Electronic Journal of Differential Equations, Vol. 2007(2007), No. 123, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

SOLVABILITY OF A FOUR-POINT BOUNDARY-VALUE PROBLEM FOR FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS

JING GE, CHUANZHI BAI

Abstract

In this paper we investigate the existence of solutions of a class of four-point boundary-value problems for fourth-order ordinary differential equations. Our analysis relies on a fixed point theorem due to Krasnoselskii and Zabreiko

1. Introduction

In recent years, boundary-value problems for second and higher order differential equations have been extensively studied. The monographs of Agarwal [1] and Agarwal, O'Regan, and Wong [2] contain excellent surveys of known results. Recently an increasing interest in studying the existence of solutions and positive solutions to boundary-value problems for higher order differential equations is observed; see for example [3, 4, 5, 6, 7, 8].

Very recently, Zhang, Chen and Lü [10] by using the upper and lower solution method investigated the fourth order nonlinear ordinary differential equation

$$
\begin{equation*}
u^{(4)}(t)=f\left(t, u(t), u^{\prime \prime}(t)\right), \quad 0<t<1, \tag{1.1}
\end{equation*}
$$

with the four-point boundary conditions

$$
\begin{gather*}
u(0)=u(1)=0 \\
a u^{\prime \prime}\left(\xi_{1}\right)-b u^{\prime \prime \prime}\left(\xi_{1}\right)=0, \quad c u^{\prime \prime}\left(\xi_{2}\right)+d u^{\prime \prime \prime}\left(\xi_{2}\right)=0, \tag{1.2}
\end{gather*}
$$

where a, b, c, d are nonnegative constants satisfying $a d+b c+a c\left(\xi_{2}-\xi_{1}\right)>0$, $0 \leq \xi_{1}<\xi_{2} \leq 1$ and $f \in C([0,1] \times \mathbb{R} \times \mathbb{R})$. They proved the following Lemma (a key lemma):

Lemma 1.1 (10, Lemma 2.2]). Suppose $a, b, c, d, \xi_{1}, \xi_{2}$ are nonnegative constants satisfying $0 \leq \xi_{1}<\xi_{2} \leq 1, b-a \xi_{1} \geq 0, d-c+c \xi_{2} \geq 0$ and $\delta=a d+b c+a c\left(\xi_{2}-\xi_{1}\right) \neq$ 0 . If $u(t) \in C^{4}[0,1]$ satisfies

- $u^{(4)}(t) \geq 0, t \in(0,1)$,
- $u(0) \geq 0, u(1) \geq 0$,

[^0]- $a u^{\prime \prime}\left(\xi_{1}\right)-b u^{\prime \prime \prime}\left(\xi_{1}\right) \leq 0, c u^{\prime \prime}\left(\xi_{2}\right)+d u^{\prime \prime \prime}\left(\xi_{2}\right) \leq 0$,
then $u(t) \geq 0$ and $u^{\prime \prime}(t) \leq 0$ for $t \in[0,1]$.
Unfortunately this Lemma is wrong as shown below.
Counterexample to [10, Lemma 2.2]. Let $u(t)=\frac{1}{3} t^{4}+\frac{1}{4} t^{3}-\frac{4}{3} t^{2}+\frac{3}{4} t$ which belongs to $C^{4}[0,1], \xi_{1}=\frac{1}{10}, \xi_{2}=\frac{1}{8}, a, b, c, d$ be nonnegative constants satisfying $b \geq \frac{1}{10} a=a \xi_{1}, d=\frac{15}{16} c>\frac{7}{8} c=\left(1-\xi_{2}\right) c$ and $\delta=a d+b c+\frac{1}{40} a c \neq 0$. Then we have

$$
\begin{gathered}
u^{(4)}(t)=8>0, \quad t \in(0,1) \\
u(0)=0, \quad u(1)=0 \\
a u^{\prime \prime}\left(\xi_{1}\right)-b u^{\prime \prime \prime}\left(\xi_{1}\right)=a\left[4 t^{2}+\frac{3}{2} t-\frac{8}{3}\right]_{t=1 / 10}-b\left[8 t+\frac{3}{2}\right]_{t=1 / 10} \\
=-2 \frac{143}{300} a-2 \frac{3}{10} b \leq 0
\end{gathered}
$$

and

$$
\begin{aligned}
c u^{\prime \prime}\left(\xi_{2}\right)+d u^{\prime \prime \prime}\left(\xi_{2}\right) & =c\left[4 t^{2}+\frac{3}{2} t-\frac{8}{3}\right]_{t=1 / 8}+d\left[8 t+\frac{3}{2}\right]_{t=1 / 8} \\
& =-\frac{29}{12} c+\frac{5}{2} d=-\frac{29}{12} c+\frac{5}{2} \cdot \frac{15}{16} c=-\frac{7}{96} c \leq 0
\end{aligned}
$$

