(t) \|^{2} \\
= & \| \int_{0}^{\infty} U(t+\tau, t+\tau-s) G(t+\tau-s, X(t+\tau-s)) d \tilde{W}(s) \\
& -\int_{0}^{\infty} U(t, t-s) G(t-s, X(t-s)) d \tilde{W}(s) \|^{2} \\
\leq & 3 \mathbf{E} \| \int_{0}^{\infty} U(t+\tau, t+\tau-s)[G(t+\tau-s, X(t+\tau-s)) \\
& -G(t-s, X(t-s))] d \tilde{W}(s) \|^{2} \\
& +3 \mathbf{E}\left\|\int_{\varepsilon}^{\infty}[U(t+\tau, t+\tau-s)-U(t, t-s)] G(t-s, X(t-s)) d \tilde{W}(s)\right\|^{2} \\
& +3 \mathbf{E}\left\|\int_{0}^{\varepsilon}[U(t+\tau, t+\tau-s)-U(t, t-s)] G(t-s, X(t-s)) d \tilde{W}(s)\right\|^{2} .
\end{aligned}
$$

Then using an estimate on the Ito integral established in [7, Proposition 1.9], we obtain

$$
\begin{aligned}
& \mathbf{E}\|(\Psi X)(t+\tau)-(\Psi X)(t)\|^{2} \\
& \leq 3 \operatorname{Tr} Q \int_{0}^{\infty}\|U(t+\tau, t+\tau-s)\|^{2} \mathbf{E} \| G(t+\tau-s, X(t+\tau-s)) \\
&-G(t-s, X(t-s)) \|_{\mathbb{L}_{2}^{0}}^{2} d s \\
&+3 \operatorname{Tr} Q \int_{\varepsilon}^{\infty}\|U(t+\tau, t+\tau-s)-U(t, t-s)\|^{2} \mathbf{E}\|G(t-s, X(t-s))\|_{\mathbb{L}_{2}^{0}}^{2} d s \\
&+3 \operatorname{Tr} Q \int_{0}^{\varepsilon}\|U(t+\tau, t+\tau-s)-U(t, t-s)\|^{2} \mathbf{E}\|G(t-s, X(t-s))\|_{\mathbb{L}_{2}^{0}}^{2} d s \\
& \leq 3 \operatorname{Tr} Q M^{2}\left(\int_{0}^{\infty} e^{-2 \delta s} d s\right) \sup _{\sigma \in \mathbb{R}}\|G(\sigma+\tau, X(\sigma+\tau))-G(\sigma, X(\sigma))\|_{\mathbb{L}_{2}^{0}}^{2} \\
&+3 \operatorname{Tr} Q \varepsilon^{2}\left(\int_{\varepsilon}^{\infty} e^{-\delta s} d s\right) \sup _{\sigma \in \mathbb{R}} \mathbf{E}\|G(\sigma, X(\sigma))\|_{\mathbb{L}_{2}^{0}}^{2} \\
&+6 \operatorname{Tr} Q M^{2}\left(\int_{0}^{\varepsilon} e^{-2 \delta s} d s\right) \sup _{\sigma \in \mathbb{R}} \mathbf{E}\|G(\sigma, X(\sigma))\|_{\mathbb{L}_{2}^{0}}^{2} \\
& \leq 3 \operatorname{Tr} Q\left[\eta \frac{M^{2}}{2 \delta}+\varepsilon \frac{K_{2}}{\delta}+2 \varepsilon K_{2}\right],
\end{aligned}
$$

which implies that $\Psi X(\cdot)$ is square-mean almost periodic. Define

$$
(\Lambda X)(t):=\int_{-\infty}^{t} U(t, s) F(s, X(s)) d s+\int_{-\infty}^{t} U(t, s) G(s, X(s)) d W(s) .
$$

