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CONVERGENCE OF SOLUTIONS FOR A FIFTH-ORDER
NONLINEAR DIFFERENTIAL EQUATION

OLUFEMI ADEYINKA ADESINA, AWAR SIMON UKPERA

Abstract. In this paper, we present sufficient conditions for all solutions of

a fifth-order nonlinear differential equation to converge. In this context, two

solutions converge to each other if their difference and those of their derivatives
up to order four approach zero as time approaches infinity. The nonlinear func-

tions involved are not necessarily differentiable, but satisfy certain increment

ratios that lie in the closed sub-interval of the Routh-Hurwitz interval.

1. Introduction

Nonlinear differential equations of higher order have been extensively studied
with high degree of generality. In particular, there have been interesting works on
asymptotic behaviour, boundedness, periodicity, almost periodicity and stability of
solutions for fifth-order nonlinear differential equations. Authors that have worked
in this direction include Abou-El-Ela and Sadek [1, 2, 3], Adesina [4, 5, 6], Afuwape
and Adesina [9, 10], Chukwu [11, 12], Sadek [14] and Tunc [16, 17, 18, 19, 20],
to mention a few. Most of the nonlinear functions involved in these works were
assumed to be differentiable, specially, the restoring terms. Specifically, in 1975
and 1976 respectively, Chukwu [11, 12] discussed the boundedness and stability of
the solutions of the differential equations

x(v) + f1(x, x′, x′′, x′′′, x(iv))x(iv) + bx′′′ + f3(x′′) + f4(x′) + f5(x) = p(t) (1.1)

and

x(v) + ax(iv) + f2(x′′′) + cx′′ + f4(x′) + f5(x) = p(t, x, x′, x′′, x′′′, x(iv)). (1.2)

Later, Yu [21] studied the boundedness and asymptotic stability of the solutions of
the differential equation

x(v)+φ(x, x′, x′′, x′′′, x(iv))x(iv)+bx′′′+h(x′′)+g(x′)+f(x) = p(t, x, x′, x′′, x′′′, x4).
(1.3)

Other interesting results on the boundedness and stability of solutions for equa-
tions of the form (1.3) were obtained by Abou-El-Ela and Sadek [1], Tiryaki and
Tunc [15] and Tunc [16]. In the case where the fifth order differential equations were

2000 Mathematics Subject Classification. 34D20.
Key words and phrases. Convergence of solutions; nonlinear fifth order equations;

Routh-Hurwitz interval; Lyapunov functions.
c©2007 Texas State University - San Marcos.

Submitted May 7, 2007. Published October 17, 2007.

1



2 O. A. ADESINA, A. S. UKPERA EJDE-2007/138

non-autonomous, the asymptotic behaviour of solutions were treated by Abou-El-
Ela and Sadek [3], Sadek [14] and Tunc [17, 18, 19, 20]. Some of the results in these
works have been generalized to real vector differential equations, see for instance
Abou-El-Ela and Sadek [2]. All the above mentioned works were done by using the
Lyapunov’s second method except for the works of Adesina [4, 5, 6] and Afuwape
and Adesina [9, 10], where the frequency domain technique was employed to study
some qualitative behaviour of solutions.

However, the problem of convergence of solutions to these equations in which
the nonlinear terms are not necessarily required to be differentiable, has so far
remained intractable. The purpose of this paper therefore is to tackle this problem.
Motivation for this study comes from the works of Afuwape [7, 8] and Ezeilo [13]
where sufficient conditions for the convergence of solutions of fourth and third order
equations were proved respectively.
Definition Two solutions x1(t), x2(t) of the equation (1.4) are said to converge
(to each other) if x1 − x2 → 0, x1

′ − x2
′ → 0, x1

′′ − x2
′′ → 0, x1

′′′ − x2
′′′ → 0,

x1
(iv) − x2

(iv) → 0 as t →∞.
In this paper, we shall investigate the convergence of solutions for equation

x(v) + ax(iv) + bx′′′ + f(x′′) + g(x′) + h(x) = p(t, x, x′, x′′, x′′′, x(iv)), (1.4)

where a, b are positive constants, functions f , g, h and p are real valued and
continuous in their respective arguments such that the uniqueness theorem is valid,
and the solutions are continuously dependent on the initial conditions. Moreover,
f(0) = g(0) = h(0) = 0. Our results assert the existence of convergence of solutions
with the functions f , g, and h not necessarily differentiable. Here, the functions h
and g are only required to satisfy the increment ratios

h(ζ + η)− h(ζ)
η

∈ I0,

g(ζ + η)− g(ζ)
η

∈ I1,

where I0 and I1 are closed sub-intervals of the Routh-Hurwitz interval. Our results
generalize, to fifth-order equations, the results in [7, 8]. Some existing results on
fifth-order nonlinear differential equations are also generalized.