But

$$
u\left(\frac{8}{9}\right)=-0.0031<0
$$

that is, 10, Lemma 2.2] is incorrect.
So the conclusions of [10] should be reconsidered. The aim of this paper is to investigate the existence of solutions of the BVP 1.1 - 1.2 by using a fixed point theorem due to Krasnoselskii and Zabreiko in 9 .

2. Main Result

First, we give some lemmas which are needed in our discussion of the main results.

Lemma 2.1. Suppose $a, b, c, d, \xi_{1}, \xi_{2}$ are nonnegative constants satisfying $0 \leq \xi_{1}<$ $\xi_{2} \leq 1$ and $\delta=a d+b c+a c\left(\xi_{2}-\xi_{1}\right) \neq 0$. If $h \in C[0,1]$, then the boundary-value problem

$$
\begin{gather*}
v^{\prime \prime}(t)=h(t), \quad t \in[0,1] \tag{2.1}\\
a v\left(\xi_{1}\right)-b v^{\prime}\left(\xi_{1}\right)=0, \quad c v\left(\xi_{2}\right)+d v^{\prime}\left(\xi_{2}\right)=0 \tag{2.2}
\end{gather*}
$$

has a unique solution

$$
\begin{equation*}
v(t)=\int_{\xi_{1}}^{t}(t-s) h(s) d s+\frac{1}{\delta} \int_{\xi_{1}}^{\xi_{2}}\left(a\left(\xi_{1}-t\right)-b\right)\left(c\left(\xi_{2}-s\right)+d\right) h(s) d s \tag{2.3}
\end{equation*}
$$

Proof. By 2.1), it is easy to know that

$$
\begin{equation*}
v(t)=C_{1}+C_{2} t+\int_{0}^{t}(t-s) h(s) d s \tag{2.4}
\end{equation*}
$$

where C_{1}, C_{2} are any two constants. Substituting (2.4) into boundary conditions (2.2), by a routine calculation, we get

$$
\begin{gather*}
C_{1}=\int_{0}^{\xi_{1}} s h(s) d s+\frac{1}{\delta}\left(a \xi_{1}-b\right) \int_{\xi_{1}}^{\xi_{2}}\left(c\left(\xi_{2}-s\right)+d\right) h(s) d s, \tag{2.5}\\
C_{2}=-\int_{0}^{\xi_{1}} h(s) d s-\frac{a}{\delta} \int_{\xi_{1}}^{\xi_{2}}\left(c\left(\xi_{2}-s\right)+d\right) h(s) d s . \tag{2.6}
\end{gather*}
$$

Substituting (2.5) and 2.6 into (2.4), we obtain (2.3) which implies lemma.
Remark 2.2. Let $\xi_{1}=0, \xi_{2}=1$, then 2.3 reduces to

$$
v(t)=-\int_{0}^{1} G(t, s) h(s) d s
$$

where

$$
G(t, s)=\frac{1}{\delta} \begin{cases}(a s+b)(d+c(1-t)), & 0 \leq s \leq t \leq 1 \\ (a t+b)(d+c(1-s)), & 0 \leq t<s \leq 1\end{cases}
$$

Remark 2.3. Let

$$
\begin{gather*}
R(t)=\frac{1}{\delta}\left(\left(a\left(t-\xi_{1}\right)+b\right) x_{3}+\left(c\left(\xi_{2}-t\right)+d\right) x_{2}\right) \\
G_{1}(t, s)= \begin{cases}s(1-t), & 0 \leq s \leq t \leq 1 \\
t(1-s), & 0 \leq t<s \leq 1\end{cases} \tag{2.7}\\
G_{2}(t, s)=\frac{1}{\delta} \begin{cases}\left(a\left(s-\xi_{1}\right)+b\right)\left(d+c\left(\xi_{2}-t\right)\right), & \xi_{1} \leq s \leq t \leq \xi_{2} \\
\left(a\left(t-\xi_{1}\right)+b\right)\left(d+c\left(\xi_{2}-s\right)\right), & \xi_{1} \leq t<s \leq \xi_{2}\end{cases}
\end{gather*}
$$

