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SOLVABILITY OF A FOUR-POINT BOUNDARY-VALUE
PROBLEM FOR FOURTH-ORDER ORDINARY

DIFFERENTIAL EQUATIONS

JING GE, CHUANZHI BAI

Abstract. In this paper we investigate the existence of solutions of a class

of four-point boundary-value problems for fourth-order ordinary differential

equations. Our analysis relies on a fixed point theorem due to Krasnoselskii
and Zabreiko.

1. Introduction

In recent years, boundary-value problems for second and higher order differential
equations have been extensively studied. The monographs of Agarwal [1] and Agar-
wal, O’Regan, and Wong [2] contain excellent surveys of known results. Recently
an increasing interest in studying the existence of solutions and positive solutions
to boundary-value problems for higher order differential equations is observed; see
for example [3, 4, 5, 6, 7, 8].

Very recently, Zhang, Chen and Lü [10] by using the upper and lower solution
method investigated the fourth order nonlinear ordinary differential equation

u(4)(t) = f(t, u(t), u′′(t)), 0 < t < 1, (1.1)

with the four-point boundary conditions
u(0) = u(1) = 0,

au′′(ξ1)− bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0,
(1.2)

where a, b, c, d are nonnegative constants satisfying ad + bc + ac(ξ2 − ξ1) > 0,
0 ≤ ξ1 < ξ2 ≤ 1 and f ∈ C([0, 1] × R × R). They proved the following Lemma (a
key lemma):

Lemma 1.1 ([10, Lemma 2.2]). Suppose a, b, c, d, ξ1, ξ2 are nonnegative constants
satisfying 0 ≤ ξ1 < ξ2 ≤ 1, b−aξ1 ≥ 0, d−c+cξ2 ≥ 0 and δ = ad+bc+ac(ξ2−ξ1) 6=
0. If u(t) ∈ C4[0, 1] satisfies

• u(4)(t) ≥ 0, t ∈ (0, 1),
• u(0) ≥ 0, u(1) ≥ 0,
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• au′′(ξ1)− bu′′′(ξ1) ≤ 0, cu′′(ξ2) + du′′′(ξ2) ≤ 0,

then u(t) ≥ 0 and u′′(t) ≤ 0 for t ∈ [0, 1].

Unfortunately this Lemma is wrong as shown below.

Counterexample to [10, Lemma 2.2]. Let u(t) = 1
3 t4 + 1

4 t3 − 4
3 t2 + 3

4 t which
belongs to C4[0, 1], ξ1 = 1

10 , ξ2 = 1
8 , a, b, c, d be nonnegative constants satisfying

b ≥ 1
10a = aξ1, d = 15

16c > 7
8c = (1− ξ2)c and δ = ad+ bc+ 1

40ac 6= 0. Then we have

u(4)(t) = 8 > 0, t ∈ (0, 1),

u(0) = 0, u(1) = 0,

au′′(ξ1)− bu′′′(ξ1) = a
[
4t2 +

3
2
t− 8

3

]
t=1/10

− b
[
8t +

3
2

]
t=1/10

= −2
143
300

a− 2
3
10

b ≤ 0,

and

cu′′(ξ2) + du′′′(ξ2) = c
[
4t2 +

3
2
t− 8

3

]
t=1/8

+ d
[
8t +

3
2

]
t=1/8

= −29
12

c +
5
2
d = −29

12
c +

5
2
· 15
16

c = − 7
96

c ≤ 0.

But

u
(8
9
)

= −0.0031 < 0;

that is, [10, Lemma 2.2] is incorrect.
So the conclusions of [10] should be reconsidered. The aim of this paper is to

investigate the existence of solutions of the BVP (1.1)-(1.2) by using a fixed point
theorem due to Krasnoselskii and Zabreiko in [9].

2. Main result

First, we give some lemmas which are needed in our discussion of the main
results.

