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A NONLINEAR TRANSMISSION PROBLEM WITH TIME
DEPENDENT COEFFICIENTS

EUGENIO CABANILLAS LAPA, JAIME E. MUÑOZ RIVERA

Abstract. In this article, we consider a nonlinear transmission problem for
the wave equation with time dependent coefficients and linear internal damp-

ing. We prove the existence of a global solution and its exponential decay.

The result is achieved by using the multiplier technique and suitable unique
continuation theorem for the wave equation.

1. Introduction

In this work, we consider the transmission problem

ρ1utt − buxx + f1(u) = 0 in ]0, L0[×R+, (1.1)

ρ2vtt − (a(x, t)vx)x + αvt + f2(v) = 0 in ]L0, L[×R+, (1.2)

u(0, t) = v(L, t), t > 0, (1.3)

u(L0, t) = v(L0, t), bux(L0, t) = a(L0, t)vx(L0, t), t > 0, (1.4)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈]0, L0[, (1.5)

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈]L0, L[, (1.6)

where ρ1, ρ2 are constants; α, b are positive constants, f, g are nonlinear functions
and a(x, t) is a positive function. Controllability and Stability for transmission
problem has been studied by many authors (see for example Lions [7], Lagnese [5],
Liu and Williams [8], Muñoz Rivera and Portillo Oquendo [9], Andrade, Fatori and
Muñoz Rivera [1]).

The goal of this work is to study the existence and uniqueness of global solutions
of (1.1)-(1.6) and the asymptotic behavior of the energy.

All the authors mentioned above established their results with constant coeffi-
cients. To the best of our knowledge this is a first publication on transmission prob-
lem with time dependent coefficients and the nonlinear terms. In general,the depen-
dence on spatial and time variables causes difficulties,semigroups arguments are not
suitable for finding solutions to (1.1)-(1.6); therefore,we make use of a Galerkin’s
process. Note that the time-dependent coefficient also appear in the second bound-
ary condition, thus there are some technical difficulties that we need to overcome.
To prove the exponential decay, the main difficulty is that the dissipation only
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works in [L0, L] and we need estimates over the whole domain [0, L]; we overcome
this problem introducing suitable multiplicadors and a compactness/uniqueness ar-
gument.

2. Notation and statement of results

We denote

(w, z) =
∫

I

w(x)z(x)dx, |z|2 =
∫

I

|z(x)|2dx

where I =]0, L0[ or ]L0, L[ for u’s and v’s respectively. Now, we state the general
hypotheses.

(A1) The functions fi ∈ C1(R), i = 1, 2, satisfy fi(s)s ≥ 0 for all s ∈ R and

|f (j)
i (s)| ≤ c(1 + |s|)ρ−j , ∀s ∈ R, j = 0, 1

for some c > 0 and ρ ≥ 1. We assume that f1(s) ≥ f2(s) and set

Fi(s) =
∫ s

0

fi(ξ)dξ .

(A2) We assume that the coefficient a satisfies

a ∈W 1,∞(0,∞;C1([L0, L])) ∩W 2,∞(0,∞;L∞(L0, L))

at ∈ L1(0,∞;L∞(L0, L))

a(x, t) ≥ a0 > 0, ∀(x, t) ∈]L0, L[×]0,∞[ .

We define the Hilbert space

V = {(w, z) ∈ H1(0, L0)×H1(L0, L) : w(0) = z(L) = 0; w(L0) = z(L0)} .

Also we define the first-order energy functionals associated to each equation,

E1(t, u) =
1
2

(
ρ1|ut|2 + b|ux|2 + 2

∫ L0

0

F1(u)dx
)

E2(t, v) =
1
2

(
ρ2|vt|2 + (a, v2

x) + 2
∫ L

L0

F2(v)dx
)

E(t) = E1(t, u, v) = E1(t, u) + E2(t, v).

We conclude this section with the following lemma which will play essential role
when establishing the asymptotic behavior of solutions.