In [10, Lemma 2.2] it is claimed that

$$
\begin{equation*}
u(t)=t x_{1}+(1-t) x_{0}-\int_{0}^{1} G_{1}(t, \xi) R(\xi) d \xi+\int_{0}^{1} G_{1}(t, \xi) \int_{\xi_{1}}^{\xi_{2}} G_{2}(\xi, s) h(s) d s d \xi \tag{2.8}
\end{equation*}
$$

is the solution of the boundary-value problem

$$
\begin{aligned}
u^{(4)}(t) & =h(t), \quad 0<t<1, \\
u(0) & =x_{0}, \quad u(1)=x_{1} \\
a u^{\prime \prime}\left(\xi_{1}\right)-b u^{\prime \prime \prime}\left(\xi_{1}\right) & =x_{2}, \quad c u^{\prime \prime}\left(\xi_{2}\right)+d u^{\prime \prime \prime}\left(\xi_{2}\right)=x_{3} .
\end{aligned}
$$

However (2.8) is wrong. Indeed, by Lemma 2.1, 2.8) should be replaced by

$$
u(t)=t x_{1}+(1-t) x_{0}-\int_{0}^{1} G_{1}(t, \xi) R(\xi) d \xi-\int_{0}^{1} G_{1}(t, \eta) v(\eta) d \eta
$$

where

$$
v(\eta)=\int_{\xi_{1}}^{\eta}(\eta-s) h(s) d s+\frac{1}{\delta} \int_{\xi_{1}}^{\xi_{2}}\left(a\left(\xi_{1}-\eta\right)-b\right)\left(c\left(\xi_{2}-s\right)+d\right) h(s) d s
$$

Remark 2.4. In [10, Theorem 3.1], the operator $T: C[0,1] \rightarrow C[0,1]$ is defined as

$$
T u(t)=\int_{0}^{1} G_{1}(t, \eta) \int_{\xi_{1}}^{\xi_{2}} G_{2}(\eta, s) f\left(s, u(s), u^{\prime \prime}(s)\right) d s d \eta
$$

where $G_{1}(t, s)$ and $G_{2}(t, s)$ are as in Remark 2.2. By 2.1 and Remark 2.2, the definition of T is incorrect. In fact, the operator T should be defined as

$$
\begin{aligned}
T u(t)= & \int_{0}^{1} G_{1}(t, \eta) \int_{\xi_{1}}^{\eta}(s-\eta) f\left(s, u(s), u^{\prime \prime}(s)\right) d s d \eta \\
& +\frac{1}{\delta} \int_{0}^{1} G_{1}(t, \eta) \int_{\xi_{1}}^{\xi_{2}}\left(b-a\left(\xi_{1}-\eta\right)\right)\left(c\left(\xi_{2}-s\right)+d\right) f\left(s, u(s), u^{\prime \prime}(s)\right) d s d \eta
\end{aligned}
$$

The following well-known fixed point theorem [9] will play an important role in the proof of our theorem.
Lemma 2.5. Let X be a Banach space, and $F: X \rightarrow X$ be completely continuous. Assume that $A: X \rightarrow X$ is a bounded linear operator such that 1 is not an eigenvalue of A and

$$
\lim _{\|x\| \rightarrow \infty} \frac{\|F(x)-A(x)\|}{\|x\|}=0
$$

Then F has a fixed point in X.
Let $X=C^{2}[0,1]$ be endowed with the norm by

$$
\|u\|_{0}=\max \left\{\|u\|,\left\|u^{\prime \prime}\right\|\right\}
$$

where $\|u\|=\max _{0 \leq t \leq 1}|u(t)|$.
We are now in a position to present and prove our main result. Let
(H1) $a, b, c, d, \xi_{1}, \xi_{2}$ are nonnegative constants satisfying $0 \leq \xi_{1}<\xi_{2} \leq 1, b-$ $a \xi_{1} \geq 0$ and $\delta=a d+b c+a c\left(\xi_{2}-\xi_{1}\right) \neq 0$
(H2) $f(t, u, v)=p(t) g(u)+q(t) h(v)$, where $g, h: \mathbb{R} \rightarrow \mathbb{R}$ are continuous with

