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SECTORIAL OSCILLATION OF LINEAR DIFFERENTIAL
EQUATIONS AND ITERATED ORDER

ZHAO-JUN WU, DAO-CHUN SUN

Abstract. In the present paper, we investigate higher order linear differential

equations with entire coefficients of iterated order. Using value distribution

theory of transcendental meromorphic functions and covering surface theory,
we extend a result on the order of growth of solutions published by Bank and

Langley [2].

1. Introduction and main results

In 1982, Bank and Laine [1] investigated the exponent of convergence of zeros of
the solutions for the differential equation

f ′′ + A(z)f = 0, (1.1)

where A(z) is a transcendental entire function and E is the product of normalized
linearly independent solutions f1, f2 for (1.1). They proved that

σ(E) = max{σ(A), λ(E)}.
A considerable number of research results concerning (1.1) have been proved. We
refer the reader to the book by Laine [7] for a summary of those results. We assume
that the reader is familiar with the basic results and notation of the Nevanlinna’s
value distribution theory of meromorphic functions (see [13],[5]), such as σ(f), λ(f)
to denote, respectively the order and exponent of convergence of meromorphic
function f .

For k ≥ 2, we consider a linear differential equation

f (k) + Ak−2f
(k−2) + · · ·+ A0f = 0, (1.2)

where A0, . . . , Ak−2 are entire functions with A0 6≡ 0. It is well known that all
solutions of (1.2) are entire functions, and if some of the coefficients of (1.2) are
transcendental, then (1.2) has at least one solution with order σ(f) = ∞. Now there
exists a question: How to describe precisely the properties of growth of solutions
of infinite order of (1.2)? It is to make use of iterated order of entire functions, see
Laine [7]. Let us define inductively (see e.g. [3]), for r ∈ [0,+∞), exp[1] r = er and
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exp[n+1] r = exp(exp[n] r), n ∈ N. For all r sufficiently large, we define log[1] r =
log r and log[n+1] r = log(log[n] r), n ∈ N. We also denote exp[0] r= r =log[0] r,
log[−1] r = exp[1] r and exp[−1] r= log[1] r. We recall the following definitions and
remarks (see [6, 9, 4]).

Definition 1.1. The iterated p-order σp(f) of a meromorphic function f(z) is
defined by

σp(f) = lim sup
r→∞

log[p] T (r, f)
log r

(p ∈ N).

Remark 1.2. (1) If p = 1, then we denote σ1(f) = σ(f). (2) If p = 2, then we
denote by σ2(f) the so-called hyper order (see [14]). (3) If f(z) is an entire function,
then

σp(f) = lim sup
r→∞

log[p+1] M(r, f)
log r

.

Definition 1.3. The growth index of the iterated order of a meromorphic function
f(z) is defined by

i(f) =


0 if f is rational,
min{n ∈ N : σn(f) < ∞} if f is transcendental and

σn(f) < ∞ for some n ∈ N,

∞ if σn(f) = ∞ for all n ∈ N.

Definition 1.4. The iterated convergence exponent of the sequence of a-points
(a ∈ C ∪ {∞}) is defined by

λn(f − a) = λn(f, a) = lim sup
r→∞

log[n] N(r, 1
f−a )

log r
(n ∈ N),

and λn(f−a), the iterated convergence exponent of the sequence of distinct a-points
is defined by

λn(f − a) = λn(f, a) = lim sup
r→∞

log[n] N(r, 1
f−a )

log r
(n ∈ N).

Remark 1.5. (1) λ1(f − a) = λ(f − a). (2) λ1(f − a) = λ(f − a).

For the sake of convenience, we also make the following definitions and remarks.

Definition 1.6. The iterated sectorial convergence exponent of the sequence of
a-points (a ∈ C ∪ {∞}) is defined by

λn,α,β(f − a) = λn,α,β(f, a) = lim sup
r→∞

log[n] n(r, X(α, β), 1
f−a )

log r
(n ∈ N),

and λn(f−a), the iterated sectorial convergence exponent of the sequence of distinct
a-points is defined by

λn(f − a) = λn(f, a) = lim sup
r→∞

log[n] n(r, X(α, β), 1
f−a )

log r
(n ∈ N).

where X(α, β) = {z|α < arg z < β}, 0 < β − α ≤ π and n(r, X(α, β), f = a)
is the roots of f(z) − a = 0 in Ω(α, β) ∩ {|z| < r}, counting multiplicities, and
n(r, X(α, β), f = a) is the corresponding notion ignoring multiplicities.



