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BOUNDEDNESS AND EXPONENTIAL STABILITY OF
SOLUTIONS TO DYNAMIC EQUATIONS ON TIME SCALES

AI-LIAN LIU

Abstract. Making use of the generalized time scales exponential function,

we give a new definition for the exponential stability of solutions for dynamic
equations on time scales. Employing Lyapunov-type functions on time scales,

we investigate the boundedness and the exponential stability of solutions to

first-order dynamic equations on time scales, and some sufficient conditions
are obtained. Some examples are given at the end of this paper.

1. Introduction

In this paper, we consider the boundedness and exponential stability of solutions
to the first-order dynamic equations

x∆ = f(t, x) t ≥ t0, t ∈ T, (1.1)

subject to the initial condition

x(t0) = x0 t0 ∈ T, x0 ∈ Rn, (1.2)

where f : T × Rn → Rn is a so called rd-continuous function and t is from a so
called “time scale” T.

If T = R, then x∆ = x′ and (1.1), (1.2) is the following initial value-problem for
ordinary differential equations,

x′ = f(t, x), (1.3)

x(t0) = x0. (1.4)

If T = Z, then x∆ = ∆x (the forward difference calculus), and (1.1), (1.2) corre-
sponds to the initial value-problem for the O∆E

x(n + 1)− x(n) = f(n, x(n)), (1.5)

x(n0) = x0. (1.6)

Recently Raffoul [6] used Lyapunov-type function to formulate some sufficient
conditions that ensure all solutions of (1.3), (1.4) are uniformly bounded. In [7], by
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a kind of suitable and easy-to-calculate Lyapunov type I function on time scales,
Peterson and Tisdell formulated some appropriate inequalities on these functions
that guarantee solutions to (1.1), (1.2) are uniformly bounded. Other results on
boundedness can be found, for example, in [3] and [4].

The investigation of stability analysis of nonlinear systems has produced a vast
body of important results. In [10], Muhammad made use of non-negative definite
Lyapunov functions to study the exponential stability of the zero solution of nonlin-
ear discrete system (1.5), (1.6), and in [11], [12] they gave sufficient conditions for
the exponential stability of a class of nonlinear time-varying differential equations.

In this paper, we first define the boundedness and the exponential stability of
solutions on time scales, then making use of the Lyapunov-type function on time
scales, we get sufficient conditions that guarantee the boundedness and exponential
stability of zero solution to (1.1), (1.2), which generalize the results in [10, 11, 12].
Some examples are also presented at the end of this paper.

Throughout this paper, the following notation will be used: Rn is the n-dimen-
sional Euclidean vector space; R+ is the set of all non-negative real numbers; ‖x‖
is the Euclidean norm of a vector x ∈ Rn.

2. Preliminaries

The theory of dynamic equations on time scales (or more generally, measure
chains) was introduced in Stefan Hilger’s PhD thesis in 1988. The theory presents
a structure where, once a result is established for general time scales, special cases
include a result for differential equations (obtained by taking the time scale to be
the real numbers) and a result for difference equations (obtained by taking the
time scales to be the integers). A great deal of work has been done since 1988,
unifying the theory of differential equations and the theory of difference equations
by establishing the corresponding results in time scale setting.

Definition 2.1. A time scale T is an arbitrary nonempty closed subset of the set
R, with the topology and ordering inherited from R. We assume throughout the
paper that T is unbounded above.

Definition 2.2. For t ∈ T the forward jump operator σ(t) : T → T is defined by

σ(t) := inf{s ∈ T : s > t}.

The jump operator σ gives the classifications of points on time scales. A point
t ∈ T is called right dense if σ(t) = t, and right scattered if σ(t) > t. The graininess
function µ(t) : T → R is defined by µ(t) = σ(t)− t.

Definition 2.3. Fix t ∈ T and let x : T → Rn, define the delta-derivative x∆(t)
of x at t ∈ T to be the vector (if it exists) with the property that given any ε > 0,
there is a neighborhood U ⊂ T of t such that

|[xi(σ(t))− xi(s)]− x∆
i (t)[σ(t)− s]| ≤ ε|σ(t)− s|

for all s ∈ U and i = 1, 2, . . . , n. At this time we say x(t) is (delta) differentiable.
In the case of T = R, x∆(t) = x′(t). When T = Z, x∆(t) is the standard forward
difference operator x(n + 1)− x(n).