Lemma 2.1. Suppose a, b, c, d, ξ1, ξ2 are nonnegative constants satisfying 0 ≤ ξ1 <
ξ2 ≤ 1 and δ = ad + bc + ac(ξ2 − ξ1) 6= 0. If h ∈ C[0, 1], then the boundary-value
problem

v′′(t) = h(t), t ∈ [0, 1], (2.1)

av(ξ1)− bv′(ξ1) = 0, cv(ξ2) + dv′(ξ2) = 0, (2.2)

has a unique solution

v(t) =
∫ t

ξ1

(t− s)h(s)ds +
1
δ

∫ ξ2

ξ1

(a(ξ1 − t)− b)(c(ξ2 − s) + d)h(s)ds. (2.3)

Proof. By (2.1), it is easy to know that

v(t) = C1 + C2t +
∫ t

0

(t− s)h(s)ds, (2.4)
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where C1, C2 are any two constants. Substituting (2.4) into boundary conditions
(2.2), by a routine calculation, we get

C1 =
∫ ξ1

0

sh(s)ds +
1
δ
(aξ1 − b)

∫ ξ2

ξ1

(c(ξ2 − s) + d)h(s)ds, (2.5)

C2 = −
∫ ξ1

0

h(s)ds− a

δ

∫ ξ2

ξ1

(c(ξ2 − s) + d)h(s)ds. (2.6)

Substituting (2.5) and (2.6) into (2.4), we obtain (2.3) which implies lemma. �

Remark 2.2. Let ξ1 = 0, ξ2 = 1, then (2.3) reduces to

v(t) = −
∫ 1

0

G(t, s)h(s)ds,

where

G(t, s) =
1
δ

{
(as + b)(d + c(1− t)), 0 ≤ s ≤ t ≤ 1,

(at + b)(d + c(1− s)), 0 ≤ t < s ≤ 1.

Remark 2.3. Let

R(t) =
1
δ
((a(t− ξ1) + b)x3 + (c(ξ2 − t) + d)x2),

G1(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t < s ≤ 1,

G2(t, s) =
1
δ

{
(a(s− ξ1) + b)(d + c(ξ2 − t)), ξ1 ≤ s ≤ t ≤ ξ2,

(a(t− ξ1) + b)(d + c(ξ2 − s)), ξ1 ≤ t < s ≤ ξ2.

(2.7)

In [10, Lemma 2.2] it is claimed that

u(t) = tx1+(1−t)x0−
∫ 1

0

G1(t, ξ)R(ξ)dξ+
∫ 1

0

G1(t, ξ)
∫ ξ2

ξ1

G2(ξ, s)h(s)dsdξ, (2.8)

is the solution of the boundary-value problem

u(4)(t) = h(t), 0 < t < 1,

u(0) = x0, u(1) = x1,

au′′(ξ1)− bu′′′(ξ1) = x2, cu′′(ξ2) + du′′′(ξ2) = x3.

However (2.8) is wrong. Indeed, by Lemma 2.1, (2.8) should be replaced by

u(t) = tx1 + (1− t)x0 −
∫ 1

0

G1(t, ξ)R(ξ)dξ −
∫ 1

0

G1(t, η)v(η)dη,

where

v(η) =
∫ η

ξ1

(η − s)h(s)ds +
1
δ

∫ ξ2

ξ1

(a(ξ1 − η)− b)(c(ξ2 − s) + d)h(s)ds.

Remark 2.4. In [10, Theorem 3.1], the operator T : C[0, 1] → C[0, 1] is defined as

Tu(t) =
∫ 1

0

G1(t, η)
∫ ξ2

ξ1

G2(η, s)f(s, u(s), u′′(s))dsdη,
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where G1(t, s) and G2(t, s) are as in Remark 2.2. By 2.1 and Remark 2.2, the
definition of T is incorrect. In fact, the operator T should be defined as

Tu(t) =
∫ 1

0

G1(t, η)
∫ η

ξ1

(s− η)f(s, u(s), u′′(s))dsdη

+
1
δ

∫ 1

0

G1(t, η)
∫ ξ2

ξ1

(b− a(ξ1 − η))(c(ξ2 − s) + d)f(s, u(s), u′′(s))dsdη.

The following well-known fixed point theorem [9] will play an important role in
the proof of our theorem.

Lemma 2.5. Let X be a Banach space, and F : X → X be completely continu-
ous. Assume that A : X → X is a bounded linear operator such that 1 is not an
eigenvalue of A and

lim
‖x‖→∞

‖F (x)−A(x)‖
‖x‖

= 0.

Then F has a fixed point in X.

Let X = C2[0, 1] be endowed with the norm by

‖u‖0 = max{‖u‖, ‖u′′‖},
where ‖u‖ = max0≤t≤1 |u(t)|.