Lemma 2.1 ([2, Lemma 9.1]). Let E : R+
0 → R+

0 be a non-increasing function and
assume that there exist two constants p > 0 and c > 0 such that∫ +∞

s

E(p+1)/2(t)dt ≤ cE(s), 0 ≤ s < +∞.

Then for all t ≥ 0,

E(t) ≤

{
cE(0)(1 + t)−2(p−1) if p > 1,
cE(0)e1−wt if p = 1,

where c and w are positive constants.



EJDE-2007/131 A NONLINEAR TRANSMISSION PROBLEM 3

3. Existence and uniqueness of solutions

First, we define weak solutions of problem (1.1)-(1.6).

Definition 3.1. We say that the pair {u, v} is a weak solution of (1.1)-(1.6) when

{u, v} ∈ L∞(0, T ;V ) ∩W 1,∞(0, T ;L2(0, L0)× L2(L0, L))

and satisfies

− ρ1

∫ L0

0

u1(x)ϕ(x, 0)dx+ ρ1

∫ L0

0

u0(x)ϕt(x, 0)dx− ρ2

∫ L

L0

v1(x)ψ(x, 0)dx

+ ρ2

∫ L

L0

v0(x)ψt(x, 0)dx+ ρ1

∫ T

0

∫ L0

0

(uϕtt + buxϕx + f1(u)ϕ) dx dt

+ ρ2

∫ T

0

∫ L

L0

(vψtt + a(x, t)vxψx + αvtψ + f2(v)ψ) dx dt = 0

for any {ϕ,ψ} ∈ C2(0, T ;V ) such that ϕ(T ) = ϕt(T ) = 0 = ψ(T ) = ψt(T )

To show the existence of strong solutions we need a regularity result for the
elliptic system associated to the problem (1.1)–(1.6) whose proof can be obtained,
with little modifications, in the book by Ladyzhenskaya and Ural’tseva [3, theorem
16.2].

Lemma 3.2. For any given functions F ∈ L2(0, L0), G ∈ L2(L0, L), there exists
only one solution {u, v} to the system

−buxx = F in ]0, L0[,

−(a(x, t)vx)x = G in ]L0, L[,

u(0) = v(L) = 0,

u(L0) = v(L0), bux(L0) = a(L0, t)vx(L0),

with t a fixed value in [0, T ], with u in H2(0, L0) and v in H2(L0, L).

The existence result to the system (1.1)–(1.6) is summarized in the following
theorem.

Theorem 3.3. Suppose that {u0, v0} ∈ V , {u1, v1} ∈ L2(0, L0) × L2(L0, L) and
that assumptions (A1)–(A3) hold. Then there exists a unique weak solution of
(1.1)–(1.6) satisfying

{u, v} ∈ C(0, T ;V ) ∩ C1(0, T ;L2(0, L0)× L2(L0, L)).

In addition, if {u0, v0} ∈ H2(0, L0) ×H2(L0, L), {u1, v1} ∈ V , verifying the com-
patibility condition

bu0
x(L0) = a(L0, 0) v0

x(L0) . (3.1)
Then

{u, v} ∈
2⋂

k=0

W k,∞(0, T ;H2−k(0, L0)×H2−k(L0, L))

Proof. The main idea is to use the Galerkin Method. Let {ϕi, ψi} , i = 1, 2, . . . be
a basis of V . Let us consider the Galerkin approximation

{um(t), vm(t)} =
m∑

i=1

him(t){ϕi, ψi}
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where um and vm satisfy

ρ1(um
tt , ϕ

i) + b(um
x , ϕ

i
x) + (f1(um), ϕi) + ρ2(vm

tt , ψ
i)

+ (a(x, t)vm
x , ψ

i
x) + α(vm

t , ψ
i) + (f2(vm), ψi) = 0

(3.2)

where i = 1, 2, . . . With initial data

{um(0), vm(0)} → {u0, v0} in V,

{um
t (0), vm

t (0)} → {u1, v1} in L2(0, L)× L2(L0, L).
(3.3)

