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EXISTENCE OF GLOBAL SOLUTIONS FOR SYSTEMS OF
SECOND-ORDER DIFFERENTIAL EQUATIONS WITH

p-LAPLACIAN

MILAN MEDVEĎ, EVA PEKÁRKOVÁ

Abstract. We obtain sufficient conditions for the existence of global solutions
for the systems of differential equations`

A(t)Φp(y′)
´′

+ B(t)g(y′) + R(t)f(y) = e(t),

where Φp(y′) is the multidimensional p-Laplacian.

1. Introduction

The p-Laplace differential equation

div(‖∇v‖)p−2∇v) = h(‖x‖, v) (1.1)

plays an important role in the theory of partial differential equations (see e. g.
[21]), where ∇ is the gradient, p > 0 and ‖x‖ is the Euclidean norm of x ∈ Rn,
n > 1 and h(y, v) is a nonlinear function on R × R. Radially symmetric solutions
of the equation (1.1) depend on the scalar variable r = ‖x‖ and they are solutions
of the ordinary differential equation

r1−n(rn−1|v′|)′ = h(r, v), (1.2)

where v′ = dv
dr and p > 1. If p 6= n then the change of variables r = t

p−1
p−n transforms

the equation (1.2) into the equation

(Ψp(u′))′ = f(t, u), (1.3)

where Ψp(u′) = |u′|p−2u′ is so called one-dimensional, or scalar p-Laplacian [21],
and

f(t, u) =
∣∣ p− 1
p− n

∣∣pt p−n
p(1−n) h(t

p−1
p−n , u) .

In [22] the existence of periodic solutions of the system

(Φp(u′))′ +
d
dt
∇F (u) +∇G(u) = e(t) (1.4)

is studied, where

Φp : Rn → Rn, Φp(u) = (|u1|p−2u1, . . . , |un|p−2un)T .
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The operator Φp(u′) is called multidimensional p-Laplacian. The study of radially
symmetric solutions of the system of p-Laplace equations

div(‖∇vi‖p−2∇vi) = hi(‖x‖, v1, v2, . . . , vn), i = 1, 2, . . . , n, p > 1

leads to the system of ordinary differential equations

(|u′i|p−2u′i)
′ = fi(t, u1, u2, . . . , un), i = 1, 2, . . . , n, p 6= n (1.5)

where

fi(t, u1, u2, . . . , un) = | p− 1
p− n

|pt
p−n

p(1−n) hi(t
p−1
p−n , u1, u2, . . . , un).

This system can be written in the form

(Φp(u′))′ = f(t, u), (1.6)

where f = (f1, f2, . . . , fn)T and Φp(u′) is the n-dimensional p-Laplacian. Through-
out this paper we consider the operator Φp+1 with p > 0 and for the simplicity we
denote it as Φp, i. e. Φp(u) = (|u1|p−1u1, |u2|p−1u2, . . . , |un|p−1un).

We shall study the initial value problem

(A(t)Φp(y′))′ + B(t)g(y′) + R(t)f(y) = e(t), (1.7)

y(0) = y0, y′(0) = y1, (1.8)

where p > 0, y0, y1 ∈ Rn, A(t), B(t), R(t) are continuous, matrix-valued functions
on R+ := 〈0,∞), A(t) is regular for all t ∈ R+ , e : R+ → Rn and f, g : Rn → Rn

are continuous mappings. The equation (1.7) with n = 1 has been studied by many
authors (see e. g. references in [21]). Many papers are devoted to the study of the
existence of periodic solutions of scalar differential equation with p−Laplacian and
in some of them it is assumed that A(0) = 0. We study the system without this
singularity. ¿From the recently published papers and books see e.g. [12, 13, 21, 22].
The problems treated in this paper are close to those studied in [1, 2, 3, 4, 5, 7,
8, 9, 10, 11, 18, 20, 21, 22]. The aim of the paper is to study the problem of the
existence of global solutions to (1.7) in the sense of the following definition.

Definition 1.1. A solution y(t), t ∈ 〈0, T ) of the initial value problem (1.7), (1.8)
is called nonextendable to the right if either T < ∞ and limt→T− [‖y(t)‖+‖y′(t)‖] =
∞, or T = ∞, i. e. y(t) is defined on R+ = 〈0,∞). In the second case the solution
y(t) is called global.