We are now in a position to present and prove our main result. Let
(H1) a, b, c, d, ξ1, ξ2 are nonnegative constants satisfying 0 ≤ ξ1 < ξ2 ≤ 1, b −

aξ1 ≥ 0 and δ = ad + bc + ac(ξ2 − ξ1) 6= 0,
(H2) f(t, u, v) = p(t)g(u) + q(t)h(v), where g, h : R → R are continuous with

lim
u→∞

g(u)
u

= λ, lim
v→∞

h(v)
v

= µ,

where p, q ∈ C[0, 1]. Moreover, there exists some t0 ∈ [0, 1] such that
p(t0)g(0)+q(t0)h(0) 6= 0, and there exists a continuous nonnegative function
w : [0, 1] → R+ such that |p(s)|+ |q(s)| ≤ w(s) for each s ∈ [0, 1].

Theorem 2.6. Assume (H1)–(H2). If max{|λ|, |µ|} < min
{

1
L1

, 1
L2

}
, where

L1 =
1
12

[ ∫ ξ1

0

τ3(2− τ)w(τ)dτ +
∫ 1

ξ1

(1− τ)3(1 + τ)w(τ)dτ

+
2(b− aξ1) + a

δ

∫ ξ2

ξ1

(c(ξ2 − τ) + d)w(τ)dτ
]
,

and

L2 =
∫ 1

ξ1

(1− τ)w(τ)dτ +
1
δ

∫ ξ2

ξ1

(b + a(1− ξ1))(c(ξ2 − τ) + d)w(τ)dτ,

then BVP (1.1) and (1.2) has at least one nontrivial solution u ∈ C2[0, 1].

Proof. Define an operator F : C2[0, 1] → C2[0, 1] by

Fu(t) :=
∫ 1

0

G1(t, s)
∫ s

ξ1

(τ − s)[p(τ)g(u(τ)) + q(τ)h(u′′(τ)]dτds

+
1
δ

∫ 1

0

G1(t, s)
∫ ξ2

ξ1

(b− a(ξ1 − s))(c(ξ2 − τ) + d)

×
[
p(τ)g(u(τ)) + q(τ)h(u′′(τ)

]
dτds,

(2.9)
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where G1(t, s) is as in (2.7). Then by Lemma 2.1 and Remark 2.4, we easily know
that the fixed points of F are the solutions to the boundary-value problem (1.1)
and (1.2). It is well known that the operator F is a completely continuous operator.
Now, we consider the following boundary-value problem

u(4)(t) = λp(t)u(t) + µq(t)u′′(t), 0 < t < 1

u(0) = u(1) = 0,

au′′(ξ1)− bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0.

(2.10)

Define

Au(t) :=
∫ 1

0

G1(t, s)
∫ s

ξ1

(τ − s)[λp(τ)u(τ) + µq(τ)u′′(τ)dηds

+
1
δ

∫ 1

0

G1(t, s)
∫ ξ2

ξ1

(b− a(ξ1 − s))(c(ξ2 − τ) + d)

[λp(τ)u(τ) + µq(τ)u′′(τ)]dηds.

(2.11)

Obviously, A is a bounded linear operator. Furthermore, the fixed point of A is a
solution of the BVP (2.10) and conversely.

We now assert that 1 is not an eigenvalue of A. In fact, if λ = 0 and µ = 0, then
the BVP (2.10) has no nontrivial solution. If λ 6= 0 or µ 6= 0, suppose the BVP
(2.10) has a nontrivial solution u and ‖u‖0 > 0, then

|Au(t)| ≤
∫ 1

0

G1(t, s)
∫ s

ξ1

|(τ − s)[λp(τ)u(τ) + µq(τ)u′′(τ)]|dτds

+
1
δ

∫ 1

0

G1(t, s)
∫ ξ2

ξ1

∣∣(b− a(ξ1 − s))(c(ξ2 − τ) + d)

× [λp(τ)u(τ) + µq(τ)u′′(τ)]
∣∣dτds

≤
∫ 1

0

s(1− s)
∫ s

ξ1

(s− τ)[|λ||p(τ)||u(τ)|+ |µ||q(τ)||u′′(τ)|]dτds

+
1
δ

∫ 1

0

s(1− s)
∫ ξ2

ξ1

(b− a(ξ1 − s))(c(ξ2 − τ) + d)