Standard results about ordinary differential equations guarantee that there exists
only one solution of this system on some interval [0, Tm[. The priori estimate that
follow imply that in fact Tm = +∞. �

subsection*Existence of weak solutions Multiplying (3.2) by h′im(t) integrating
by parts and summing over i, we get

d

dt
E(t, um, vm) + α|vm

t |2 ≤
|at(t)|L∞

a0
E(t, um, vm). (3.4)

From this inequality, the Gronwall’s inequality and taking into account the defini-
tion of the initial data of {um, vm} we conclude that

E(t, um, vm) ≤ C, ∀t ∈ [0, T ], ∀m ∈ N (3.5)

thus we deduce that

{um, vm} is bounded in L∞(0, T ;V )

{um
t , v

m
t } is bounded in L∞(0, T ;L2(0, L0)× L2(L0, L))

which implies that

{um, vm} → {u, v} weak ∗ in L∞(0, T ;V )

{um
t , v

m
t } → {ut, vt}weak ∗ in L∞(0, T ;L2(0, L0)× L2(L0, L)).

In particular, by application of the Lions-Aubin’s Lemma [6, Theorem 5.1], we have
{um, vm} → {u, v} strongly in L2(0, T ;L2(0, L0)× L2(L0, L)) and consequently

um → u a.e in ]0, L0[ and f1(um) → f1(u) a.e in ]0, L0[

vm → v a.e in ]L0, L[ and f2(vm) → f2(v) a.e in ]L0, L[.

Also, from the growth condition in (A1) we have

f1(um) is bounded in L∞(0, T ;L2(0, L0))

f2(vm) is bounded in L∞(0, T ;L2(L0, L));

therefore,

{f1(um), f2(vm)}⇀ {f1(u), f2(v)} in L2(0, T ;L2(0, L0)× L2(L0, L)).

The rest of the proof of the existence of a weak solution is matter of routine.
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Regularity of solutions. To get the regularity, we take a basis B = {{ϕi, ψi}, i ∈
N} such that

{u0, v0}, {u1, v1}are in the span of {{ϕ0, ψ0}, {ϕ1, ψ1}}.

Therefore, {um(0), vm(0)} = {u0, v0} and {um
t (0), vm

t (0)} = {u1, v1}. Let us differ-
entiate the approximate equation and multiply by h′′im(t). Using a similar argument
as before we obtain

d

dt
E2(t, um, vm) + α|vm

tt |2 = −(f ′1(u
m)um

t , u
m
tt )− (f ′2(v

m)vm
t , v

m
tt )

− (atv
m
x , v

m
xtt) +

1
2
(at, (vm

xt)
2)

(3.6)

where

E2(t, u, v) =
ρ1

2
|utt|2 +

b

2
|uxt|2 +

ρ2

2
|vtt|2 +

1
2
(a, vxt)2.

Note that

−(atv
m
x , v

m
xtt) = −(atv

m
x , v

m
xt)t + (attv

m
x , v

m
xt) +

(
at, (vm

xt)
2
)
, (3.7)

E2(0, um, vm) is bounded, because of our choice of the basis.
From the assumption (A1) and from the Sobolev imbedding we have∫ L0

0

f ′1(u
m)um

t u
m
ttdx ≤ C

[ ∫ L0

0

(1 + |um
x |)2dx

](p−1)/2

|um
xt||um

tt |, (3.8)

and similarly∫ L

L0

f ′2(v
m)vm

t v
m
tt dx ≤ C

[ ∫ L

L0

(1 + |vm
x |)2dx

](p−1)/2

|vm
xt||vm

tt | (3.9)

Substituting (3.7), the inequalities (3.8)–(3.9), using the estimative (3.5) in (3.6)
and applying Gronwall’s inequality we conclude that

E2(t, um, vm) ≤ C (3.10)

which imply

{um
t , v

m
t } → {ut, vt} weak ∗ in L∞(0, T ;H1(0, L0)×H1(L0, L))

{um
tt , v

m
tt } → {utt, vtt} weak ∗ in L∞(0, T ;L2(0, L0)× L2(L0, L)).