The main result of this paper is the following theorem.

Theorem 1.2. Let p > 0, A(t), B(t), R(t) be continuous matrix-valued functions
on 〈0,∞), A(t) be regular for all t ∈ R+, e : R+ → Rn, f, g : Rn → Rn be
continuous mappings and y0, y1 ∈ Rn. Let

R0 =
∫ ∞

0

‖R(s)‖sm−1ds < ∞ (1.9)

and there exist constants K1,K2 > 0 such that

‖g(u)‖ ≤ K1‖u‖m, ‖f(v)‖ ≤ K2‖v‖m, u, v ∈ Rn. (1.10)

Then the following assertions hold:
1. If 1 < m ≤ p, then any nonextendable to the right solution y(t) of the initial

value problem (1.7), (1.8) is global.
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2. Let m > p, m > 1,

A∞ := sup
0≤t<∞

‖A(t)−1‖−1 < ∞,

E∞ := sup
0≤t<∞

‖
∫ t

0

e(s) ds‖ < ∞

and

np/2 m− p

p
D

m−p
p sup

0≤t<∞

∫ t

0

(
K1‖B(s)‖+ 2m−1K2

∫ ∞

s

‖R(σ)‖σm−1 dσ
)

ds < 1,

for all t ∈ 〈0,∞), where

D = np/2A∞

(
‖A(0)Φp(y1)‖+ 2m−1K2‖y0‖mR0 + E∞

)
.

Then any nonextendable to the right solution y(t) of the initial value prob-
lem (1.7), (1.8) is global.

In [5] a solution u : 〈0, T ) → Rn with 0 < T < ∞ of the equation (1.7) with
n = 1 is called singular of the second kind, if sup0<t<T |y′(t)| = ∞. By [5, Theorem
1] if m = p > 0 (we need to assume m > 1) and the condition (1.10) is fulfilled
then there exists no singular solution of the second kind of (1.7) and all solutions of
(1.7) are defined on R+, i. e. they are global. The proof of this result is based on
the transformation y1(t) = y(t), y2(t) = A(t)|y′(t)|p−1y′(t) transforming the scalar
equation (1.7) into the form

y′1 = A(t)−
1
p |y2|1/psgn y2, y′2 = −B(t)g(A(t)−

1
p sgn y2)−R(t)f(y1) + e(t).

(1.11)

An estimate of the function v(t) = max0,≤s≤t |y2(s)| proves the boundedness of
|y′(t)| on any bounded interval 〈0, T ). By [5, Theorem 2], if n = 1, R ∈ C1(R+, R),
R(t) > 0, f(x)x > 0 for all t ∈ R+ and either |g(x)| ≤ |x|p for |x| ≥ M for some
M ∈ (0,∞) or g(x)x ≥ 0 or g(x) ≥ 0 for all x ∈ R+ then the equation (1.7) has
no singular solution of the second kind and all its solutions are defined on R+, i. e.
they are global. The method of proofs are based on the study of the boundedness
from above of the scalar function V (t) = A(t)

R(t) |y
′(t)|p+1 + p+1

p

∫ y(t)

0
f(s) ds on any

bounded interval 〈0, T ). We remark that in [5] the case n = 1,m = p > 0 is studied.
The method of proofs applied in [5] is not applicable in the case n > 1. Our proof
of Theorem 1.2 is completely different from that applied in [5]. The main tool
of our proof is the discrete and also continuous version of the Jensen’s inequality,
Fubini theorem and a generalization of the Bihari theorem (see Lemma), proved
in this paper. The application of the Jensen’s inequality is possible only under the
assumption m > 1. Therefore we do not study the case 0 < m < 1. This means
that the problem is open for n > 1 and 0 < m < 1. The natural problem is to
formulate sufficient conditions for the existence of solutions which are not global,
or solutions which are not of the second kind. This problem is not solved even
for the scalar case and it seems to be not simple. By [5, Remark 5] the existence
of singular solutions of the second kind of (1.7) is an open problem even in the
scalar case. M. Bartušek proved (see [1, Theorem 4]) that if n = 1, 0 < p < m
then there exists a positive function R(t), t ≥ 0 such that the scalar equation (1.7)
with A(t) ≡ 1, B(t) ≡ 0, e(t) ≡ 0 and f(y) = |y|p has a singular solution of
the second kind. The case 0 < p < m,n = 1, studied by Bartušek, corresponds
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to the assertion 2 of our Theorem 1.2, however for the example given by Barušek
in [5] the assumptions of the assertion 2 are not satisfied. The function R(t) is
constructed using a continuous, piecewise polynomial function and the integral R0