Definition 2.4. For f : T → Rn and F : T → Rn, if F∆(t) = f(t) for all t ∈ T,
then F is said to be an antiderivative of f . And define the cauchy integral by the
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formula ∫ b

a

f(τ)∆τ = F (b)− F (a) for a, b ∈ T.

Definition 2.5. A function f : T → R is called right-dense continuous provided it
is continuous at right dense points of T and its left sided limit exists (finite) at left
dense points of T. The set of all right-dense continuous function on T is denoted
by

Crd = Crd(T) = Crd(T, R).

Consequences of these definitions and properties can be found in [1, 2, 5].

Definition 2.6. A function p : T → R is regressive provided that

1 + µ(t)p(t) 6= 0 for all t ∈ T.

The set of all regressive and right-dense continuous function is denoted by R =
R(T) = R(T, R). The set R+ of all positively regressive function is

R+ = R+(T, R) = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}.

Definition 2.7. For p(t) ∈ R, we define the generalized exponential function as

ep(t, t0) = exp(
∫ t

t0

Log(1 + µ(τ)p(τ))
µ(τ)

∆τ) for t0, t ∈ T.

Remark 2.8. Consider the dynamic initial-value problem

x∆ = p(t)x, x(t0) = x0, (2.1)

where t0 ∈ T and p(t) ∈ R. The exponential function x(t) = x0ep(t, t0) is the
unique solution to system (2.1).

Theorem 2.9. (i) If p ∈ R+, then ep(t, t0) > 0;
(ii) ep(σ(t), t0) = (1 + µ(t)p(t))ep(t, t0);
(iii) e	p(t, t0) = 1

ep(t,t0)
, where

	p =
−p

1 + pµ(t)
;

(iv) If p, q ∈ R, then ep(t, t0)eq(t, t0) = ep⊕q(t, t0);
(v) If p is a positive constant, then limt→∞ ep(t, t0) = ∞, limt→∞ e	p(t, t0) = 0.

Other relevant theorems can be found in [1],[2]. In the following discussions,
we assume conditions are imposed on system (1.1),(1.2) such that the existence of
solutions is guaranteed when t ∈ T+

t0 = {t ∈ T : t ≥ t0}.

3. Boundedness of Solutions

Definition 3.1. We say a solution x(t) of system (1.1),(1.2) is bounded if there
exists a constant C(t0, x0) (that may depend on t0 and x0) such that

‖x(t)‖ ≤ C(t0, x0) for t ∈ T+
t0 .

We say that solutions of (1.1),(1.2) are uniformly bounded if C is independent of
t0.
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Assume V : T+
t0 ×Rn → R+ is delta differentiable in variable t and continuously

differentiable in variable x, and x(t) is any solution of dynamic system (1.1), (1.2),
then from [13, 14] we know the delta derivative along x(t) for V (t, x) is the following

V ∆(t, x) = V ∆(t, x(t)) = V ∆
t (t, x(σ(t))) +

∫ 1

0

V ′x(t, x(t) + hµ(t)x∆(t))dh x∆(t)

= V ∆
t (t, x(σ(t))) +

∫ 1

0

V ′x(t, x(t) + hµ(t)f(t, x))dh f(t, x),

where V ∆
t is considered as the delta derivative in the first variable t and V ′x is

taken as the normal derivative in variable x. Then we call V (t, x) a Lyapunov-type
function on time scales.

To calculate the derivative is not an easy work generally, but if V (t, x) is explicitly
independent of t, i.e. V : Rn → R+ and V (x) = V1(x1) + · · ·+ Vn(xn), this is the
type I Lyapunov function introduced in [7] and (V ◦x)∆(t) is easy to handle at this
time.

In this section we want to point out that the results in [7] are held to be true
theoretically for general Lyapunov-type function on time scales.

Theorem 3.2. Assume D is an open and convex set in Rn. Suppose there exists
a Lyapunov-type function V : T+

t0 ×D → R+ that satisfies

λ1‖x‖p ≤ V (t, x) ≤ λ2‖x‖q, (3.1)

V ∆(t, x) ≤ −λ3‖x‖r + L

1 + Mµ(t)
, (3.2)

V (t, x)− V r/q(t, x) ≤ γ, (3.3)

where λ1, λ2, λ3, p, q, r are positive constants, L and γ are nonnegative constants,
and M = λ3/λ

r/q
2 . Then all solutions of (1.1), (1.2) that stay in D are uniformly

bounded.