Therefore, {u, v} satisfies (1.1)–(1.4) and we have

−buxx = −ρ1utt − f1(u) ∈ L2(0, L0),

−(a(x, t)vx)x = −ρ2vtt − f2(v)− αvt ∈ L2(L0, L),

u(L0, t) = v(L0, t), bux(L0, t) = a(L0, t)vx(L0, t).

u(0, t) = 0 = v(L, t)

Then using Lemma 3.2 we have the required regularity for {u, v}.
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4. Exponential Decay

In this section we prove that the solution of the system (1.1)–(1.6) decay ex-
ponentially as time approaches infinity. In the remainder of this paper we denote
by c a positive constant which takes different values in different places. We shall
suppose that ρ1 ≤ ρ2 and

a(x, t) ≤ b, at(x, t) ≤ 0, ∀(x, t) ∈]L0, L[×]0,∞[

ax(x, t) ≤ 0 .

Theorem 4.1. Take {u0, v0} in V and {u1, v1} in L2(0, L0)× L2(L0, L) with

u0
x(L0) = 0. (4.1)

Then there exists positive constants γ and c such that

E(t) ≤ cE(0)e−γt, ∀t ≥ 0. (4.2)

We shall prove this theorem for strong solutions; our conclusion follow by standard
density arguments.

The dissipative property of (1.1)–(1.6) is given by the following lemma.

Lemma 4.2. The first-order energy satisfies

d

dt
E1(t, u, v) = −α|vt|2 + (at, v

2
x). (4.3)

Proof. Multiplying equation (1.1) by ut, equation (1.2) by vt and performing an
integration by parts we get the result. �

Let ψ ∈ C∞0 (0, L) be such that ψ = 1 in ]L0 − δ, L0 + δ[ for some δ > 0, small
constant. Let us introduce the following functional

I(t) =
∫ L0

0

ρ1utquxdx+
∫ L

L0

ρ2vtψqvxdx

where q(x) = x.

Lemma 4.3. There exists c1 > 0 such that for all ε > 0,

d

dt
I(t) ≤ −L0

2
{(ρ2 − ρ1)v2

t (L0, t) + a(L0, t)[1−
a(L0, t)

b
]v2

x(L0, t)}

− L0(F1(u(L0, t))− F2(v(L0, t)))−
1
2

∫ L0

0

(ρ1ut + bu2
x + 2F (u))dx

− 1
4

∫ L0+δ

L0

av2
xdx+ c1

( ∫ L0

L0+δ

(v2
t + av2

x)dx+
∫ L

L0

v2
t dx+

∫ L0

0

u2dx

+
∫ L

L0

v2dx
)

+ εE(t, u, v) .
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Proof. Multiplying (1.1) by qux, equation (1.2) by ψqvx, integrating by parts and
using the corresponding boundary conditions we obtain

d

dt
(ρ1ut, qux) =

L0

2
[ρ1u

2
t (L0, t) + bu2

x(L0, t)]− L0F1(u(L0, t))

− 1
2

∫ L0

0

ρ1u
2
t + bu2

x + 2F1(u)dx
(4.4)

d

dt
(ρ2vt, ψqvx) ≤ −L0

2
[
ρ2v

2
t (L0, t) + a(L0, t)v2

x(L0, t)
]

+ L0F2(v(L0, t)) +
1
2

∫ L0+δ

L0

xaxψv
2
xdx−

1
4

∫ L0+δ

L0

av2
xdx

+ c1[
∫ L

L0+δ

(v2
t + av2

x)dx+
∫ L

L0

(v2
t + F2(v))dx]

(4.5)