In view of the above, it is clear that Λ maps $A P\left(\mathbb{R} ; L^{2}(\mathbf{P} ; \mathbb{H})\right)$ into itself. To complete the proof, it suffices to prove that Λ has a unique fixed-point. Clearly,

$$
\begin{aligned}
\| & (\Lambda X)(t)-(\Lambda Y)(t) \| \\
= & \| \int_{-\infty}^{t} U(t, s)[F(s, X(s))-F(s, Y(s))] d s \\
& +\int_{-\infty}^{t} U(t, s)[G(s, X(s))-G(s, Y(s))] d W(s) \| \\
\leq & M \int_{-\infty}^{t} e^{-\delta(t-s)}\|F(s, X(s))-F(s, Y(s))\| d s \\
& +\left\|\int_{-\infty}^{t} U(t, s)[G(s, X(s))-G(s, Y(s))] d W(s)\right\|
\end{aligned}
$$

Since $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$, we can write

$$
\begin{aligned}
& \mathbf{E}\|(\Lambda X)(t)-(\Lambda Y)(t)\|^{2} \\
& \leq \\
& 2 M^{2} \mathbf{E}\left(\int_{-\infty}^{t} e^{-\delta(t-s)}\|F(s, X(s))-F(s, Y(s))\| d s\right)^{2} \\
& \\
& \quad+2 \mathbf{E}\left(\left\|\int_{-\infty}^{t} U(t, s)[G(s, X(s))-G(s, Y(s))] d W(s)\right\|\right)^{2}
\end{aligned}
$$

We evaluate the first term of the right-hand side as follows:

$$
\begin{aligned}
& \mathbf{E}\left(\int_{-\infty}^{t} e^{-\delta(t-s)}\|F(s, X(s))-F(s, Y(s))\| d s\right)^{2} \\
& \leq \mathbf{E}\left[\left(\int_{-\infty}^{t} e^{-\delta(t-s)} d s\right)\left(\int_{-\infty}^{t} e^{-\delta(t-s)}\|F(s, X(s))-F(s, Y(s))\|^{2} d s\right)\right] \\
& \leq\left(\int_{-\infty}^{t} e^{-\delta(t-s)} d s\right)\left(\int_{-\infty}^{t} e^{-\delta(t-s)} \mathbf{E}\|F(s, X(s))-F(s, Y(s))\|^{2} d s\right) \\
& \left.\left.\leq K \cdot\left(\int_{-\infty}^{t} e^{-\delta(t-s)} d s\right)\left(\int_{-\infty}^{t} e^{-\delta(t-s)} \mathbf{E} \| X(s)\right)-Y(s)\right) \|^{2} d s\right) \\
& \leq K \cdot\left(\int_{-\infty}^{t} e^{-\delta(t-s)} d s\right)^{2} \sup _{t \in \mathbb{R}} \mathbf{E}\|X(t)-Y(t)\|^{2} \\
& =K \cdot\left(\int_{-\infty}^{t} e^{-\delta(t-s)} d s\right)^{2}\|X-Y\|_{\infty} \\
& \leq \frac{K}{\delta^{2}} \cdot\|X-Y\|_{\infty}
\end{aligned}
$$

As to the second term, we use again an estimate on the Ito integral established in [7] to obtain:

$$
\begin{aligned}
& \mathbf{E}\left(\left\|\int_{-\infty}^{t} U(t, s)[G(s, X(s))-G(s, Y(s))] d W(s)\right\|\right)^{2} \\
& \quad \leq \operatorname{Tr} \mathrm{Q} \cdot \mathbf{E}\left[\int_{-\infty}^{t}\|U(t, s)[G(s, X(s))-G(s, Y(s))]\|^{2} d s\right] \\
& \leq \operatorname{Tr} Q \cdot \mathbf{E}\left[\int_{-\infty}^{t}\|U(t, s)\|^{2}\|G(s, X(s))-G(s, Y(s))\|_{\mathbb{L}_{2}^{0}}^{2} d s\right] \\
& \leq \operatorname{Tr} Q \cdot M^{2} \int_{-\infty}^{t} e^{-2 \delta(t-s)} \mathbf{E}\|G(s, X(s))-G(s, Y(s))\|_{\mathbb{L}_{2}^{0}}^{2} d s \\
& \left.\left.\leq \operatorname{Tr} Q \cdot M^{2} K^{\prime} \cdot\left(\int_{-\infty}^{t} e^{-2 \delta(t-s)} d s\right) \sup _{t \in R} \mathbf{E} \| X(s)\right)-Y(s)\right) \|^{2} \\
& \leq \operatorname{Tr} Q \cdot \frac{M^{2} K^{\prime}}{2 \delta} \cdot\|X-Y\|_{\infty} .
\end{aligned}
$$