EJDE-2007/134 SECTORIAL OSCILLATION THEORY 3

Remark 1.7 ([11]). (1) λ1,α,β(f−a) = λα,β(f−a). (2) λ1,α,β(f−a) = λα,β(f−a).

Definition 1.8. The iterated radial convergence exponent of the sequence of a-
points (a ∈ C ∪ {∞}) is defined by

λn,θ(f − a) = λn,θ(f, a) = lim
ε→0+

λn,θ−ε,θ+ε(f, a). (n ∈ N),

Remark 1.9 ([11]). (1) λ1,θ(f − a) = λθ(f − a). (2) λ1,θ(f − a) = λθ(f − a).

In 1991, Bank and Langley considered the higher order linear differential equa-
tions and obtained the following result.

Theorem 1.10 ([2]). Let A0, . . . , Ak−2 be entire functions of finite order, and
assume that (1.2) possesses a solution base f1, f2, . . . , fn such that λ(fi) < +∞
for i = 1, 2, . . . , n. Then the product E = f1 . . . fn is of finite order of growth,
σ(E) < ∞.

In this paper, we extend Theorem 1.10 by using value distribution theory of a
transcendental meromorphic function due to Nevanlinna [8] and the covering surface
theory (see e.g. [10]). In fact, we shall prove the following theorem.

Theorem 1.11. Assume that some (or all) of A0, . . . , Ak−2 are transcendental
entire functions, and p = max{i(Aj), j = 1, . . . , k − 2} < ∞. Suppose that (1.2)
possesses a solution base f1, f2, . . . , fn. If E := f1 . . . fn is of infinite iterated p-
order growth, i.e. σp(E) = ∞, then there at least exists a ray L : arg z = θ such
that λp,θ(E) = ∞.

From Theorem 1.11, we can deduce the following result.

Corollary 1.12. Under the conditions of Theorem 1.11, we assume that (1.2)
possesses a solution base f1, f2, . . . , fn such that λp(fi) < +∞ for i = 1, 2, . . . , n.
Then the product E = f1 . . . fn is of finite iterated p-order growth, i.e. σp(E) <
+∞.

When p = 1, Corollary 1.12 becomes Theorem 1.10.

2. Auxiliary Lemmas

Our proof requires the Nevanlinna’s theory in an angular domain. Let f(z) be
a meromorphic function and X(α, β) = {z|α ≤ arg z ≤ β} be an angular domain,
where 0 < β − α ≤ 2π. Nevanlinna defined the following notation ([8]),

Aα,β(r, f) =
k

π

∫ r

1

(
1
tk
− tk

r2k
){log+ |f(teiα)|+ log+ |f(teiβ)|}dt

t
;

Bα,β(r, f) =
2k

πrk

∫ β

α

log+ |f(reiθ)| sin k(θ − α)dθ;

Cα,β(r, f) = 2
∑
b∈∆

(
1

|bv|k
− |bv|k

r2k
) sin k(βv − α),

where k = π
β−α , 1 ≤ r < ∞ and the summation

∑
b∈∆ is taken over all poles

b = |b|eiθ of the function f(z) in the sector ∆ : 1 < |z| < r, α < arg z < β,
counting multiplicity. The corresponding notation C(r, f) then applies to distinct
poles. Furthermore, for r > 1, we define

Dα,β(r, f) = Aα,β(r, f) + Bα,β(r, f), Sα,β(r, f) = Cα,β(r, f) + Dα,β(r, f).
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For the sake of simplicity, we omit the subscript of all the notation and use
the notation A(r, f), B(r, f), C(r, f), D(r, f) and S(r, f) instead of Aα,β(r, f),
Bα,β(r, f), Cα,β(r, f), Dα,β(r, f) and Sα,β(r, f).

Lemma 2.1 ([12]). Suppose that f(z) is a meromorphic function and Ω(α, β) be
an angular domain, where 0 < β − α ≤ 2π. Then,

(i) for any value a ∈ C, we have

S(r,
1

f − a
) = S(r, f) + O(1),

holds for any r > 1.
(ii) for any r < R,

A(r,
f ′

f
) ≤ k{(R

r
)k

∫ R

1

log T (t, f)
t1+k

dt + log
r

R− r
+ log

R

r
+ 1},

B(r,
f ′

f
) ≤ 4k

rk
m(r,

f ′

f
).

We also need the Ahlfors’ theory in an angular domain. We firstly recall some
notation (see e.g. Tsuji [10]).