Summing up (4.4) and (4.5), and taking the assumption on ax into account, we get

d

dt
I(t) ≤ −L0

2
[(ρ2 − ρ1)v2

t (L0, t) + a(L0, t)v2
x(L0, t)− bu2

x(L0, t)]

− L0[F1(u(L0, t))− F2(v(L0, t))]

− 1
2

∫ L0

0

(ρ1u
2
t + bu2

x + 2F1(u))dx−
1
4

∫ L0+δ

L0

av2
xdx

+ c1

( ∫ L

L0+δ

(v2
t + av2

x)dx+
∫ L

L0

(v2
t + F2(v))dx+

∫ L0

0

F (u)dx
)

(4.6)

According to (A1), we have fi(0) = 0 and

|fi(s)| ≤ c(|s|+ |s|ρ) (4.7)

this implies
|Fi(s)| ≤ c(|s|2 + |s|ρ+1) ≤ c(|s|2 + |s|2ρ). (4.8)

From the interpolation inequality

|y|p ≤ |y|α2 |y|1−α
q ,

1
p

=
α

2
+

1− α

q
, α ∈ [0, 1]

and the immersion H1(Ω) ↪→ L2(2p−1)(Ω), Ω =]0, L0[, ]L0, L[, we obtain for all
t ≥ 0

|u(t)|2ρ
2ρ ≤ cε[E(0)]2(ρ−1)|u(t)|22 +

ε

[E(0)]2(ρ−1)
|ux(t)|2(2ρ−1)

2 , for all ε > 0.

Considering that
|ux(t)|22 ≤ cE(0, u, v) ≡ c1E(0)

it follows that
|u(t)|2ρ

2ρ ≤ cε[E(0)]2(ρ−1)|u(t)|22 + εE(t, u, v). (4.9)

Replacing the inequalities (4.7)–(4.9) in (4.6) our conclusion follows. �

Let ϕ ∈ C∞(R) a nonnegative function such that ϕ = 0 in Iδ/2 =]L0− δ
2 , L0+ δ

2 [
and ϕ = 1 in R\Iδ and consider the functional

J(t) =
∫ L

L0

ρ2vtϕv dx.
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We have the following lemma.

Lemma 4.4. Given ε > 0, there exists a positive constant cε such that

d

dt
J(t) ≤ −1

2

∫ L

L0+δ

av2
x dx+ ε

∫ L0+δ

L0

av2
x dx+ cε

∫ L

L0

(v2 + v2
t )dx

Proof. Multiplying equation (1.2) by ϕv and integrating by parts we get

d

dt
J(t) = −(avx, ϕvx)− (avx, ϕxv)− α(vt, ϕv)− (ϕ, f2(v)v) + (vt, ϕvt).

Applying Young’s Inequality and hypothesis (A1) we concludes our assertion. �

Let us consider the functional

K(t) = I(t) + (2c1 + 1)J(t)

and we take ε = ε1 in lemma 4.4, where ε1 is the solution of the equation

(2c1 + 1)ε1 =
1
8
.

Taking in to consideration (A1) in lemma 4.3, we obtain

d

dt
K(t) ≤ −E1(t, u)−

1
8

∫ L

L0

(av2
x + 2F2(v))dx+ εE(t, u, v)

+ c2(
∫ L

L0

(v2
t + v2)dx+

∫ L0

0

u2dx).

(4.10)

Now in order to estimate the last two terms of (4.10) we need the following result.

Lemma 4.5. Let {u, v} be a solution in theorem 3.3. Then there exists T0 > 0
such that if T ≥ T0 we have∫ T

S

(|v|2+|u|2)ds ≤ ε
[ ∫ T

S

(b|ux|2+|ut|2)ds+
∫ T

S

|a1/2vx|2ds
]
+cε

∫ t

S

|vt|2ds (4.11)

for any ε > 0 and cε is a constant depending on T and ε, by independent of {u, v},
for any initial data {u0, v0}, {u1, v1} satisfying E(0, u, v) ≤ R, where R > 0 is fixed
and 0 < S < T < +∞.