$$
\lim _{u \rightarrow \infty} \frac{g(u)}{u}=\lambda, \quad \lim _{v \rightarrow \infty} \frac{h(v)}{v}=\mu
$$

where $p, q \in C[0,1]$. Moreover, there exists some $t_{0} \in[0,1]$ such that $p\left(t_{0}\right) g(0)+q\left(t_{0}\right) h(0) \neq 0$, and there exists a continuous nonnegative function $w:[0,1] \rightarrow \mathbb{R}^{+}$such that $|p(s)|+|q(s)| \leq w(s)$ for each $s \in[0,1]$.
Theorem 2.6. Assume (H1)-(H2). If $\max \{|\lambda|,|\mu|\}<\min \left\{\frac{1}{L_{1}}, \frac{1}{L_{2}}\right\}$, where

$$
\begin{aligned}
L_{1}= & \frac{1}{12}\left[\int_{0}^{\xi_{1}} \tau^{3}(2-\tau) w(\tau) d \tau+\int_{\xi_{1}}^{1}(1-\tau)^{3}(1+\tau) w(\tau) d \tau\right. \\
& \left.+\frac{2\left(b-a \xi_{1}\right)+a}{\delta} \int_{\xi_{1}}^{\xi_{2}}\left(c\left(\xi_{2}-\tau\right)+d\right) w(\tau) d \tau\right]
\end{aligned}
$$

and

$$
L_{2}=\int_{\xi_{1}}^{1}(1-\tau) w(\tau) d \tau+\frac{1}{\delta} \int_{\xi_{1}}^{\xi_{2}}\left(b+a\left(1-\xi_{1}\right)\right)\left(c\left(\xi_{2}-\tau\right)+d\right) w(\tau) d \tau
$$

then $B V P$ 1.1 and 1.2 has at least one nontrivial solution $u \in C^{2}[0,1]$.
Proof. Define an operator $F: C^{2}[0,1] \rightarrow C^{2}[0,1]$ by

$$
\begin{align*}
F u(t):= & \int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{s}(\tau-s)\left[p(\tau) g(u(\tau))+q(\tau) h\left(u^{\prime \prime}(\tau)\right] d \tau d s\right. \\
& +\frac{1}{\delta} \int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}}\left(b-a\left(\xi_{1}-s\right)\right)\left(c\left(\xi_{2}-\tau\right)+d\right) \tag{2.9}\\
& \times\left[p(\tau) g(u(\tau))+q(\tau) h\left(u^{\prime \prime}(\tau)\right] d \tau d s\right.
\end{align*}
$$

where $G_{1}(t, s)$ is as in 2.7 . Then by Lemma 2.1 and Remark 2.4 , we easily know that the fixed points of F are the solutions to the boundary-value problem (1.1) and 1.2$)$. It is well known that the operator F is a completely continuous operator. Now, we consider the following boundary-value problem

$$
\begin{gather*}
u^{(4)}(t)=\lambda p(t) u(t)+\mu q(t) u^{\prime \prime}(t), \quad 0<t<1 \\
u(0)=u(1)=0, \tag{2.10}\\
a u^{\prime \prime}\left(\xi_{1}\right)-b u^{\prime \prime \prime}\left(\xi_{1}\right)=0, \quad c u^{\prime \prime}\left(\xi_{2}\right)+d u^{\prime \prime \prime}\left(\xi_{2}\right)=0 .
\end{gather*}
$$

Define

$$
\begin{align*}
A u(t):= & \int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{s}(\tau-s)\left[\lambda p(\tau) u(\tau)+\mu q(\tau) u^{\prime \prime}(\tau) d \eta d s\right. \\
& +\frac{1}{\delta} \int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}}\left(b-a\left(\xi_{1}-s\right)\right)\left(c\left(\xi_{2}-\tau\right)+d\right) \tag{2.11}\\
& {\left[\lambda p(\tau) u(\tau)+\mu q(\tau) u^{\prime \prime}(\tau)\right] d \eta d s . }
\end{align*}
$$

Obviously, A is a bounded linear operator. Furthermore, the fixed point of A is a solution of the BVP (2.10) and conversely.