2. Assumptions and Main Results

Assumptions:
(1) The function p(t, x, x′, x′′, x′′′, x(iv)) is equal to q(t)+r(t, x, x′, x′′, x′′′, x(iv))

with r(t, 0, 0, 0, 0, 0) = 0 for all t;
(2) For some positive constants a, b, α, β and ∆0, (ab − α)α − a2β > 0,

(ab− α)α + a∆0 > 0, (ab− α) > 0 and b2 > β;
(3) For some positive constants a, b, α, β, ∆0, ∆1 K0 and K1, the intervals

I0 ≡
[
∆0,K0

[ [(ab− α)α− a2β]
a

]]
,

I1 ≡
[
∆1,K1

[ [(ab− α)α + a∆0]
a2

]]
are in the Routh-Hurwitz interval.

The following results are proved.
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Theorem 2.1. In addition to the basic assumptions and 1–3 above, we assume
that

(i) there are positive constants α, α0, β and β0 such that

α ≤ f(z2)− f(z1)
z2 − z1

≤ α0, z2 6= z1, (2.1)

β ≤ g(y2)− g(y1)
y2 − y1

≤ β0, y2 6= y1; (2.2)

(ii) for any ζ, η, (η 6= 0), the increment ratios for h and g satisfy

h(ζ + η)− h(ζ)
η

∈ I0,

g(ζ + η)− (ζ)
η

∈ I1;

(iii) there is a continuous function φ(t) such that

|r(t, x1, y1, z1, u1, v1)− r(t, x2, y2, z2, u2, v2)|
≤ φ(t)(|x1 − x2|+ |y1 − y2|+ |z1 − z2|+ |u1 − u2|+ |v1 − v2|)

(2.3)

holds for arbitrary t, x1, y1, z1, u1, v1, x2, y2, z2, u2, v2.

Then if there exists a constant D1 such that∫ t

0

φ%(τ)dτ ≤ D1 (2.4)

for some % with 1 ≤ % ≤ 2, then all solutions of (1.4) converge.

Theorem 2.2. Assume the conditions in the Theorem 2.1 are satisfied. Let x1(t),
x2(t) be any two solutions of (1.4). Then for each fixed %, 1 ≤ % ≤ 2, there are
constants D2, D3 and D4 such that for t2 ≥ t1,

S(t2) ≤ D2S(t1) exp
{
−D3(t2 − t1) + D4

∫ t2

t1

φ%(τ)dτ
}
, (2.5)

where

S(t) = (x2(t)− x1(t))2 + (x2
′(t)− x1

′(t))2 + (x2
′′(t)− x1

′′(t))2

+ (x2
′′′(t)− x1

′′′(t))2 + (x2
(iv)(t)− x1

(iv)(t))2.
(2.6)

Remark 2.3. If p = 0 and the hypotheses (i) and (ii) of the Theorem 2.1 hold for
arbitrary η 6= 0, then the trivial solution of (1.4) is exponentially stable.

Remark 2.4. If p = 0 and the hypotheses (i) and (ii) of the Theorem 2.1 hold for
arbitrary η 6= 0, and ζ = 0, then there exists a constant D5 > 0 such that every
solution x(t) of (1.4) satisfies

|x(t)| ≤ D5; |x′(t)| ≤ D5; |x′′(t)| ≤ D5; |x′′′(t)| ≤ D5; |x(iv)(t)| ≤ D5.

For the rest of this article, D1, D2, D3, . . . and the D∗’s stand for positive con-
stants. Their identities are preserved throughout this paper.
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3. Proof of Main Results

Proof of Theorem 2.2. It is convenient here to consider (1.4) as the equivalent sys-
tem

x′ = y,

y′ = z,

z′ = u,

u′ = v + Q(t),

v′ = −av − bu− f(z)− g(y)− h(x) + r(t, x, x′, x′′, x′′′, x(iv))− aQ(t),

(3.1)

where Q(t) =
∫ t

0
q(τ)dτ . Let xi(t), yi(t), zi(t), ui(t), vi(t), (i = 1, 2), be two solu-

tions of (1.4), such that inequalities (2.1), (2.2),

∆0 ≤
h(x2)− h(x1)

x2 − x1
≤ K0

[ [(ab− α)α− a2β]
a

]
,

∆1 ≤
g(y2)− g(y1)

y2 − y1
≤ K1

[ [(ab− α)α + a∆0]
a2

]
are satisfied. The main tool in the proofs of the convergence theorems will be the
function