Let f(z) be a meromorphic function in an angular domain ∆(θ, α0) = {z :
| arg z − θ| ≤ α0} and ∆(θ, α) = {z : | arg z − θ| ≤ α} be an angular domain which
was contained in ∆(θ, α0), where θ ∈ [0, 2π) and α ≤ α0. Let ∆0(r), ∆(r) be the
part of ∆(θ, α0), ∆(θ, α), which is contained in |z| ≤ r, respectively. We put

S0(r, ∆(θ, α)) =
1
π

∫∫
∆(r)

(
|f ′

(z)|
(1 + |f(z)|2)

)2rdθdr, z = reiθ,

T0(r, ∆(θ, α)) =
∫ r

0

S0(t, ∆(θ, α))
t

dt,

which is called as Ahlfors-Shimizu characteristics. We denote the above character-
istic functions of f(z) in the whole complex plane by S0(r, f), T0(r, f). From [5,
Theorem 1.4], we have

|T (r, f)− T0(r, f)− log |f(0)|| ≤ 1
2

log 2. (2.1)

Let n(r, θ, α, a) be the number of zeros of f(z) − a contained in ∆(r), counting
multiplicities. We can assume that f(0) 6= a and put

N(r, θ, α, a) =
∫ r

0

n(t, θ, α, a)
t

dt.

If not, then the definition has to be modified, in a well known manner. Now, we
give the following lemmas.

Lemma 2.2 ([10]). Let f(z) be meromorphic in the complex plane, then

S0(r, ∆(θ, α)) ≤ 3
3∑

i=1

n(2r, θ, α0, ai) + O(log r),

T0(r, ∆(θ, α)) ≤ 3
3∑

i=1

N(2r, θ, α0, ai) + O(log2 r).

where a1, a2, a3 be any three distinct points in C∞.
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3. Proof of main results

Proof of Theorem 1.11. The Wronskian determinant W (f1, f2, . . . , fn) of the fun-
damental system of solutions {f1, f2, . . . , fn} is given by

W = W (f1, f2, . . . , fn) = det


1 1 . . . 1
f ′1
f1

f ′2
f2

. . .
f ′n
fn

. . . . . .
f
(n−1)
1
f1

f
(n−1)
2
f2

. . .
f(n−1)

n

fn


Apply the [7, Proposition 1.4.8 pp.16], we can derive that W is a positive constant
denoted by K. Hence

1
E

=
1
K

W

E
=

1
K

∑
1≤il 6=it≤n

(−1)τΠn−1
l=1

f
(l)
il

fil

.

Let f 6≡ 0 be a solution of (1.2). It follows from [3, Theorem 4 (i)] that the iterated
p-order of log T (r, f) is at most σ, where σ < ∞ is a constant.

For any θ ∈ R, if ε > 0 is sufficiently small, we deduce from Lemma 2.1 (ii) in
which R = 2r that

Aθ−ε,θ+ε(r,
f ′i
fi

) =


O(1) if p = 1,

O(
∫ 2r

1
log+ T (t,fi)

t1+
π
2ε

dt)

= O(
∫ 2r

1
e[p−1]tσ+1

t1+
π
2ε

dt) = O(e[p−1]rσ+1). if p ≥ 2.

(3.1)

Since

m(r,
f ′i
fi

) = O(log rT (r, fi)) = O(e[p−1]rσ+1), r 6∈ F,

where F is a set of finite linear measure, we can deduce from lemma 2.1 (ii) that

Bθ−ε,θ+ε(r,
f ′i
fi

) =

{
O(1) if p = 1,

O(e[p−1]rσ+1). if p ≥ 2.
(3.2)

holds for any r 6∈ F . Since

Dθ−ε,θ+ε(r,
f

(h)
i

fi
) ≤

h∑
i=1

Dθ−ε,θ+ε(r,
f

(l)
i

f
(l−1)
i

) + O(1),

where i = 1, 2, . . . , n, h = 2, 3, . . . , n− 1. Therefore we have

Dθ−ε,θ+ε(r,
f ′i
fi

) =

{
O(1) if p = 1,

O(e[p−1]rσ+1). if p ≥ 2.