Proof. We use a contradiction argument. If (4.11) were false, there would exist a
sequence of solutions {uν , vν} such that∫ T

S

(|vν |2 + |uν |2)ds ≥ ν

∫ t

S

|vν
t |2ds+ c0

∫ T

S

(b|uν
x|2 + |ut|2 + |a1/2vx|2)ds

and E(0, uν , vν) ≤ R for all ν. Let

λ2
ν =

∫ T

S

(|vν |2 + |uν |2)ds,

wν(x, t) =
uν(x, t)
λν

, zν(x, t) =
vν(x, t)
λν

, 0 ≤ t ≤ T.

Then we have

ν

∫ T

S

|zν
t |2ds+ c0

∫ T

S

(
b|wν

x|2 + |wν
t |2 + |a1/2zν

x |2
)
ds ≤ 1



EJDE-2007/131 A NONLINEAR TRANSMISSION PROBLEM 9

and consequently ∫ T

S

|zν
t |2ds→ 0 as ν →∞, (4.12)∫ T

S

(b|wν
x|2 + |wν

t |2 + |a1/2zν
x |2)ds ≤ c. (4.13)

Also we have ∫ T

S

(
|zν |2 + |wν |2

)
ds = 1 . (4.14)

Since S is chosen in the interval [0, T [, we obtain from (4.12)–(4.13) that, there
exists a subsequence {wν , zν} which we denote in the same way, such that

wν → w in L2(0, T ;H1(0, L0)),

wν
t → wt in L2(0, T ;L2(0, L0)),

zν → z in L2(0, T ;H1(L0, L)),

zν
t → 0 in L2(0, T ;L2(L0, L)).

From which

wν → w in L2(0, T ;L2(0, L0)),

zν → z in L2(0, T ;L2(L0, L)).

This implies ∫ T

0

(
|z|2 + |w|2

)
ds = 1 . (4.15)

Besides, from the uniqueness of the limit we conclude that zt(x, 0) = 0 and therefore

z(x, t) = ϕ(x) . (4.16)

�

Note that {wν , zν} satisfies

ρ1w
ν
tt − bwν

xx +
1
λν
f1(λνw

ν) = 0 in ]0, L0[×]0, T [,

ρ2z
ν
tt − (a(x, t)zν

x)x +
1
λν
f2(λνz

ν) + αzν
t = 0 in ]L0, L[×]0, T [,

wν(0, t) = 0 = zν(L, t),

wν(L0, t) = zν(L0, t),

bwν
x(L0, t) = a(L0, t)zν

x(L0, t),

wν(x, 0) =
uν,0(x)
λν

, wν
t (x, 0) =

1
λν
uν,1(x),

zν(x, 0) =
1
λν

vν,0(x), zν
t (x, 0) =

1
λν

vν,1(x).

(4.17)
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Now, we observe that {λν}ν≥1 is a bounded sequence,

λν =
[ ∫ T

S

(|vν |2 + |uν |2)ds
]1/2

≤ c
[ ∫ T

S

(|vν
x|2 + |uν

x|2)ds
]1/2

≤ cE(0, u, v) ≤ cR,

where R is a fixed value, because the initial data are in the ball B(θ,R). Hence,
there exists a subsequence of {λν}ν≥1 (still denoted by (λν) such that

λν → λ ∈]0,+∞[.

In this case passing to limit in (4.17), when ν →∞ for {w, z}, we get

ρ1wtt − bwxx +
1
λ
f1(λw) = 0 in ]0, L0[×]0, T [,

(a(x, t)zx)x +
1
λ
f2(λz) = 0 in ]L0, L[×]0, T [,

w(0, t) = 0 = z(L, t)

w(L0, t) = z(L0, t)

bwx(L0, t) = a(L0, t)zx(L0, t),

zt(x, 0) = 0 in ]L0, L[×]0, T [,

(4.18)

and for y = wt,

ρ1ytt − byxx + f ′(λw)y = 0 in ]0, L0[×]0, T [,

y(0, t) = 0 = y(L0, t),

byx(L0, t) = at(L0, t)zx(L0, t).
(4.19)

Here, we observe that
wxt(L0, t)
wx(L0, t)

=
at(L0, t)
a(L0, t)

.