is not finite. Let us remark that for the case p = 1, i. e. for second order differential
equations without p-Laplacian and also for higher order differential equations some
sufficient conditions for the existence of singular solutions of the second kind are
proved by Bartušek in the papers [2, 3, 4]. A result on the existence of singular
solutions of the second kind for systems of nonlinear differential equations (without
the p-Laplacian) are proved by Chanturia [7, Theorem 3] and also by Mirzov [18].

2. Proof of the main result

First we shall prove the following lemma.

Lemma 2.1. Let c > 0, m > 0, p > 0, t0 ∈ R be constants, F (t) be a continuous,
nonnegative function on R+ and v(t) be a continuous, nonnegative function on R+

satisfying the inequality

v(t)p ≤ c +
∫ t

t0

F (s)v(s)m ds, t ≥ t0. (2.1)

Then the following assertions hold:
1. If 0 < m < p then

v(t) ≤
(
c

p−m
p +

p−m

p

∫ t

t0

F (s) ds
) 1

p−m

, t ≥ t0 (2.2)

2. If m > p, m > 1 and

m− p

p
c

m−p
p sup

t0≤t<∞

∫ t

t0

F (s) ds < 1

then

v(t) ≤ c(
1− m−p

p c
m−p

p
∫ t

t0
F (s) ds

) 1
m−p

, t ≥ t0. (2.3)

Proof. Let G(t) be the right-hand side of the inequality (2.1). Then v(t)m ≤ G(t)
m
p

whihc yields
F (t)v(t)m

G(t)
m
p

≤ F (t),

i. e.
G′(t)
G(t)

m
p
≤ F (t).

Integrating this inequality from t0 to t we obtain∫ t

t0

G′(s)
G(s)

m
p

ds =
∫ G(t)

G(t0)

dσ

σ
m
p

=
p

p−m

(
G(t)

p−m
p −G(t0)

p−m
p

)
≤

∫ t

t0

F (s) ds.
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Since G(t0) = c we obtain

v(t) ≤ G(t)1/p ≤
(
c

p−m
p +

p−m

p

∫ t

t0

F (s) ds
) 1

p−m

.

The assertions (1.1) and (1.2) follow from this inequality. �

Remark 2.2. If p = 1, m > 0 then this lemma is a consequence of the well
known Bihari inequality (see [6]). Some results on integral inequalities with power
nonlinearity on their left-hand sides can be found in the B.G. Pachpatte monograph
[19]. The idea of the proof of this lemma is based on that used in the proofs of
results on integral inequalities with singular kernels and power nonlinearities on
their left-hand sides, published in the papers [16, 17].

Let y(t) be a solution of the initial value problem (1.7), (1.8) defined on an
interval 〈0, T ), 0 < T ≤ ∞. If we denote u(t) = y′(t) then

y(t) = y0 +
∫ t

0

u(s) ds, (2.4)

and the equation (1.7) can be rewritten as the following integro-differential equation
for u(t): (

A(t)Φp(u(t))
)′

+ B(t)g(u(t)) + R(t)f
(
y0 +

∫ t

0

u(s) ds
)

= e(t) (2.5)

with
u(0) = y1. (2.6)

Theorem 2.3. Let p > 0, A(t), B(t), R(t) be continuous matrix-valued functions
on R+, A(t) regular for all t ∈ R+, e : R+ → Rn, f, g : Rn → Rn be continuous
mappings on R+, y0, y1 ∈ Rn, R0 :=

∫∞
0
‖R(s)‖sm−1 ds < ∞ and 0 < T < ∞.