We now assert that 1 is not an eigenvalue of A. In fact, if $\lambda=0$ and $\mu=0$, then the BVP (2.10) has no nontrivial solution. If $\lambda \neq 0$ or $\mu \neq 0$, suppose the BVP (2.10) has a nontrivial solution u and $\|u\|_{0}>0$, then

$$
\begin{aligned}
|A u(t)| \leq & \int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{s}\left|(\tau-s)\left[\lambda p(\tau) u(\tau)+\mu q(\tau) u^{\prime \prime}(\tau)\right]\right| d \tau d s \\
& \left.+\frac{1}{\delta} \int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}} \right\rvert\,\left(b-a\left(\xi_{1}-s\right)\right)\left(c\left(\xi_{2}-\tau\right)+d\right) \\
& \times\left[\lambda p(\tau) u(\tau)+\mu q(\tau) u^{\prime \prime}(\tau)\right] \mid d \tau d s \\
\leq & \int_{0}^{1} s(1-s) \int_{\xi_{1}}^{s}(s-\tau)\left[|\lambda \||p(\tau)|| u(\tau)|+|\mu|| q(\tau)| | u^{\prime \prime}(\tau) \mid\right] d \tau d s \\
& +\frac{1}{\delta} \int_{0}^{1} s(1-s) \int_{\xi_{1}}^{\xi_{2}}\left(b-a\left(\xi_{1}-s\right)\right)\left(c\left(\xi_{2}-\tau\right)+d\right) \\
& \times\left[|\lambda||p(\tau)||u(\tau)|+|\mu||q(\tau)|\left|u^{\prime \prime}(\tau)\right|\right] d \tau d s \\
\leq & {\left[\int_{0}^{1} s(1-s) \int_{\xi_{1}}^{s}(s-\tau)[|\lambda||p(\tau)|+|\mu||q(\tau)|] d \tau d s+\frac{1}{\delta} \int_{0}^{1} s(1-s)\right.} \\
& \times \int_{\xi_{1}}^{\xi_{2}}\left(b-a\left(\xi_{1}-s\right)\right)\left(c\left(\xi_{2}-\tau\right)+d\right)\left[\left|\lambda\|p(\tau)|+|\mu \| q(\tau)|] d \tau d s]\|u\|_{0}\right.\right. \\
= & \frac{1}{12}\left[\int_{0}^{\xi_{1}} \tau^{3}(2-\tau)(|\lambda||p(\tau)|+|\mu \| q(\tau)|) d \tau\right. \\
& +\int_{\xi_{1}}^{1}(1-\tau)^{3}(1+\tau)(|\lambda||p(\tau)|+|\mu \| q(\tau)|) d \tau \\
& +\frac{2\left(b-a \xi_{1}\right)+a}{\delta} \int_{\xi_{1}}^{\xi_{2}}\left(c\left(\xi_{2}-\tau\right)+d\right)\left(\left|\lambda\|p(\tau)|+|\mu \||q(\tau)|) d \tau]\| u \|_{0}\right.\right. \\
\leq & \max \{|\lambda|,|\mu|\} \frac{1}{12}\left[\int_{0}^{\xi_{1}} \tau^{3}(2-\tau) w(\tau) d \tau+\int_{\xi_{1}}^{1}(1-\tau)^{3}(1+\tau) w(\tau) d \tau\right.
\end{aligned}
$$

$$
\left.+\frac{2\left(b-a \xi_{1}\right)+a}{\delta} \int_{\xi_{1}}^{\xi_{2}}\left(c\left(\xi_{2}-\tau\right)+d\right) w(\tau) d \tau\right]\|u\|_{0}, \quad t \in[0,1]
$$

which implies that

$$
|A u(t)| \leq \max \{|\lambda|,|\mu|\} L_{1}\|u\|_{0}<\frac{1}{L_{1}} L_{1}\|u\|_{0}=\|u\|_{0}
$$