Then after an integration, wx(L0, t) = k a(L0, t) whee k is a constant. Using the
hypotheses, we obtain

0 = lim
t→0+

wx(L0, t) = ka(L0, 0).

Consequently k = 0 and yx(L0, t) = 0. Thus, the function y satisfies

ρ1ytt − byxx + f ′(λw)y = 0 in ]0, L0[×]0, T [,

y(0, t) = 0 = y(L0, t) on ]0, T [,

yx(L0, t) = 0 on ]0, T [.

Then, using the results in [4] (based on Ruiz arguments [10]) adapted to our case
we conclude that y = 0, that is wt(x, t) = 0, for T suitable big.

Returning to (4.18) we obtain the elliptic system

−bwxx +
1
λ
f1(λw) = 0,

(a(x, t)zx)x +
1
λ
f2(λz) = 0 .
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multiplying by u and v respectively and integrating, then summing up we arrive at

b

∫ L0

0

w2
xdx+

∫ L

L0

a(x, t)z2
xdx+

1
λ

∫ L0

0

f1(λw)wdx+
1
λ

∫ L

L0

f2(λz)zdx = 0 .

So we have w = 0 and z = 0, which contradicts (4.15).
Suppose we are not in the above situation and there exists a subsequence satis-

fying λν → 0. Applying inequality (4.10) to the solutions {uν , vν} we have

d

dt
Kν(t) ≤ −δ0E(t, uν , vν) + c3

( ∫ L

L0

((vν
t )2 + (vν)2)dx+

∫ L0

0

(uν)2dx
)
,

integrating from s to T , we obtain

Kν(T ) + δ0

∫ T

S

E(t, uν , vν)dt ≤ K(S) + c3

( ∫ T

S

(|vν
t |2 + |vν |2 + |uν |2)

)
dt.

Since Kν satisfies

c0E(t, uν , vν) ≤ Kν(T ) ≤ c1E(t, uv, vν)

and E is a decreasing function we have

E(T, uv, vν) + δ′0

∫ T

S

E(t, uν , vν)dt

≤ c′1
T

∫ T

S

E(t, uν , vν)dt+ c3

∫ T

S

(|vν
t |2 + |vν |2 + |uν |2)dt;

thus, we obtain

E(T, uv, vν) + (δ′0 −
c′1
T

)
∫ T

S

E(t, uν , vν)dt ≤ c3

∫ T

S

(
|vν

t |2 + |vν |2 + |uν |2
)
dt,

Dividing both sides of the above inequality by λ2
ν , using (4.12) and (4.14), taking T

large enough we conclude that (|wν
t |2 + |zν

t |2 + |wν
x|2 + |zν

x |2)(T ) is bounded. Now,
multiplying equations (4.17)1, (4.17)2 by wν

t and zν
t respectively, performing an

integration by parts we get

E(t, wv, zν) ≤ E(T,wv, zν) + α

∫ T

S

|zν
t |2dt−

∫ T

S

(at, (zν
x)2)dt.

From (4.12) , (4.13) and Poincare Inequality we deduce that E(t, wv, zν) is bounded
for all t ∈ [S, T ]. Then in particular, on a subsequence we obtain

wν → w weak star in L∞(0, T ;H1(0, L0)),

wν
t → wt weak star in L∞(0, T ;L2(0, L0)),

zν → z weak star in L∞(0, T ;H1(L0, L)),

zν
t → zt weak star in L∞(0, T ;L2(L0, L)),

wν → w in L2(0, T ;L2(0, L0)),

zν → z in L2(0, T ;L2(L0, L)).
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On the other hand,we note that
1
λν
f1(λνw