Proof. Note that M = λ3/λ
r/q
2 , so M ∈ R+ and eM (t, t0) is well defined and is

positive. From the derivative formula of products and condition (3.2),

(V (t, x)eM (t, t0))∆ = V ∆(t, x)eM (σ(t), t0) + V (t, x)e∆
M (t, t0)

≤ −λ3‖x‖r + L

1 + Mµ(t)
(1 + Mµ(t))eM (t, t0) + MV (t, x)eM (t, t0)

= (−λ3‖x‖r + L + MV (t, x))eM (t, t0).

From (3.1), we have ‖x‖q ≥ V (t, x)/λ2, consequently −‖x‖r ≤ (V (t, x)/λ2)r/q. So
by (3.3),

(V (t, x)eM (t, t0))∆ ≤ [−(λ3/λ
r/q
2 )V r/q(t, x) + MV (t, x) + L]eM (t, t0)

= [M(V (t, x)− V r/q(t, x)) + L]eM (t, t0)

≤ (Mγ + L)eM (t, t0).
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Integrating the above inequality from t0 to t (t ∈ T+
t0), we obtain

V (t, x)eM (t, t0) ≤ V (t0, x0) +
Mγ + L

M
(eM (t, t0)− eM (t0, t0))

≤ V (t0, x0) +
Mγ + L

M
eM (t, t0)

≤ λ2‖x0‖q +
Mγ + L

M
eM (t, t0).

Hence

V (t, x) ≤ λ2‖x0‖qe	M (t, t0) +
Mγ + L

M

≤ λ2‖x0‖q +
Mγ + L

M
.

From (3.1), we have λ1‖x‖p ≤ V (t, x), which implies

‖x(t)‖ ≤
( 1
λ1

)1/p(
λ2‖x0‖q +

Mγ + L

M

)1/p for all t ∈ T+
t0 .

This completes the proof. �

Theorem 3.3. Assume D ⊂ Rn is open and convex, and there exists a Lyapunov-
type function V : T+

t0 ×D → R+ that satisfies

λ1(t)‖x‖p ≤ V (t, x) ≤ λ2(t)‖x‖q, (3.4)

V ∆(t, x) ≤ −λ3(t)‖x‖r + L

1 + Mµ(t)
, (3.5)

V (t, x)− V r/q(t, x) ≤ γ, (3.6)

for some positive constants p, q, r and positive functions λ1(t), λ2(t), λ3(t), where
λ1(t) is nondecreasing, L and γ are nonnegative constants, and

M = inf
t∈T+

t0

λ3(t)/λ
r/q
2 (t) > 0.

Then all solutions of (1.1), (1.2) that stay in D are bounded.

Proof. For M = inft∈T+
t0

λ3(t)/λ
r/q
2 (t) > 0, by calculating (V (t, x)eM (t, t0))∆ and

then by the similar argument as in Theorem 3.2, we obtain

V (t, x) ≤ λ2(t0)‖x0‖qe	M (t, t0) +
Mγ + L

M

≤ λ2(t0)‖x0‖q +
Mγ + L

M
.

Using condition (3.4), we arrive at

‖x‖ ≤
(V (t, x)

λ1(t)
)1/p ≤

(V (t, x)
λ1(t0)

)1/p
.

Combining the above two inequalities, we get

‖x(t)‖ ≤
( 1
λ1(t0)

)1/p(
λ2(t0)‖x0‖q +

Mγ + L

M

)1/p for all t ∈ T+
t0 ,

which concludes the proof. �
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4. Exponential Stability of Solutions

For the dynamic equation (1.1), we assume f(t, 0) = 0 for all t ∈ T, so x(t) = 0
is the trivial solution of (1.1).

There are different definitions for the exponential stability of the zero solution
according to different authors ([8, 9]). Pötzsche [8] gave the definition by the
regular exponential function e−p(t−t0)(constant p > 0); and Dacunha [9] defined
the exponential stability in terms of e−p(t, t0) (constant p > 0,−p ∈ R+). For
constant p > 0,−p ∈ R+, taking into consideration the following relationship

e−p(t, t0) ≤ e−p(t−t0) ≤ e	p(t, t0) t, t0 ∈ T, t ≥ t0,

here we introduce a new definition, which is more general than the present, by the
use of the generalized time scales exponential function e	p(t, t0).