2V =β2[1− ε]x2 + [α2 +
bβ(α + α(1− ε))

1− ε
+

aβ2ε

α(1− ε)
]y2

+ [b2 +
(b2 − β)ε

1− ε
+

ε2β

1− ε
+ εβ

(ab− α)
α(1− ε)

]z2 + a2u2 + [1 +
ε

1− ε
]v2

+ 2αβ(1− ε)xy + 2bβ(1− ε)xz + 2aβ(1− ε)xu + 2β(1− ε)xv

+ 2(bα + aβε)yz + 2[aα + βε +
βε

1− ε
]yu + 2αyv + 2ab(1− ε)zu

+ 2[b +
(aα + b)ε

1− ε
]zv + 2auv,

(3.2)

where 0 < ε < 1, ab − α > 0 and b2 > β. Indeed we can rearrange the terms in
(3.2) to obtain

2V = 2V1 + 2V2 + 2V3 + 2V4 + 2V5 + 2V6, (3.3)

where

2V1 = [β(1− ε)x + αy + bz +
au

2
+ v]2 +

ε2

1− ε
z2 + 2

(aβ + b)
1− ε

zv +
ε

2(1− ε)
v2;

2V2 = β2(1− ε)εx2 + aβ(1− ε)xu +
1
8
a2u2;

2V3 = bβ
(ε + ε(1− ε))

1− ε
y2 + 2[

aα

2
+

βε

1− ε
+ βε]yu +

1
8
a2u2;

2V4 =
aβ2ε

α(1− ε)
y2 + 2aβεyz + εβ

(ab− α)
α(1− ε)

z2;

2V5 =
(b2 − β)ε
2(1− ε)

z2 +
(ab− 2abε)

2
zu +

1
8
a2u2;

2V6 =
a2u2

4
+ auv +

ε

2(1− ε)
v2.
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We note that V1 is obviously positive definite. This follows from the condition
0 < ε < 1. Also Vi, i = 2, 3, . . . , 6 regarded as quadratic forms in x and u, y and
u, y and z, z and u, z and v, u and v respectively is always positive. Let us recall
that a real 2× 2 matrix (

a1 a2

a3 a4

)
is positive definite if and only if it is symmetric, and the elements a1, a4 and
a1a4 − a2a3 are non negative. Thus we can rearrange the terms in V2 as(

x, u
)(β2(1− ε) aβ (1−ε)

2

aβ (1−ε)
2

a2

8

)(
x
u

)
,

from which we have 2
3 < ε < 1 as a condition for the positive semi-definiteness.

Similarly, for V3, we have

a2bβε
(2− ε)
1− ε

≥
[aα

2
+

βε

1− ε
+ βε

]2
as a condition for its positive semi-definiteness. As for V4 and V5, we have

(ab− α)β ≥ aα2(1− ε)2 and a2(b2 − β) ≥ (ab− 2abε)2
(1− ε)

ε

as conditions for the positive semi-definiteness. The condition for positive semi-
definiteness of V6 is the same as that for V1. Hence V is positive definite. We can
therefore find a constant D6 > 0, such that

D6(x2 + y2 + z2 + u2 + v2) ≤ V. (3.4)

Furthermore, by using the Schwartz inequality |x||u| ≤ 1
2 (x2 + u2), then 2|V2| ≤

D1
∗(x2 + u2) for some D1

∗ = D1
∗(a, β, ε) > 0. Similarly, we obtain the following

estimates:

2|V3| ≤ D2
∗(y2 + u2), D2

∗ = D2
∗(a, b, α, β, ε) > 0,

2|V4| ≤ D3
∗(y2 + z2), D3

∗ = D3
∗(a, b, α, β, ε) > 0,

2|V5| ≤ D4
∗(z2 + u2), D4

∗ = D4
∗(a, b, α, β, ε) > 0,

2|V6| ≤ D5
∗(u2 + v2), D5

∗ = D5
∗(a, ε) > 0.