Let the condition (1.10) be satisfied and let u : 〈0, T ) → Rn be a solution of the
equation (2.5) satisfying the condition (2.6). Then the following assertions hold:

1. If m = p > 1, then

‖u(t)‖ ≤ dT e
R t
0 FT (s) ds, 0 ≤ t ≤ T

where

FT (t) := np/2ET

(
K1‖B(s)‖+ 2m−1K2Q(s)

)
,

Q(s) =
∫ ∞

s

‖R(σ)‖σm−1 dσ,

ET := max
0≤t≤T

‖E(t)‖, E(t) :=
∫ t

0

e(s) ds,

dT = np/2AT

(
‖A(0)Φp(y1)‖+ 2m−1K2‖y0‖mR0 + ET

)
,

AT = max
0≤t≤T

‖A(t)−1‖−1.

2. If 1 < m < p, then

‖u(t)‖ ≤
(
d

p−m
p

T +
p−m

p
dT

∫ t

0

FT (s) ds
) 1

p−m

.
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3. Let m > p, m > 1, A∞ := supT≥0 AT < ∞, sup0≤t≤∞E(t) < ∞,

np/2 m− p

p
D

m−p
p sup

0≤t<∞

∫ t

0

(
K1‖B(s)‖+ 2m−1K2Q(s)

)
ds < 1,

where

D = np/2A∞

(
‖A(0)Φp(y1)‖+ 2m−1K2‖y0‖mR0 + E∞

)
.

then

‖u(t)‖ ≤ D
(
1− np/2 m− p

p
D

m−p
p

∫ t

0

(
K1‖B(s)‖+ 2m−1K2Q(s)

)
ds

)− 1
m−p

,

where 0 ≤ t ≤ ∞.

Proof. We shall give an explicit upper bound for the solution u(t) of the equation
(2.5), defined on the interval 〈0, T ), satisfying (2.6). From the equation (2.5) and
the condition (2.6) it follows that

Φp(u(t)) = A(t)−1{A(0)Φp(y1)−
∫ t

0

B(s)g(u(s)) ds

+
∫ t

0

R(s)f
(
y0 +

∫ s

0

u(τ) dτ
)

ds + E(t)},
(2.7)

where E(t) =
∫ t

0
e(s) ds. This inequality together with the conditions (1.10) yield

‖A(t)−1‖‖Φp(u(t))‖ ≤ ‖A(0)Φp(y1)‖+ K1

∫ t

0

‖B(s)‖‖u(s)‖m ds

+ K2

∫ t

0

‖R(s)‖
(
‖y0‖+

∫ t

0

‖u(τ)‖dτ
)m

ds + ‖E(t)‖.

(2.8)
We shall use the integral version of the Jensen’ s inequality( ∫ t

0

H(s) ds
)κ

≤ tκ−1

∫ t

0

H(s)κ ds, κ > 1, t ≥ 0 (2.9)

for h ∈ C(R+, R+) (For a more general integral Jensen’s inequality, see e. g. [15,
Chapter VIII, Theorem 2]). Also we shall use its discrete version

(A1 + A2 + · · ·+ Al)κ ≤ lκ−1(Aκ
1 + Aκ

2 + · · ·+ Aκ
l ), (2.10)

for A1, A2, . . . , Al ≥ 0, κ > 1 (see [15, Chapter VIII, Corollary 4]).
Let m > 1. Then using the inequalities (2.9) and (2.10) we obtain the inequality(

‖y0‖+
∫ s

0

‖u(τ)‖dτ
)m

≤ 2m−1
(
‖y0‖m +

( ∫ s

0

‖u(τ)‖dτ
)m)

≤ 2m−1
(
‖y0‖m + sm−1

∫ s

0

‖u(τ)‖m dτ
)
.
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Putting this inequality into (2.8) we obtain

‖A(t)−1‖‖Φp(u(t))‖

≤ ‖A(0)−1Φp(y1)‖+ K1

∫ t

0

‖B(s)‖‖u(s)‖m ds + 2m−1K2‖y0‖m

∫ t

0

‖R(s)‖ds

+ 2m−1K2

∫ t

0

‖R(s)‖sm−1

∫ s

0

‖u(τ)‖m dτ ds‖E(t)‖.

(2.11)
Now we shall apply the following consequence of the Fubini theorem (see e. g. [23,
Theorem 3.10 and Exercise 3.27]): If h : 〈a, b〉×〈a, b〉 → R is an integrable function
then ∫ b

a

∫ y

a

h(x, y) dxdy =
∫ b

a

∫ b

x

h(x, y) dy dx.