Definition 4.1. The zero solution to system (1.1) is exponentially stable if any
solution x(t) of (1.1), (1.2) satisfies

‖x(t)‖ ≤ β(‖x0‖, t0)eα
	p(t, t0) t ∈ T+

t0 ,

where β : R+×T → R+ is a nonnegative function, and α, p are positive constants. If
β(‖x0‖, t0) does not depend on t0, the zero solution is called uniformly exponentially
stable.

For the rest of this article, to shorten expressions, instead of saying the zero
solution is stable, we say that the system (1.1),(1.2) is stable.

Lemma 4.2. For any time scale T, assume the graininess function µ(t) is bounded
above, i.e. there exists a constant BT (that may depend on T) such that µ(t) ≤ BT,
then for any positive constants M, δ satisfying M < δ, we have

t →
∫ t

t0

eM	δ(τ, t0)∆τ is bounded above.

Proof. From the properties of generalized exponential function (Theorem 2.9),∫ t

t0

eM	δ(τ, t0)∆τ =
∫ t

t0

eM (τ, t0)
eδ(τ, t0)

∆τ =
1
M

∫ t

t0

e∆
M (τ, t0)
eδ(τ, t0)

∆τ.

By the integration by parts formula [1, Theorem 1.77], we have∫ t

t0

eM	δ(τ, t0)∆τ =
1
M

(
eM	δ(t, t0)− 1−

∫ t

t0

eM (σ(τ), t0)
−e∆

δ (τ, t0)
eδ(τ, t0)eδ(σ(τ), t0)

∆τ
)

=
1
M

(
eM	δ(t, t0)− 1 + δ

∫ t

t0

eM (σ(τ), t0)
eδ(σ(τ), t0)

∆τ
)

=
1
M

(
eM	δ(t, t0)− 1 + δ

∫ t

t0

(1 + µ(τ)M)eM (τ, t0)
eδ(σ(τ), t0)

∆τ
)
.

Due to the assumption, we have∫ t

t0

eM	δ(τ, t0)∆τ ≤ 1
M

(
eM	δ(t, t0)− 1 + δ(1 + BTM)

∫ t

t0

eM (τ, t0)
eδ(σ(τ), t0)

∆τ
)
.

From the formula in [1, Theorem 2.38],∫ t

t0

eM (τ, t0)
eδ(σ(τ), t0)

∆τ =
1

M − δ

∫ t

t0

e∆
M	δ(τ, t0)∆τ.
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Hence ∫ t

t0

eM	δ(τ, t0)∆τ ≤ 1
M

(
1− 1 +

δ(1 + BTM)
M − δ

(eM	δ(t, t0)− 1)
)

=
1
M

(δ(1 + BTM)
δ −M

− δ(1 + BTM)
δ −M

eM	δ(t, t0)
)

≤ δ(1 + BTM)
M(δ −M)

= Constant.

That completes the proof. �

The results obtained in this section are under the assumption that Lemma 4.2
holds to be true, i.e., throughout this section we assume supt∈T+

t0
µ(t) < ∞ with its

bound dependent on the time scale T.

Theorem 4.3. Assume D ⊂ Rn is an open and convex set containing the origin
and there exists a Lyapunov-type function V : T+

t0 ×D → R+ which satisfies

λ1‖x‖p ≤ V (t, x) ≤ λ2‖x‖q, (4.1)

V ∆(t, x) ≤ −λ3‖x‖r + Ke	δ(t, t0)
1 + µ(t)M

, (4.2)

where λ1, λ2, λ3,K, p, q, r, δ are positive numbers and the following two conditions
hold for all (t, x) ∈ T+

t0 ×D

δ > λ3/(λ2)r/q = M, (4.3)

and there exists a γ ≥ 0 such that

V (t, x)− V r/q(t, x) ≤ γe	δ(t, t0). (4.4)

Then system (1.1), (1.2) is uniformly exponentially stable.

Proof. Let x(t) be a solution of (1.1), (1.2) and let

Q(t, x) = V (t, x)eM (t, t0).

Then
Q∆(t, x) = V ∆(t, x)eM (σ(t), t0) + V (t, x)e∆

M (t, t0).

Taking (4.2) into account, for all t ∈ T+
t0 , x ∈ D, we have

Q∆(t, x) ≤ −λ3‖x‖r + Ke	δ(t, t0)
1 + µ(t)M

(1 + µ(t)M)eM (t, t0) + V (t, x)MeM (t, t0).