Thus there exists a constant D7 > 0, such that

V ≤ D7(x2 + y2 + z2 + u2 + v2), (3.5)

where
D7 = max

{
D1

∗;D2
∗;D3

∗;D4
∗;D5

∗}.
Using inequalities (3.4) and (3.5), we obtain

D6(x2 + y2 + z2 + u2 + v2) ≤ V ≤ D7(x2 + y2 + z2 + u2 + v2). (3.6)

�

The following result can be easily verified for W ≡ V .

Lemma 3.1. Let the function W (t) = W (x2−x1, y2− y1, z2− z1, u2−u1, v2− v1)
be defined by

2W = β2[1− ε](x2 − x1)2 + [α2 +
bβ(α + α(1− ε))

1− ε
+

aβ2ε

α(1− ε)
](y2 − y1)2
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+
[
b2 +

(b2 − β)ε
1− ε

+
ε2β

1− ε
+ εβ

(ab− α)
α(1− ε)

]
(z2 − z1)2 + a2(u2 − u1)2

+ [1 +
ε

1− ε
](v2 − v1)2 + 2αβ(1− ε)(x2 − x1)(y2 − y1)

+ 2bβ(1− ε)(x2 − x1)(z2 − z1) + 2aβ(1− ε)(x2 − x1)(u2 − u1)

+ 2β(1− ε)(x2 − x1)(v2 − v1) + 2(bα + aβε)(y2 − y1)(z2 − z1)

+ 2[aα + βε +
βε

1− ε
](y2 − y1)(u2 − u1) + 2α(y2 − y1)(v2 − v1)

+ 2ab(1− ε)(z2 − z1)(u2 − u1) + 2[b +
(aα + b)ε

1− ε
](z2 − z1)(v2 − v1)

+ 2a(u2 − u1)(v2 − v1),

where 0 < ε < 1 and W (0, 0, 0, 0, 0) = 0, then there exist finite constants D6 > 0,
D7 > 0 such that

D6

{
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 + (u2 − u1)2 + (v2 − v1)2

}
≤ W

≤ D7

{
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 + (u2 − u1)2 + (v2 − v1)2

}
.

(3.7)

Proof. These inequalities follows from the verification of W as a Lyapunov function
and the fact that the solutions (xi, yi, zi, ui, vi +Q(t)), (i = 1, 2), satisfy the system
(3.1). Then S(t) as defined in (2.6) becomes

S(t) =
{
(x2(t)− x1(t))2 + (y2(t)− y1(t))2 + (z2(t)− z1(t))2

+ (u2(t)− u1(t))2 + (v2(t)− v1(t))2
}
.

�

Next we prove a result on the derivative of W (t) with respect to t.

Lemma 3.2. Let the hypotheses (i) and (ii) of the Theorem 2.1 hold, then there
exist positive constants D8 and D9 such that

dW

dt
≤ −2D8S + D9S

1/2|θ| (3.8)

where θ = r(t, x2, y2, z2, u2, v2 + Q)− r(t, x1, y1, z1, u1, v1 + Q).

Proof. Using the system (3.1), a direct computation of dW
dt gives after simplification

dW

dt
= −W1 + W2, (3.9)

where

W1 = β(1− ε)H(x2, x1)(x2 − x1)2 + αβε(y2 − y1)2

+
1

α(1− ε)
(bα + aβε)(α(1− ε)− 1)(z2 − z1)2

+ abε(u2 − u1)2 +
1

1− ε
aε(v2 − v1)2 + (G(y2, y1)− β)[β(1− ε)(x2 − x1)

+ α(y2 − y1)−
bα + aβε

α(1− ε)
(z2 − z1) + a(u2 − u1) +

(v2 − v1)
1− ε

](y2 − y1)

+
(
F (z2, z1)− α

)[
β(1− ε)(x2 − x1) + α(y2 − y1) + a(u2 − u1)
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+
(v2 − v1)

1− ε

]
(z2 − z1)

+ 2(βε + abα)(y2 − y1)(u2 − u1)−
βε(1 + (1− ε))

1− ε
(z2 − z1)(u2 − u1)

+
1

1− ε
[α− 1

α
(abα(1− (1− ε))− a2βε)](z2 − z1)(v2 − v1);

W2 = θ(t)[β(1− ε)(x2 − x1) + α(y2 − y1)−
aβε + bα

α(1− ε)
(z2 − z1)

+ a(u2 − u1) +
(v2 − v1)

1− ε
];

(3.10)

F (z2, z1) =
f(z2)− f(z1)

z2 − z1
, z2 6= z1;

G(y2, y1) =
g(y2)− g(y1)

y2 − y1
, y2 6= y1;

H(x2, x1) =
h(x2)− f(x1)

x2 − x1
, x2 6= x1.