On the other hand, we have

$$
\begin{aligned}
\left|(A u)^{\prime \prime}(t)\right|= & \mid \int_{\xi_{1}}^{t}(s-t)\left[\lambda p(s) u(s)+\mu q(s) u^{\prime \prime}(s)\right] d s \\
& \left.+\frac{1}{\delta} \int_{\xi_{1}}^{\xi_{2}}\left(b-a\left(\xi_{1}-t\right)\right)\left(c\left(\xi_{2}-s\right)+d\right)\left[\lambda p(s) u(s)+\mu q(s) u^{\prime \prime}(s)\right] d s \right\rvert\, \\
\leq & {\left[\int_{\xi_{1}}^{1}(1-s)(|\lambda|\|p(s)|+|\mu \| q(s)|) d s\right.} \\
& +\frac{1}{\delta} \int_{\xi_{1}}^{\xi_{2}}\left(b+a\left(1-\xi_{1}\right)\right)\left(c\left(\xi_{2}-s\right)+d\right)(|\lambda||p(s)|+|\mu \||q(s)|) d s]\|u\|_{0} \\
\leq & \max \{|\lambda|,|\mu|\} L_{2}\|u\|_{0}<\frac{1}{L_{2}} L_{2}\|u\|_{0}=\|u\|_{0}, \quad t \in[0,1]
\end{aligned}
$$

Then $\|A u\|_{0}<\|u\|_{0}$. This contradiction means that BVP 2.10 has no nontrivial solution. Hence, 1 is not an eigenvalue of A.

Finally, we prove that

$$
\lim _{\|u\|_{0} \rightarrow \infty} \frac{\|F u-A u\|_{0}}{\|u\|_{0}}=0
$$

According to $\lim _{u \rightarrow \infty} \frac{g(u)}{u}=\lambda$ and $\lim _{v \rightarrow \infty} \frac{h(v)}{v}=\mu$, for any $\varepsilon>0$, there must be $R>0$ such that

$$
|g(u)-\lambda u|<\varepsilon|u|, \quad|h(v)-\mu v|<\varepsilon|v|, \quad|u|,|v|>R
$$

Set $R^{*}=\max \left\{\max _{|u| \leq R}|g(u)|, \max _{|v| \leq R}|h(v)|\right\}$ and select $M>0$ such that $R^{*}+$ $\max \{|\lambda|,|\mu|\}<\varepsilon M$. Denote

$$
\begin{aligned}
E_{1} & =\{t \in[0,1]:|u(t)| \leq R,|v(t)|>R\} \\
E_{2} & =\{t \in[0,1]:|u(t)|>R,|v(t)| \leq R\} \\
E_{3} & =\{t \in[0,1]: \max \{|u(t)|,|v(t)|\} \leq R\} \\
E_{4} & =\{t \in[0,1]: \min \{|u(t)|,|v(t)|\}>R\}
\end{aligned}
$$

Thus for any $u \in C^{2}[0,1]$ with $\|u\|_{0}>M$, when $t \in E_{1}$, we have

$$
|g(u(t))-\lambda u(t)| \leq \mid g\left((u (t)) \left|+\left|\lambda \left\|u (t) \left|\leq R^{*}+|\lambda| R<\varepsilon M<\varepsilon\|u\|_{0}\right.\right.\right.\right.\right.
$$

and

$$
|h(v(t))-\mu v(t)|<\varepsilon|v(t)| \leq \varepsilon\|v\|_{0}
$$

Similarly, we conclude that for any $u \in C^{2}[0,1]$ with $\|u\|_{0}>M$, when $t \in E_{i}$ $(i=2,3,4)$, we also have that

$$
|g(u(t))-\lambda u(t)|<\varepsilon\|u\|_{0}, \quad|h(v(t))-\mu v(t)|<\varepsilon\|v\|_{0}
$$