Thus, by combining, it follows that

$$
\mathbf{E}\|(\Lambda X)(t)-(\Lambda Y)(t)\| \leq M^{2}\left(2 \frac{K}{\delta^{2}}+\frac{K^{\prime} \cdot \operatorname{Tr} Q}{\delta}\right)\|X-Y\|_{\infty}
$$

and therefore,

$$
\|\Lambda X-\Lambda Y\|_{\infty} \leq M^{2}\left(2 \frac{K}{\delta^{2}}+\frac{K^{\prime} \cdot \operatorname{Tr} Q}{\delta}\right)\|X-Y\|_{\infty}=\Theta \cdot\|X-Y\|_{\infty}
$$

Consequently, if $\Theta<1$, then (1.1) has a unique fixed-point, which obviously is the unique square-mean almost periodic solution to 1.1 .

4. Example

Let $\mathcal{O} \subset \mathbb{R}^{n}$ be a bounded subset whose boundary $\partial \mathcal{O}$ is of class C^{2} and being locally on one side of \mathcal{O}.

Consider the parabolic stochastic partial differential equation

$$
\begin{align*}
d_{t} X(t, \xi)= & \{A(t, \xi) X(t, \xi)+F(t, X(t, \xi))\} d_{t}+G(t, X(t, \xi)) d W(t), \tag{4.1}\\
& \sum_{i, j=1}^{n} n_{i}(\xi) a_{i j}(t, \xi) d_{i} X(t, \xi)=0, \quad t \in \mathbb{R}, \xi \in \partial \mathcal{O} \tag{4.2}
\end{align*}
$$

where $d_{t}=\frac{d}{d t}, d_{i}=\frac{d}{d \xi_{i}}, n(\xi)=\left(n_{1}(\xi), n_{2}(\xi), \ldots, n_{n}(\xi)\right)$ is the outer unit normal vector, the family of operators $A(t, \xi)$ are formally given by

$$
A(t, \xi)=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(t, \xi) \frac{\partial}{\partial x_{j}}\right)+c(t, \xi), \quad t \in \mathbb{R}, \xi \in \mathcal{O}
$$

W is a real valued Brownian motion, and $a_{i j}, c(i, j=1,2, \ldots, n)$ satisfy the following conditions: (H3)
(i) The coefficients $\left(a_{i j}\right)_{i, j=1, \ldots, n}$ are symmetric, that is, $a_{i j}=a_{j i}$ for all $i, j=$ $1, \ldots, n$. Moreover, $a_{i j} \in C_{b}^{\mu}\left(\mathbb{R}, L^{2}(\mathbf{P}, C(\overline{\mathcal{O}}))\right) \cap C_{b}\left(\mathbb{R}, L^{2}\left(\mathbf{P}, C^{1}(\overline{\mathcal{O}})\right)\right) \cap$ $A P\left(\mathbb{R} ; L^{2}\left(\mathbf{P}, L^{2}(\mathcal{O})\right)\right)$ for all $i, j=1, \ldots n$, and $c \in C_{b}^{\mu}\left(\mathbb{R}, L^{2}\left(\mathbf{P}, L^{2}(\mathcal{O})\right)\right) \cap$ $C_{b}\left(\mathbb{R}, L^{2}(\mathbf{P}, C(\overline{\mathcal{O}}))\right) \cap A P\left(\mathbb{R} ; L^{2}\left(\mathbf{P}, L^{1}(\mathcal{O})\right)\right)$ for some $\mu \in(1 / 2,1]$.
(ii) There exists $\varepsilon_{0}>0$ such that

$$
\sum_{i, j=1}^{n} a_{i j}(t, \xi) \eta_{i} \eta_{j} \geq \varepsilon_{0}|\eta|^{2}
$$

for all $(t, \xi) \in \mathbb{R} \times \overline{\mathcal{O}}$ and $\eta \in \mathbb{R}^{n}$.
Under above assumptions, the existence of an evolution family $U(t, s)$ satisfying (H0) is obtained, see, eg., 10 .