Let χ1 = G(y2, y1) − β and χ2 = F (z2, z1) − α. Furthermore let H(x2, x1) be
denoted simply by H, and define

3∑
i=1

λi = 1;
7∑

i=1

µi = 1;
6∑

i=1

νi = 1;
4∑

i=1

τi = 1;
3∑

i=1

γi = 1,

where λi > 0, µi > 0, νi > 0, τi > 0 and γi > 0. Then W1 can be re-arranged as

W1 = W11 +W12 +W13W14 +W15 +W16 +W17 +W18 +W19 +W21 +W22, (3.11)

where

W11 = λ1β(1− ε)H(x2 − x1)2 + α(µ1βε + χ1)(y2 − y1)2

+
(bα + aβε)(α(1− ε)− 1)

α(1− ε)
(z2 − z1)2 + τ1abε(u2 − u1)2

+ γ1
aε

1− ε
(v2 − v1)2;

W12 = λ2β(1− ε)H(x2 − x1)2 + χ1β(1− ε)(x2 − x1)(y2 − y1)

+ µ2αβε(y2 − y1)2;

W13 = λ3β(1− ε)H(x2 − x1)2 + χ2β(1− ε)(x2 − x1)(z2 − z1)

+ ν2
(bα + aβε)(α(1− ε)− 1)

α(1− ε)
(z2 − z1)2;

W14 = µ3αβε(y2 − y1)2 +
1

α(1− ε)
χ1(bα + aβε)(y2 − y1)(z2 − z1)

+ ν3
(bα + aβε)(α(1− ε)− 1)

α(1− ε)
(z2 − z1)2;

W15 = µ4αβε(y2 − y1)2 + aχ1(y2 − y1)(u2 − u1) + τ2abε(u2 − u1)2;

W16 = µ5αβε(y2 − y1)2 +
1

1− ε
χ1(y2 − y1)(v2 − v1) +

1
1− ε

γ2aε(v2 − v1)2;
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W17 = ν4
(bα + aβε)(α(1− ε)− 1)

α(1− ε)
(z2 − z1)2 + χ2α(z2 − z1)(y2 − y1)

+ µ6αβε(y2 − y1)2;

W18 = ν5
(bα + aβε)(α(1− ε)− 1)

α(1− ε)
(z2 − z1)2 + aχ1(z2 − z1)(u2 − u1)

+ τ3abε(u2 − u1)2;

W19 = ν6
(bα + aβε)(α(1− ε)− 1)

α(1− ε)
(z2 − z1)2

+
(1 + α)− (abα(1− (1− ε)2)− a2βε)

α(1− ε)
(z2 − z1)(v2 − v1)

+
1

1− ε
γ3aε(v2 − v1)2;

W21 = τ4abε(u2 − u1)2 + 2(βε + abα)(u2 − u1)(y2 − y1) + µ7αβε(y2 − y1)2;

W22 = ν6
(bα + aβε)(α(1− ε)− 1)

α(1− ε)
(z2 − z1)2 − 2βε

(1 + (1− ε))
1− ε

(z2 − z1)(u2 − u1)

+ τ4abε(u2 − u1)2.

Since each W1i, (i = 1, 2, . . . , 9), W21 and W22 are quadratic in their respective
variables, then by using the fact that any quadratic of the form Ap2 + Bpq + Cq2

is non negative if 4AC −B2 ≥ 0, it follows that

W12 ≥ 0 if H ≤ 4
∆1(1− ε)

λ2µ2αε;

W13 ≥ 0 if χ2
2 ≤ 4

αβ(1− ε)2
λ3∆0ν2(bα + aβε)(α(1− ε)− 1);

W14 ≥ 0 if χ1
2 ≤ 4µ3bεν3α

2(1− ε)(α(1− ε)− 1);

W15 ≥ 0 if χ1
2 ≤ 4µ4αb2ε2τ2;

W16 ≥ 0 if χ1
2 ≤ 4µ5aαβε2γ2;

W17 ≥ 0 if χ2
2 ≤ 4

α2
ν4(bα + aβε)(α(1− ε)− 1)µ6βε;

W18 ≥ 0 if χ1
2 ≤ 4

aα(1− ε)
ν5(bα + aβε)(α(1− ε)− 1)bτ3ε.