By (4.1), we have ‖x‖q ≥ V (t, x)/λ2, or equivalently −‖x‖r ≤ −(V (t, x)/λ2)r/q.
Therefore,

Q∆(t, x) ≤
(
− V r/q(t, x)λ3/λ

r/q
2 + Ke	δ(t, t0) + MV (t, x)

)
eM (t, t0).

Since λ3/λ
r/q
2 = M , we have

Q∆(t, x) ≤ M(V (t, x)− V r/q(t, x))eM (t, t0) + KeM	δ(t, t0).

Using (4.4), we obtain

Q∆(t, x) ≤ (Mγ + K)eM	δ(t, t0).
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Integrating both sides of the above inequality from t0 to t, we obtain

Q(t, x)−Q(t0, x0) ≤
∫ t

t0

(Mγ + K)eM	δ(τ, t0)∆τ = (Mγ + K)
∫ t

t0

eM	δ(τ, t0)∆τ.

From Lemma 4.2, we have

Q(t, x)−Q(t0, x0) ≤
(Mγ + K)

M

δ(1 + BTM)
δ −M

.

Since Q(t0, x0) = V (t0, x0) ≤ λ2‖x0‖q, we have

Q(t, x) ≤ λ2‖x0‖q +
(Mγ + K)

M

δ(1 + BTM)
δ −M

=: β(‖x0‖).

We have Q(t, x) ≤ β(‖x0‖). On the other hand, from (4.1) it follows that

‖x‖ ≤
(V (t, x)

λ1

)1/p

.

Substituting V (t, x) = Q(t, x)e	M (t, t0) in the last inequality, we obtain

‖x(t)‖ ≤
(Q(t, x)e	M (t, t0)

λ1

)1/p

≤
(β(‖x0‖)

λ1

)1/p

e
1/p
	M (t, t0).

This inequality shows that system (1.1), (1.2) is uniformly exponentially stable.
Therefore the proof is complete. �

Theorem 4.4. Assume D ⊂ Rn is an open and convex set containing the origin
and there exists a Lyapunov-type function V : T+

t0 ×D → R+ which satisfies

λ1(t)‖x‖p ≤ V (t, x) ≤ λ2(t)‖x‖q, (4.5)

V ∆(t, x) ≤ −λ3(t)‖x‖r + Ke	δ(t, t0)
1 + µ(t)M

, (4.6)

δ > inf
t∈T+

t0

λ3(t)/(λ2(t))r/q = M > 0, (4.7)

∃γ ≥ 0, such that V (t, x)− V r/q(t, x) ≤ γe	δ(t, t0), (4.8)

where λ1(t), λ2(t), λ3(t) are positive functions, λ1(t) is nondecreasing for all t ∈ T+
t0 ,

and K, p, q, r, δ are positive constants. Then system (1.1), (1.2) is exponentially
stable.

Proof. We consider the function

Q(t, x) = V (t, x)eM (t, t0).

By a similar argument used in the proof of Theorem 4.3, we arrive at

Q∆(t, x) ≤
(
− λ3(t)‖x‖r + Ke	δ(t, t0)

)
eM (t, t0) + V (t, x)MeM (t, t0).

Taking condition (4.5) into account and by the assumption λ2(t) > 0 for all t ∈
T+

t0 , we have ‖x‖q ≥ V (t, x)/λ2(t), so equivalently −‖x‖r ≤ −(V (t, x)/λ2(t))r/q.
Therefore,

Q∆(t, x) ≤
(
− V r/q(t, x)λ3(t)/λ2(t)r/q + Ke	δ(t, t0) + MV (t, x)

)
eM (t, t0).

Since λ3(t)/λ2(t)r/q ≥ M , by condition (4.8), we obtain

Q∆(t, x) ≤ M(V (t, x)− V r/q(t, x))eM (t, t0) + KeM	δ(t, t0)

≤ (Mγ + K)eM	δ(t, t0).
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Thus integrating both sides of the above inequality from t0 to t and applying Lemma
4.2,

Q(t, x)−Q(t0, x0) ≤
∫ t

t0

(Mγ + K)eM	δ(τ, t0)∆τ

=
(Mγ + K)

M

δ(1 + BTM)
δ −M

.

Since Q(t0, x0) = V (t0, x0) ≤ λ2(t0)‖x0‖q, we have

Q(t, x) ≤ λ2(t0)‖x0‖q +
(Mγ + K)

M

δ(1 + BTM)
δ −M

=: β(‖x0‖, t0).

Furthermore, from (4.5) it follows that

‖x‖ ≤
(V (t, x)

λ1(t)

)1/p

.