Hence, we get

$$
\begin{align*}
&|F u(t)-A u(t)| \\
&= \mid \int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{s}(\tau-s)\left(p(\tau)[g(u(\tau))-\lambda u(\tau)]+q(\tau)\left[h\left(u^{\prime \prime}(\tau)\right)-\mu u^{\prime \prime}(\tau)\right]\right) d \tau d s \\
&+\frac{1}{\delta} \int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}}\left(b-a\left(\xi_{1}-s\right)\right)\left(c\left(\xi_{2}-\tau\right)+d\right) \\
& \times\left(p(\tau)[g(u(\tau))-\lambda u(\tau)]+q(\tau)\left[h\left(u^{\prime \prime}(\tau)\right)-\mu u^{\prime \prime}(\tau)\right]\right) d \tau d s \mid \\
& \leq {\left[\int_{0}^{1} G_{1}(s, s) \int_{\xi_{1}}^{s}(s-\tau)(|p(\tau)|+|q(\tau)|) d \tau d s\right.} \\
&\left.+\frac{1}{\delta} \int_{0}^{1} G_{1}(s, s) \int_{\xi_{1}}^{\xi_{2}}\left(b-a\left(\xi_{1}-s\right)\right)\left(c\left(\xi_{2}-\tau\right)+d\right)(|p(\tau)|+|q(\tau)|) d \tau d s\right] \varepsilon\|u\|_{0} \\
& \leq \frac{1}{12}\left[\int_{0}^{\xi_{1}} \tau^{3}(2-\tau) w(\tau) d \tau+\int_{\xi_{1}}^{1}(1-\tau)^{3}(1+\tau) w(\tau) d \tau\right. \\
&\left.+\frac{2\left(b-a \xi_{1}\right)+a}{\delta} \int_{\xi_{1}}^{\xi_{2}}\left(c\left(\xi_{2}-\tau\right)+d\right) w(\tau) d \tau\right] \varepsilon\|u\|_{0} . \\
&= \varepsilon L_{1}\|u\|_{0} . \tag{2.12}
\end{align*}
$$

On the other hand, we have

$$
\begin{aligned}
&\left|(F u-A u)^{\prime \prime}(t)\right| \\
&= \mid \int_{\xi_{1}}^{t}(s-t)\left(p(s)[g(u(s))-\lambda u(s)]+q(s)\left[h\left(u^{\prime \prime}(s)\right)-\mu u^{\prime \prime}(s)\right]\right) d s \\
&+\frac{1}{\delta} \int_{\xi_{1}}^{\xi_{2}}\left(b-a\left(\xi_{1}-t\right)\right)\left(c\left(\xi_{2}-s\right)+d\right) \\
& \times\left(p(s)[g(u(s))-\lambda u(s)]+q(s)\left[h\left(u^{\prime \prime}(s)\right)-\mu u^{\prime \prime}(s)\right]\right) d s \mid \\
& \leq {\left[\int_{\xi_{1}}^{1}(1-s) w(s) d s+\frac{1}{\delta} \int_{\xi_{1}}^{\xi_{2}}\left(b+a\left(1-\xi_{1}\right)\right)\left(c\left(\xi_{2}-s\right)+d\right) w(s) d s\right] \varepsilon\|u\|_{0} } \\
&= \varepsilon L_{2}\|u\|_{0}
\end{aligned}
$$

Combining the above inequality with 2.12 , we have

$$
\lim _{\|u\|_{0} \rightarrow \infty} \frac{\|F u-A u\|_{0}}{\|u\|_{0}}=0
$$

Lemma 2.5 now guarantees that BVP (1.1) and 1.2 has a solution $u^{*} \in C^{2}[0,1]$. Obviously, $u^{*} \neq 0$ when $p\left(t_{0}\right) g(0)+q\left(t_{0}\right) h(0) \neq 0$ for some $t_{0} \in[0,1]$. In fact, if $u^{*}=0$, then $(0)^{(4)}=p\left(t_{0}\right) g(0)+q\left(t_{0}\right) h(0) \neq 0$ will lead to a contradiction. This completes the proof.

Example 2.7. Consider the fourth-order four-point boundary-value problem

$$
\begin{gather*}
u^{(4)}(t)=\frac{t \sin 2 \pi t}{t^{2}+1} u(t)-\frac{1}{2} t e^{\cos t} \cos u^{\prime \prime}(t), \quad 0<t<1 \\
u(0)=u(1)=0 \tag{2.13}\\
u^{\prime \prime}(1 / 3)-u^{\prime \prime \prime}(1 / 3)=0, \quad u^{\prime \prime}(2 / 3)+u^{\prime \prime \prime}(2 / 3)=0
\end{gather*}
$$