Thus W1 ≥ W11 provided that the above inequalities are satisfied in addition to

0 ≤ χ1
2 ≤4 min

{
µ3bεν3α

2(1− ε)(α(1− ε)− 1);µ4αb2ε2τ2;

µ5aαβε2γ2;
ν5

aα(1− ε)
(bα + aβε)(α(1− ε)− 1)bτ3ε

}
;

(3.12)

0 ≤ χ2
2 ≤ 4

α
(bα + aβε)(α(1− ε)− 1) min

{ ∆0ν2λ3

β(1− ε)2
;
ν4µ6βε

α

}
; (3.13)

with H lying in

I0 ≡ [∆0,K0[
[(ab− α)α− a2β]

a
]] (3.14)

and G lying in

I1 ≡ [∆1,K1[
[(ab− α)α + a∆0]

a2
]], (3.15)
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where I0 and I1 are sub-interval of the Routh-Hurwitz intervals (0, [(ab−α)α−a2β]
a )

and (0, [(ab−α)α+a∆0]
a2 ) respectively, and

K0 =
a

(ab− α)α− a2β
× 4

∆1(1− ε)
λ2µ2αε;

K1 = 4
e

(ab− α)α− a2β
×min

{
µ3bεν3α

2(1− ε)(α(1− ε)− 1);

µ4αb2ε2τ2;µ5aαβε2γ2;
ν5

aα(1− ε)
(bα + aβε)(α(1− ε)− 1)bτ3ε

}
.

On choosing

2D8 = min
{
β(1− ε);α;

−(aβε + bα)
α(1− ε)

; a;
1

1− ε

}
,

we have
W1 ≥ W11 ≥ 2D8S, (3.16)

and if

D9 = max
{
β(1− ε);α;

−(aβε + bα)
α(1− ε)

; a;
1

1− ε

}
,

then
W2 ≤ D9S

1/2|θ|. (3.17)
Combining (3.16) and (3.17) in (3.9), inequality (3.8) is obtained. At last the
conclusion to the proof of the Theorem 2.1 will now be given. For this purpose, let
% be any constant in the range 1 ≤ % ≤ 2 and set σ = 1 − %

2 so that 0 ≤ σ ≤ 1
2 .

Then, on rearranging inequality (3.8) we have
dW

dt
+ D8S ≤ D9S

1/2|θ| −D8S, (3.18)

from which
dW

dt
+ D8S ≡ D10S

σW ∗,

where
W ∗ = S( 1

2−σ)[|θ| −D11S
1/2], (3.19)

with D11 = D8
D10

. If |θ| < D11S
1/2, then W ∗ < 0. On the other hand, if |θ| ≥

D11S
1/2, then the definition of W ∗ in the equation (3.19) gives at least

W ∗ ≤ S( 1
2−σ)|θ|

and also S1/2 ≤ |θ|
D11

. Thus

S
1
2 (1−2σ) ≤ [

|θ|
D11

](1−2σ),

and from this together with W ∗ follows

W ∗ ≤ D12|θ|2(1−σ)
,

where D12 = D11
(σ−1). On using the estimate on W ∗ in inequality (3.18), we

obtain
dW

dt
+ D8S ≤ D10D12S

σ|θ|2(1−σ) ≤ D13S
σφ2(1−σ)S(1−σ) (3.20)

which follows from

|r(t, x1, y1, z1, u1, v1)− r(t, x2, y2, z2, u2, v2)|
≤ φ(t)(|x1 − x2|+ |y1 − y2|+ |z1 − z2|+ |u1 − u2|+ |v1 − v2|).
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In view of the fact that % = 2(1− σ), we obtain

dW

dt
≤ −D8S + D13φ

%S,

and on using inequalities (3.7), we have

dW

dt
+ [D14 −D15φ

%(t)]W ≤ 0, (3.21)

for some constants D14 and D15. On integrating the estimate (3.21) from t1 to t2
(t1 ≤ t2), we obtain

W (t2) ≤ W (t1) exp
{
−D14(t2 − t1) + D15

∫ t2

t1

φ%(τ)dτ
}
. (3.22)

On using Lemma 3.1, we obtain inequality (2.5), with D2 = D7
D6

; D3 = D14 and
D4 = D15. This completes the proof of the Theorem 2.1. �

Proof of Theorem 2.1. The proof follows from the inequality (2.5) and the condition
(2.4) on φ(t). On choosing D2 = D3

D4
in inequality (2.5), then as t = t2 − t1 → ∞,

S(t) → 0 which proves that x2 − x1 → 0, y2 − y1 → 0, z2 − z1 → 0, u2 − u1 → 0,
v2 − v1 → 0 as t →∞. �
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