Since λ1(t) is non-decreasing, hence λ1(t) ≥ λ1(t0). So

‖x‖ ≤
(V (t, x)

λ1(t0)

)1/p

.

Substituting V (t, x) = Q(t, x)e	M (t, t0) into the last inequality, we obtain

‖x(t)‖ ≤
(Q(t, x)e	M (t, t0)

λ1(t0)

)1/p

≤
(β(‖x0‖, t0)

λ1(t0)

)1/p

e
1/p
	M (t, t0).

This inequality shows that system (1.1), (1.2) is exponential stable. �

Theorem 4.5. Assume D ⊂ Rn is an open and convex set containing the origin,
and there exists a Lyapunov-type function V : T+

t0 ×D → R+ such that

λ1(t)‖x‖p ≤ V (t, x) ≤ Φ(‖x‖),

V ∆(t, x) ≤ Ψ(‖x‖) + Le	δ(t, t0)
1 + µ(t)

,

Ψ(Φ−1(V (t, x))) + V (t, x) ≤ γe	δ(t, t0),

where Φ : [0,∞) → [0,∞), Ψ : [0,∞) → (−∞, 0], λ1(t) : T+
t0 → (0,+∞), Ψ is

nonincreasing, λ1(t),Φ is nondecreasing, and Φ−1 exists, L and γ are nonnegative
constants, δ > 1. Then system (1.1), (1.2) is uniformly exponentially stable.

Proof. Let x(t) be a solution of system (1.1), (1.2), then

[V (t, x)e1(t, t0)]∆ = V ∆(t, x)e1(σ(t), t0) + V (t, x)e∆
1 (t, t0)

≤ Ψ(‖x‖) + Le	δ(t, t0)
1 + µ(t)

(1 + µ(t))e1(t, t0) + V (t, x)e1(t, t0)

≤ (Ψ(Φ−1(V (t, x))) + Le	δ(t, t0))e1(t, t0) + V (t, x)e1(t, t0)

≤ (γ + L)e1	δ(t, t0)).

Integrating both sides from t0 to t, we obtain

V (t, x(t))e1(t, t0) ≤ V (t0, x0) + (γ + L)
∫ t

t0

e1	δ(τ, t0)∆τ

≤ V (t0, x0) + (γ + L)
δ(1 + BT)

δ − 1
=: β(‖x0‖, t0),
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so that V (t, x(t)) ≤ β(‖x0‖, t0)e	1(t, t0). From the assumption, we have

‖x‖ ≤
( 1

λ1(t)
β(‖x0‖, t0)e	1(t, t0)

)1/p

≤
( 1

λ1(t0)
β(‖x0‖, t0)

)1/p

e
1/p
	1 (t, t0),

which completes the proof. �

Remark 4.6. In Theorems 4.4 and 4.5, we can replace the nondecreasing assump-
tion of λ1(t) by the following assumption: There exists a > 0 such that a < M
and

λ1(t) ≥ e	a(t, t0), for all t ∈ T+
t0 ,

where M = inft∈T+
t0

λ3(t)/(λ2(t))r/q. Take M = 1 in Theorem 4.5.

The following theorem does not require an upper bound on the Lyapunov func-
tion V (t, x).

Theorem 4.7. Assume D ⊂ Rn is an open and convex set containing the origin.
Let V : T+

t0 ×D → R+ be a given Lyapunov-type function satisfying

λ1‖x‖p ≤ V (t, x), (4.9)

V ∆(t, x) ≤ −λ2V (t, x) + Ke	δ(t, t0)
1 + µ(t)ε

, (4.10)

for some positive constants λ1, λ2, p,K, δ, ε with ε ≤ λ2, ε < δ. Then system (1.1),
(1.2) is exponentially stable.

Proof. Let
Q(t, x) = V (t, x)eε(t, t0).

By an argument similar to the one used in the proof of the two theorems above,
and taking into consideration conditions (4.9), (4.10), we arrive at

Q∆(t, x) = V ∆(t, x)eε(σ(t), t0) + V (t, x)e∆
ε (t, t0)

≤ −λ2V (t, x) + Ke	δ(t, t0)
1 + µ(t)ε

(1 + µ(t)ε)eε(t, t0) + εV (t, x)eε(t, t0)

= (−λ2V (t, x) + Ke	δ(t, t0)) eε(t, t0) + εV (t, x)eε(t, t0)

= (−λ2 + ε) V (t, x)eε(t, t0) + Keε	δ(t, t0)

≤ Keε	δ(t, t0).