Set $\mathbb{H}=L^{2}(\mathcal{O})$. For each $t \in \mathbb{R}$ define an operator $A(t)$ on $L^{2}(\mathbf{P} ; H)$ by

$$
\mathcal{D}(A(t))=\left\{X \in L^{2}\left(\mathbf{P}, H^{2}(\mathcal{O})\right): \sum_{i, j=1}^{n} n_{i}(\cdot) a_{i j}(t, \cdot) d_{i} X(t, \cdot)=0 \quad \text { on } \partial \mathcal{O}\right\}
$$

and $A(t) X=A(t, \xi) X(\xi)$ for all $X \in \mathcal{D}(A(t))$.
Thus under assumptions (H1)-(H3), then the system 4.1)-4.2) has a unique mild solution, which obviously is square-mean almost periodic, whenever M is small enough.

References

[1] P. Acquistapace and B. Terreni; A Unified Approach to Abstract Linear Parabolic Equations, Tend. Sem. Mat. Univ. Padova, 78 (1987), 47-107.
[2] L. Arnold and C. Tudor; Stationary and Almost Periodic Solutions of Almost Periodic Affine Stochastic Differential Equations, Stochastics and Stochastic Reports, 64 (1998), 177-193.
[3] P. Bezandry and T. Diagana; Existence of Almost Periodic Solutions to Some Stochastic Differential Equations. Applicable Analysis Vol. 86 (2007), no. 7, pp. 819-827.
[4] C. Corduneanu, Almost Periodic Functions, 2nd Edition, Chelsea-New York, 1989.
[5] G. Da Prato and C. Tudor; Periodic and Almost Periodic Solutions for Semilinear Stochastic Evolution Equations, Stoch. Anal. Appl. 13(1) (1995), 13-33.
[6] A. Ya. Dorogovtsev and O. A. Ortega; On the Existence of Periodic Solutions of a Stochastic Equation in a Hilbert Space. Visnik Kiiv. Univ. Ser. Mat. Mekh. No. 30 (1988), 21-30, 115
[7] A. Ichikawa; Stability of Semilinear Stochastic Evolution Equations. J. Math. Anal. Appl. 90 (1982), no.1, 12-44.
[8] T. Kawata; Almost Periodic Weakly Stationary Processes. Statistics and probability: essays in honor of C. R. Rao, pp. 383-396, North-Holland, Amsterdam-New York, 1982.
[9] A. Lunardi; Analytic Semigroups and Optimal Regularity in Parabolic Problems, PNLDE Vol. 16, Birkhäauser Verlag, Basel, 1995.
[10] L. Maniar and S. Roland; Almost Periodicity of Inhomogeneous Parabolic Evolution Equations, Lecture Notes in Pure and Appl. Math. Vol. 234, Dekker, New York, 2003, pp. 299-318.
[11] R. J. Swift; Almost Periodic Harmonizable Processes, Georgian Math. J. 3 (1996), no. 3, 275-292.
[12] C. Tudor; Almost Periodic Solutions of Affine Stochastic Evolutions Equations, Stochastics and Stochastics Reports 38 (1992), 251-266.

Paul H. Bezandry
Department of Mathematics, Howard University, Washington, DC 20059, USA
E-mail address: pbezandry@howard.edu
Toka Diagana
Department of Mathematics, Howard University, Washington, DC 20059, USA
E-mail address: tdiagana@howard.edu

[^0]: 2000 Mathematics Subject Classification. 34K14, 60H10, 35B15, 34F05.
 Key words and phrases. Stochastic differential equation; stochastic processes;
 square-mean almost periodic; Wiener process; Acquistapace-Terreni conditions.
 © 2007 Texas State University - San Marcos.
 Submitted May 1, 2007. Published September 2, 2007.