To show (2.13) has at least one nontrivial solution we apply Theorem 2.6 with $p(t)=\frac{t \sin 2 \pi t}{t^{2}+1}, q(t)=\frac{1}{2} t e^{\cos t}, g(u)=u, h(u)=\cos u, a=b=c=d=1, \xi_{1}=1 / 3$ and $\xi_{2}=2 / 3$. Clearly (H1) is satisfied. Obviously,

$$
p\left(t_{0}\right) g(0)+q\left(t_{0}\right) h(0)=\frac{1}{2} t_{0} e^{\cos t_{0}} \neq 0, \quad t_{0} \in(0,1] .
$$

Since $|p(s)|+|q(s)| \leq\left(\frac{e}{2}+1\right) s:=w(s)$ for each $s \in[0,1]$, we have

$$
\begin{aligned}
L_{1}= & \frac{\frac{e}{2}+1}{12}\left[\int_{0}^{1 / 3} \tau^{4}(2-\tau) d \tau+(e+1) \int_{1 / 3}^{1}(1-\tau)^{3}(1+\tau) \tau d \tau\right. \\
& \left.+\int_{1 / 3}^{2 / 3}\left(\frac{5}{3}-\tau\right) \tau d \tau\right] \\
& L_{2}=\left(\frac{e}{2}+1\right)\left[\int_{1 / 3}^{1} \tau(1-\tau) d \tau+\frac{5}{7} \int_{1 / 3}^{2 / 3}\left(\frac{5}{3}-\tau\right) \tau d \tau\right] .
\end{aligned}
$$

By simple calculation we easily know that

$$
L_{1}<L_{2}<\frac{1}{3}\left(\frac{e}{2}+1\right)<1
$$

Notice

$$
\lambda=\lim _{u \rightarrow \infty} \frac{g(u)}{u}=1, \quad \mu=\lim _{u \rightarrow \infty} \frac{h(u)}{u}=0
$$

we have

$$
\max \{\lambda, \mu\}<1<\min \left\{\frac{1}{L_{1}}, \frac{1}{L_{2}}\right\}
$$

So (H2) is satisfied. Thus, Theorem 2.6 now guarantees that BVP 2.13) has at least one nontrivial solution $u \in C^{2}[0,1]$.

References

[1] R. P. Agarwal, Focal Boundary Value Problems for Differential and Difference Equations, Kluwer Academic, Dordrecht, 1998.
[2] R. P. Agarwal, D. O'Regan, P. J.Y . Wong; Positive Solutions of Differential, Difference, and Integral Equations, Kluwer Academic, Dordrecht, 1998.
[3] D. R. Anderson, J. M. Davis; Multiple solutions and eigenvalues for third-order right focal boundary-value problem, J. Math. Anal. Appl. 267 (2002), 135C157.
[4] Z. Bai, H. Wang; On positive solutions of some nonlinear fourth-ordr beam equations, J. Math. Anal. Appl. 270 (2002) 357-368.
[5] J. R. Graef, B. Yang; On a nonlinear boundary-value problem for fourth order equations, Appl. Anal. 72 (1999) 439-448.
[6] J. R. Graef, B. Yang; Positive solutions to a multi-point higher order boundary-value problem, J. Math. Anal. Appl. 316 (2006), 409-421.
[7] J. R. Graef, J. Henderson, B. Yang; Positive solutions of a nonlinear higher order boundaryvalue problem, Electron. J. Differential Equations, Vol. 2007(2007), No. 45, pp. 1-10.
[8] Z. Hao, L. Liu, L. Debnath; A necessary and sufficiently condition for the existence of positive solution of fourth-order singular boundary-value problems, Appl. Math. Lett. 16 (2003) 279285.
[9] M. A. Krasnoselskii, P. P. Zabreiko; Geometrical Methods of Nonlinear Analysis, SpringerVerlag, New York, 1984.
[10] Q. Zhang, S. Chen, J. Lü; Upper and lower solution method for fourth-order four-point boundary-value problems, J. Comput. Appl. Math. 196 (2006) 387-393.

Jing Ge
Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsi 223300, China
E-mail address: gejing0512@163.com
Chuanzhi Bai
Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsi 223300, China
E-mail address: czbai8@sohu.com

[^0]: 2000 Mathematics Subject Classification. 34B10, 34B15.
 Key words and phrases. Four-point boundary-value problem; existence of solutions; fixed point theorem.
 (C) 2007 Texas State University - San Marcos.

 Submitted May 10, 2007. Published September 21, 2007.
 Supported by grants NNSFC-10771212 and 06KJB110010.