ν) → f ′1(0)w in L2(0, T ;L2(0, L0)x]0, T [), (4.20)

1
λν
f2(λνz

ν) → f ′2(0)z in L2(0, T ;L2(L0, L)x]0, T [). (4.21)

Indeed

∆ν = |f ′1(0)wν − 1
λν
f1(λνw

ν)|2L2((0,L0)x]0,T [)

=
∫
|uν |≤ε

|f ′1(0)wν − 1
λν
f1(uν)|2 dx dt+

∫
|uν |>ε

|f ′1(0)wν − 1
λν
f1(uν)|2 dx dt

≤
∫
|uν |≤ε

|wν |2|f ′1(0)− 1
λνwν

f1(uν)|2 dx dt+ 2|f ′1(0)|2
∫
|uν |>ε

|wν |2 dx dt

+ 2
∫
|uν |>ε

1
λ2

ν

|f1(uν)|2 dx dt

≤M2
ε |wν |2L2((0,L0)x]0,T [) + C

∫
|uν |>ε

(
1
λ2

ν

|uν |2 +
1
λ2

ν

|uν |2ρ) dx dt

≤M2
ε |wν |2L2(0,L0x]0,T [) + C

∫
|uν |>ε

1
λ2

ν

|uν |2ρ(1 +
1

ε2ρ−2
) dx dt

≤M2
ε |wν |2L2((0,L0)x]0,T [) + Cελ

2ρ−2
ν |wν |2ρ

L2ρ((0,L0)x]0,T [)

where Mε = sup|s|≤ε |f ′1(0)− f1(s)
s |, Mε → 0 as ε→ 0.

From (4.13), {wν} is bounded in L∞(0, T ;H1(0, L0)) ↪→ L∞(0, T ;L2ρ(0, L0)),
and consequently

lim sup
ν→∞

∆ν ≤ sup
ν
|wν |2L2((0,L0)x]0,T [).M

2
ε

Thus,taking ε → 0 we obtain (4.20). Applying a similar method as that used for
{wν} we get (4.21).

Now, the limit function {w, z} satisfies

ρ1wtt − bwxx + f ′1(0)w = 0 in ]0, L0[×]0, T [,

(a(x, t)zx)x + f ′2(0)z = 0 in ]L0, L[×]0, T [,

w(0, t) = 0 = z(L, t),

w(L0, t) = z(L0, t),

bwx(L0, t) = a(L0, t)zx(L0, t),

zt(x, t) = 0 in ]L0, L[×]0, T [

Repeating the above procedure we get w = 0 and z = 0 which is a contradiction.
The proof of lemma 4.5 is now complete.

Proof of theorem 4.1. Let us introduce the functional

L(t) = N E(t) +K(t)

with N > 0. Using Young’s Inequality and taking N large enough we find that

θ0E(t) ≤ L(t) ≤ θ1E(t) (4.22)

for some positive constants θ0 and θ1.
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Applying the inequalities (4.10) and (4.22), along with the ones in Lemma 4.5
and integrating from S to T where 0 ≤ S ≤ T <∞ we obtain∫ T

S

E(t)dt ≤ c E(S).

In this situation, lemma 2.1 implies

E(t) ≤ c E(0)e−rt ,

this completes the proof. �

Remark. If in Equation (1.2) we consider a linear localized dissipation α = α(x)
in C2(]L0, L[), with α(x) = 1 in ]L0, L0 + δ[ , α(x) = 0 in ]L0 + 2δ, L[, then our
situation is very delicate and we need a new unique continuation theorem for the
wave equation with variable coefficients. This is a work in preparation by the
authors.
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[7] J. L. Lions; Controlabilité Exacte, Perturbations et stabilization de Systems Distribués (tome

I), collection RMA, Masson, Paris 1988.
[8] W. Liu, G. Williams; The exponential, The exponential stability of the problem of transmis-

sion of the wave equation, Balletin of the Austral. Math. Soc. 57 (1998), 305-327
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