So by Lemma 4.2,

V (t, x)eε(t, t0) ≤ V (t0, x0) + K

∫ t

t0

eε	δ(τ, t0)∆τ

≤ V (t0, x0) + K
δ(1 + BTε)
ε(δ − ε)

=: β(‖x0‖, t0).

Hence V (t, x) ≤ β(‖x0‖, t0)e	ε(t, t0). From (4.9), we get

‖x‖ ≤
(V (t, x)

λ1

)1/p

≤
(β(‖x0‖, t0)

λ1

)1/p

e
1/p
	ε (t, t0).

This completes the proof. �

Now we will present some examples to illustrate the theory developed above.
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Example 4.8. Consider the dynamic equation

x∆(t) = a x + R x1/3 e
1/3
	δ (t, t0), (4.11)

where a < 0, a ∈ R+, R > 0 and δ > 0. If there exist positive constants λ3,K such
that

δ > λ3,

(1 + µ(t)λ3)(2a + µ(t)a2 +
4
3
R +

4
3
µ(t)aR +

1
3
µ(t)R2) ≤ −λ3,

(1 + µ(t)λ3)(
2
3
R +

2
3
µ(t)aR +

2
3
µ(t)R2) ≤ K,

(4.12)

then system (4.11) is uniformly exponentially stable.

To see this, let V (t, x) = x2. By calculating V ∆(t, x) along the solutions of
(4.11), we obtain

V ∆(t, x) = 2xf(t, x) + µ(t)(f(t, x))2

= 2x
(
ax + Rx1/3e

1/3
	δ (t, t0)

)
+ µ(t)

(
ax + Rx1/3e

1/3
	δ (t, t0)

)2

=
(
2a + µ(t)a2

)
x2 +

(
2Re

1/3
	δ (t, t0) + 2µ(t)aRe

1/3
	δ (t, t0)

)
x4/3

+ µ(t)R2e
2/3
	δ (t, t0)x2/3.

Using the Young’s inequality (wz < we

e + zf

f with 1
e + 1

f = 1), we have

x4/3e
1/3
	δ (t, t0) ≤

( (x4/3)3/2

3/2
+

(e1/3
	δ (t, t0))3

3

)
=

2
3
x2 +

1
3
e	δ(t, t0),

x2/3e
2/3
	δ (t, t0) ≤

( (x2/3)3

3
+

(e2/3
	δ (t, t0))3/2

3/2

)
=

1
3
x2 +

2
3
e	δ(t, t0).

Thus

V ∆(t, x) ≤
(
2a + µ(t)a2

)
x2 + (2R + 2µ(t)aR)

(2
3
x2 +

1
3
e	δ(t, t0)

)
+ µ(t)R2

(1
3
x2 +

2
3
e	δ(t, t0)

)
≤

(
2a + µ(t)a2 +

4
3
R +

4
3
µ(t)aR +

1
3
µ(t)R2

)
x2

+
(2

3
R +

2
3
µ(t)aR +

2
3
µ(t)R2

)
e	δ(t, t0)

=
1

1 + µ(t)λ3

{
(1 + µ(t)λ3)

(
2a + µ(t)a2 +

4
3
R +

4
3
µ(t)aR +

1
3
µ(t)R2

)
x2

+ (1 + µ(t)λ3)
(2

3
R +

2
3
µ(t)aR +

2
3
µ(t)R2

)
e	δ(t, t0)

}
.

Under the above assumptions, one can check that conditions (4.1)–(4.4) of Theorem
4.3 are satisfied. Hence system (4.11) is uniformly exponentially stable.



12 A.-L. LIU EJDE-2006/12

In fact, if there exist constants λ3 > 0, K > 0, such that

δ > λ3,

(1 + bµcλ3)(2a + dµea2 +
4
3
R +

4
3
bµcaR +

1
3
dµeR2) ≤ −λ3,

(1 + dµeλ3)(
2
3
R +

2
3
bµcaR +

2
3
dµeR2) ≤ K,

(4.13)

here dµe = supt∈T µ(t), bµc = inft∈T µ(t), then (4.12) will hold evidently.
Case 1: If T = R, then µ(t) = dµe = bµc = 0 and the conditions in (4.13) reduce
to that positive constants λ3,K need to exist such that