By the definition and Lemma 2.1 (i), we can deduce that for any θ ∈ R and any
sufficiently small ε > 0,

S(r, E) ≤ C(r,
1
E

) + O(e[p−1]rσ+1), r 6∈ F (3.3)

holds in the angular domain {z|θ − ε < arg z < θ + ε}.
In the following, we shall prove that there exists a ray L : arg z = θ such that

for any 0 < ε < π
2 , we have

lim sup
r→∞

log[p] S(r, E)
log r

= ∞ (3.4)
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holds in the angular domain {z|θ−ε < arg z < θ+ε}. Otherwise, for any θ ∈ [0, 2π),
we have a εθ ∈ (0, π

2 ), such that

lim sup
r→∞

log[p] S(r, E)
log r

< ∞. (3.5)

holds in the angular domain {z|θ − εθ < arg z < θ + εθ}. We deduce from Lemma
2.1 (i) that for any finite value a, we have S(r, 1

E−a ) = S(r, E) + O(1). Since
C(r, a) ≤ S(r, 1

E−a ), then

C(r,
1

E − a
) ≤ S(r,

1
E − a

) = S(r, E) + O(1). (3.6)

On the other hand, it follows from θ − εθ

2 < βv < θ + εθ

2 that sin k(βv − θ + εθ

2 ) ≥
sin π

4 =
√

2
2 , where k = π

2εθ
. Hence

C(2r,
1

E − a
) ≥ Cθ− εθ

2 ,θ+
εθ
2

(2r,
1

E − a
)

≥ 2
∑

1<|bv|<r,θ− εθ
2 <βv<θ+

εθ
2

(
1

|bv|k
− |bv|k

(2r)2k
) sin k(βv − θ +

εθ

2
)

≥
√

2
∑

1<|bv|<r,θ− εθ
2 <βv<θ+

εθ
2

(
1

|bv|k
− |bv|k

(2r)2k
)

≥
√

2[
∫ r

1

1
tk

dn(t) +
1

(2r)2k

∫ r

1

tkdn(t)]

≥
√

2[k
∫ r

1

1
tk+1

n(t)dt +
n(r)
rk

− rkn(r)
r2k

+
k

(2r)2k

∫ r

1

tk−1n(t)dt]

≥
√

2[
n(r)
rk

− rkn(r)
(2r)2k

]

≥
√

2(1− 1
22k

)
n(r)
rk

,

where n(t) = n(t, θ, εθ

2 , a). From (3.5), (3.6) and the above equation,

lim sup
r→∞

log[p] n(r, θ, εθ

2 , a)
log r

< ∞. (3.7)

Because [0, 2π] is compact and [0, 2π] ⊂ ∪{(θ − εθ

4 , θ − εθ

4 ), θ ∈ [0, 2π)}, then we
can choose finitely many (θi −

εθi

4 , θi −
εθi

4 )(i = 1, 2, . . . , T ), such that [0, 2π] ⊂
∪{(θi −

εθi

4 , θi −
εθi

4 ), i = 1, 2, . . . , T}.
By using Lemma 2.2, for any three distinct complex numbers aj , j = 1, 2, 3, we

have

S0(r, f) ≤
T∑

i=1

S0(r, ∆(θi,
εθi

4
))

≤
T∑

i=1

{3
3∑

i=j

n(2r, θi,
εθi

2
, aj)}+ O(log r)



EJDE-2007/134 SECTORIAL OSCILLATION THEORY 7

From (2.1), (3.7) and the definition of T0(r, f) and the above equation, we can get
that E is of finite p-iterated order. This contradicts with the hypothesis and so
(3.4) follows.

From (3.3), (3.4) and definition 1.1, we know that there exists a ray L : arg z = θ
such that for any 0 < ε < π

2 , we have

lim sup
r→∞

log[p] C(r, 1
E )

log r
= ∞ (3.8)

holds in the angular domain {z|θ−ε < arg z < θ+ε}. Since C(r, 1
E ) ≤ 2n(r, θ, ε, E =

0), then λp,θ−ε,θ+ε(E) = ∞. Since ε is arbitrary, we have λp,θ(E) = ∞. Therefore,
we can deduce that Theorem 1.11. �

References

[1] S. Bank and I. Laine, On the oscillation theory of f ′′ + Af = 0 where A is entire, Trans.
Amer. Math. Soc. 273(1982), 351-363.

[2] S. Bank and J. Langley, Oscillation theory for higher order linear differential equations with

entire coefficients, Complex Variables Theory Appl., 16(1991), 163-175.
[3] Luis G. Bernal, On growth k-order of solutions of a complex homogenous linear differential

equation, Proc. Amer. Math. Soc., 101(1987), 317-322.

[4] T.-B. Cao, Complex oscillation of entire solutions of higher order linear differential equations,
Electronic Journal of Diff. Eqs. 2006(2006), no. 81, 1-8.

[5] W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

[6] L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast
Asian Bull. Math. 22(1998), no. 4, 385-405.

[7] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin-

New York, 1993.
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