× [|λ||p(τ)||u(τ)|+ |µ||q(τ)||u′′(τ)|]dτds

≤
[ ∫ 1

0

s(1− s)
∫ s

ξ1

(s− τ)[|λ||p(τ)|+ |µ||q(τ)|]dτds +
1
δ

∫ 1

0

s(1− s)

×
∫ ξ2

ξ1

(b− a(ξ1 − s))(c(ξ2 − τ) + d)[|λ||p(τ)|+ |µ||q(τ)|]dτds
]
‖u‖0

=
1
12

[ ∫ ξ1

0

τ3(2− τ)(|λ||p(τ)|+ |µ||q(τ)|)dτ

+
∫ 1

ξ1

(1− τ)3(1 + τ)(|λ||p(τ)|+ |µ||q(τ)|)dτ

+
2(b− aξ1) + a

δ

∫ ξ2

ξ1

(c(ξ2 − τ) + d)(|λ||p(τ)|+ |µ||q(τ)|)dτ
]
‖u‖0

≤ max{|λ|, |µ|} 1
12

[ ∫ ξ1

0

τ3(2− τ)w(τ)dτ +
∫ 1

ξ1

(1− τ)3(1 + τ)w(τ)dτ
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+
2(b− aξ1) + a

δ

∫ ξ2

ξ1

(c(ξ2 − τ) + d)w(τ)dτ
]
‖u‖0, t ∈ [0, 1],

which implies that

|Au(t)| ≤ max{|λ|, |µ|}L1‖u‖0 <
1
L1

L1‖u‖0 = ‖u‖0.

On the other hand, we have

|(Au)′′(t)| =
∣∣ ∫ t

ξ1

(s− t)[λp(s)u(s) + µq(s)u′′(s)]ds

+
1
δ

∫ ξ2

ξ1

(b− a(ξ1 − t))(c(ξ2 − s) + d)[λp(s)u(s) + µq(s)u′′(s)]ds
∣∣

≤
[ ∫ 1

ξ1

(1− s)(|λ||p(s)|+ |µ||q(s)|)ds

+
1
δ

∫ ξ2

ξ1

(b + a(1− ξ1))(c(ξ2 − s) + d)(|λ||p(s)|+ |µ||q(s)|)ds
]
‖u‖0

≤ max{|λ|, |µ|}L2‖u‖0 <
1
L2

L2‖u‖0 = ‖u‖0, t ∈ [0, 1].

Then ‖Au‖0 < ‖u‖0. This contradiction means that BVP (2.10) has no nontrivial
solution. Hence, 1 is not an eigenvalue of A.

Finally, we prove that

lim
‖u‖0→∞

‖Fu−Au‖0

‖u‖0
= 0.

According to limu→∞
g(u)

u = λ and limv→∞
h(v)

v = µ, for any ε > 0, there must be
R > 0 such that

|g(u)− λu| < ε|u|, |h(v)− µv| < ε|v|, |u|, |v| > R.

Set R∗ = max{max|u|≤R |g(u)|,max|v|≤R |h(v)|} and select M > 0 such that R∗ +
max{|λ|, |µ|} < εM . Denote

E1 = {t ∈ [0, 1] : |u(t)| ≤ R, |v(t)| > R},
E2 = {t ∈ [0, 1] : |u(t)| > R, |v(t)| ≤ R},
E3 = {t ∈ [0, 1] : max{|u(t)|, |v(t)|} ≤ R},
E4 = {t ∈ [0, 1] : min{|u(t)|, |v(t)|} > R}.

Thus for any u ∈ C2[0, 1] with ‖u‖0 > M , when t ∈ E1, we have

|g(u(t))− λu(t)| ≤ |g((u(t))|+ |λ||u(t)| ≤ R∗ + |λ|R < εM < ε‖u‖0,

and
|h(v(t))− µv(t)| < ε|v(t)| ≤ ε‖v‖0.