δ > λ3 ≤ −(2a +
4
3
R),

2
3
R ≤ K,

then system (4.11) is uniformly exponentially stable.
Case 2: If T = hZ, then µ(t) = dµe = bµc = h. The conditions in (4.13) reduce to
that there exist λ3 > 0,K > 0 such that

δ > λ3,

2a + ha2 +
4
3
R +

4
3
haR +

1
3
hR2 ≤ −λ3/(1 + hλ3),

2
3
R +

2
3
haR +

2
3
hR2 ≤ K/(1 + hλ3),

then system (4.11) is uniformly exponentially stable.
Case 3: When T =

⋃∞
k=0[k(l + h), k(l + h) + l)], here l, h are positive constants,

this kind of time scales could exactly describe many phenomena which are common
in nature, such as the life span of certain species and the change of electric circuit
with time progressing etc. [1, 15]. At this time, bµc = 0, dµe = h. If there exist
constants λ3 > 0, K > 0, such that

λ3 < δ,

2a + ha2 +
4
3
R +

1
3
R2h ≤ −λ3,

(1 + hλ3)(
2
3
R +

2
3
R2h) ≤ K,

then (4.13) will hold. So system (4.11) is uniformly exponentially stable.

Example 4.9. Consider the system

x∆
1 = −ax1 + ax2, (4.14)

x∆
2 = −ax1 − ax2, (4.15)

(x1(t0), x2(t0)) = (c, d), (4.16)

for certain constants a > 0, −a ∈ R+, and c, d are any constants. If there is a
constant λ2 > 0 such that for all t ∈ T+

t0

λ2/(1 + λ2µ(t)) ≤ 2a(1− aµ(t)), (4.17)

then system (4.14)–(4.16) is exponentially stable.
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Proof. We will show that, under the above assumptions, the conditions of Theorem
4.7 are satisfied. Choose D = R2, V (t, x) = ‖x‖2 = x2

1 + x2
2, so (4.9) holds. From

[7], we have

V ∆(t, x) = 2xf(t, x) + µ(t)‖f(t, x)‖2

= −2a(1− aµ(t))‖x‖2

≤ −λ2V (t, x)
1 + λ2µ(t)

≤ −λ2V (t, x) + Ke	δ(t, t0)
1 + λ2µ(t)

=
−λ2V (t, x) + Ke	δ(t, t0)

1 + εµ(t)
.

Here we let ε = λ2, δ > ε > 0, and K be arbitrary positive constant, so (4.10)
holds. Therefore, system (4.14)–(4.16) is exponentially stable.

In fact, if there exists a constant λ2 > 0, such that

2a(1− adµe)(1 + λ2bµc) ≥ λ2, (4.18)

then condition (4.17) will hold.
Case 1: If T = R, then µ(t) = dµe = bµc = 0 and (4.18) will hold to be true if
there exists a constant λ2 satisfying

0 < λ2 ≤ 2a.

So system (4.14)–(4.16) is exponentially stable.
Case 2: If T = hZ, then µ(t) = dµe = bµc = h. If we can find a constant λ2 > 0
such that

λ2

1 + hλ2
≤ 2a(1− ah),

then condition (4.18) would hold. So system (4.14)–(4.16) is exponentially stable.
Case 3: If T =

⋃∞
k=0[k(l+h), k(l+h)+ l] (as in the above example), then bµc = 0,

dµe = h. The condition (4.18) reduces to that a constant λ2 exists such that

0 < λ2 ≤ 2a(1− ah),

so that system (4.14)–(4.16) is exponentially stable. �

References

[1] M. Bohner, A. C. Peterson. Dynamic Equations on Time Scales. Birkhäuser, Boston, 2001.
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Boston, 2003.

[3] P. Hartman. Ordinary Differential Equations, Classics in Applied Mathematics, 38. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.

[4] J. Hoffacker, C. C. Tisdell. Stability and instability for dynamic equations on time scales.

Comput. Math. Appl., 2005, 49(9-10), 1327-1334.
[5] S. Hilger. Analysis on Measure Chains - A Unified Approach to Continuous and Discrete

Calculus. Res. Math., 1990, 18, 18-56.
[6] Y. N. Raffoul. Boundedness in Nonlinear Differential Equations, Nonlinear Studies, 2003, 10,

343-350.
[7] A. C. Peterson, C. C. Tisdell. Boundedness and Uniqueness of Solutions to Dynamic Equa-

tions on Time Scales. Journal of Difference Equations and Applications, 2004(13-15), 1295-
1306.



14 A.-L. LIU EJDE-2006/12
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