If h(τ, s) = ‖R(s)‖sm−1‖u(τ)‖m, a = 0, b = t, y = s, x = τ then∫ t

0

∫ s

0

h(τ, s) dτ ds =
∫ t

0

∫ t

τ

h(τ, s) dsdτ,

i. e. ∫ t

0

∫ s

0

‖R(s)‖sm−1‖u(τ)‖m dτ ds =
∫ t

0

( ∫ t

τ

‖R(s)‖sm−1 ds
)
‖u(τ)‖m dτ.

This yields ∫ t

0

‖R(s)‖sm−1

∫ s

0

‖u(τ)‖m dτ ds ≤
∫ t

0

Q(τ)‖u(τ)‖m dτ, (2.12)

where

Q(τ) :=
∫ ∞

τ

‖R(s)‖sm−1 ds

for τ ≥ 0.
Let 0 < T < ∞ and t ∈ 〈0, T ). From the inequalities (2.11) and (2.12) it follows

that

‖A(t)−1‖‖Φp(u(t))‖ ≤ cT +
∫ t

0

F0(s)‖u(s)‖m ds, (2.13)

where

cT = ‖A(0)Φp(y1)‖+ 2m−1K2‖y0‖mR0 + ET , (2.14)

F0(s) = K1‖B(s)‖+ 2m−1K2Q(s), (2.15)

ET = max
0≤t≤T

‖E(t)‖. (2.16)

If k ∈ {1, 2, . . . , n}, then

|uk(t)|p ≤ ‖Φp(u(t))‖ =
(
u1(t)2p + u2(t)2p + · · ·+ un(t)2p

)1/2

≤ AT cT +
∫ t

0

AT F0(s)‖u(s)‖m ds;

i. e.,

|uk(t)|p ≤ c0T +
∫ t

0

F0T (s)‖u(s)‖m ds, (2.17)

where
AT := max

0≤t≤T
‖A(t)−1‖−1, if T < ∞, (2.18)
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c0T = AT cT , F0T (t) = AT F0(t). (2.19)
This yields

‖u(t)‖ ≤ np/2
(
c0T +

∫ t

0

F0T (s)‖u(s)‖m ds
)1/p

,

and therefore we have obtained the inequality

‖u(t)‖p ≤ dT +
∫ t

0

FT (s)‖u(s)‖m ds, (2.20)

where
dT = np/2c0T , FT (t) = np/2F0T (t). (2.21)

Now applying Lemma 2.1 (the case m = p follows from the Gronwall’s lemma) to
the inequality (2.20) we obtain the assertions 1. and 2. In the proof of the assertion
3. we use the assumptions A∞ := sup0≤t<∞ ‖A(t)−1‖−1 < ∞, sup0≤t≤∞E(t) < ∞.
¿From the inequality (2.20) we obtain the inequality,

‖u(t)‖p ≤ D +
∫ t

0

G(s)‖u(s)‖m ds, (2.22)

where D is defined in Theorem 1.2,

G(s) := K1‖B(s)‖+ 2m−1K2Q(s),

and Q(s) =
∫ t

s
‖R(σ)σm−1‖dσ. Now if we put in Lemma t0 = 0, v(t) = ‖u(t)‖,

c = D and F (t) = G(t) then we obtain the inequality from the assertion 3. �

Proof of Theorem 1.2. Let y : 〈0, T ) → Rn be a nonextendable to the right solution
of the initial value problem (2.5), (2.6) with T < ∞. Then y(t) = y0 +

∫ t

0
u(s) ds,

where u(t) is a solution of the equation (2.5) satisfying the condition (2.6). From
Theorem 2.3 it follows that M = sup0≤t≤T ‖u(t)‖ < ∞ and since (2.4) yields
‖y(t)‖ ≤ ‖y0‖ + t sup0≤s≤T ‖u(s)‖ we obtain limt→T− ‖y(s)‖ < ∞. This is a con-
tradiction with nonextendability of y(t). �
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[20] I. Rachunková and M. Tvrdý, Periodic singular problem with quasilinear differential operator,
Math. Bohemica, 131 (2006), 321–336.
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