Similarly, we conclude that for any u ∈ C2[0, 1] with ‖u‖0 > M , when t ∈ Ei

(i = 2, 3, 4), we also have that

|g(u(t))− λu(t)| < ε‖u‖0, |h(v(t))− µv(t)| < ε‖v‖0.
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Hence, we get

|Fu(t)−Au(t)|

=
∣∣ ∫ 1

0

G1(t, s)
∫ s

ξ1

(τ − s)(p(τ)[g(u(τ))− λu(τ)] + q(τ)[h(u′′(τ))− µu′′(τ)])dτds

+
1
δ

∫ 1

0

G1(t, s)
∫ ξ2

ξ1

(b− a(ξ1 − s))(c(ξ2 − τ) + d)

× (p(τ)[g(u(τ))− λu(τ)] + q(τ)[h(u′′(τ))− µu′′(τ)])dτds
∣∣

≤
[ ∫ 1

0

G1(s, s)
∫ s

ξ1

(s− τ)(|p(τ)|+ |q(τ)|)dτds

+
1
δ

∫ 1

0

G1(s, s)
∫ ξ2

ξ1

(b− a(ξ1 − s))(c(ξ2 − τ) + d)(|p(τ)|+ |q(τ)|)dτds
]
ε‖u‖0

≤ 1
12

[ ∫ ξ1

0

τ3(2− τ)w(τ)dτ +
∫ 1

ξ1

(1− τ)3(1 + τ)w(τ)dτ

+
2(b− aξ1) + a

δ

∫ ξ2

ξ1

(c(ξ2 − τ) + d)w(τ)dτ
]
ε‖u‖0.

= εL1‖u‖0.

(2.12)
On the other hand, we have

|(Fu−Au)′′(t)|

=
∣∣ ∫ t

ξ1

(s− t)(p(s)[g(u(s))− λu(s)] + q(s)[h(u′′(s))− µu′′(s)])ds

+
1
δ

∫ ξ2

ξ1

(b− a(ξ1 − t))(c(ξ2 − s) + d)

× (p(s)[g(u(s))− λu(s)] + q(s)[h(u′′(s))− µu′′(s)])ds
∣∣

≤
[ ∫ 1

ξ1

(1− s)w(s)ds +
1
δ

∫ ξ2

ξ1

(b + a(1− ξ1))(c(ξ2 − s) + d)w(s)ds
]
ε‖u‖0

= εL2‖u‖0.

Combining the above inequality with (2.12), we have

lim
‖u‖0→∞

‖Fu−Au‖0

‖u‖0
= 0.

Lemma 2.5 now guarantees that BVP (1.1) and (1.2) has a solution u∗ ∈ C2[0, 1].
Obviously, u∗ 6= 0 when p(t0)g(0) + q(t0)h(0) 6= 0 for some t0 ∈ [0, 1]. In fact, if
u∗ = 0, then (0)(4) = p(t0)g(0) + q(t0)h(0) 6= 0 will lead to a contradiction. This
completes the proof. �

Example 2.7. Consider the fourth-order four-point boundary-value problem

u(4)(t) =
t sin 2πt

t2 + 1
u(t)− 1

2
tecos t cos u′′(t), 0 < t < 1,

u(0) = u(1) = 0,

u′′(1/3)− u′′′(1/3) = 0, u′′(2/3) + u′′′(2/3) = 0.

(2.13)
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To show (2.13) has at least one nontrivial solution we apply Theorem 2.6 with
p(t) = t sin 2πt

t2+1 , q(t) = 1
2 tecos t, g(u) = u, h(u) = cos u, a = b = c = d = 1, ξ1 = 1/3

and ξ2 = 2/3. Clearly (H1) is satisfied. Obviously,

p(t0)g(0) + q(t0)h(0) =
1
2
t0e

cos t0 6= 0, t0 ∈ (0, 1].

Since |p(s)|+ |q(s)| ≤ ( e
2 + 1)s := w(s) for each s ∈ [0, 1], we have

L1 =
e
2 + 1
12

[ ∫ 1/3

0

τ4(2− τ)dτ + (e + 1)
∫ 1

1/3

(1− τ)3(1 + τ)τdτ

+
∫ 2/3

1/3

(
5
3
− τ)τdτ

]
,

L2 =
(e

2
+ 1

)[ ∫ 1

1/3

τ(1− τ)dτ +
5
7

∫ 2/3

1/3

(5
3
− τ

)
τdτ

]
.

By simple calculation we easily know that

L1 < L2 <
1
3
(e

2
+ 1

)
< 1.

Notice

λ = lim
u→∞

g(u)
u

= 1, µ = lim
u→∞

h(u)
u

= 0,

we have

max{λ, µ} < 1 < min{ 1
L1

,
1
L2

}.

So (H2) is satisfied. Thus, Theorem 2.6 now guarantees that BVP (2.13) has at
least one nontrivial solution u ∈ C2[0, 1].
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