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TWO CLASSICAL PERIODIC PROBLEMS ON TIME SCALES

PABLO AMSTER, CHRISTOPHER C. TISDELL

Abstract. We consider the generalization of two classical periodic problems
to the context of time scales. On the one hand, we generalize a celebrated

result by Castro for the forced pendulum equation. On the other hand, we

extend a well-known result by Nirenberg to a resonant system of equations
on time scales. Furthermore, the results are new even for classical difference

equations.

1. Introduction

In recent years there has been an increasing interest in dynamic equations on
time scales. The concept of time scales (also known as measure chains) was intro-
duced in 1990 by Hilger [9] with the motivation of providing a unified approach
to continuous and discrete calculus. Thus, the notion of a generalized derivative
y∆(t) was introduced, where the domain of the function y(t) is an arbitrary closed
non-empty subset of T ⊂ R. If T = R then the usual derivative is retrieved, that
is y∆(t) = y′(t). On the other hand, if the time scale is taken to be Z then the
generalized derivative reduces to the usual forward difference, that is y∆(t) = ∆y(t).

The field of dynamic equations on time scales allows us to model hybrid processes
where time may flow continuously in one part of the process (with the model leading
to a differential equation) and then time may flow discretely in another part of
the process (leading to a difference equation). Moreover, these types of stop-start
hybrid processes occur naturally and for more on the current and future applications
of dynamic equations on time scales the reader is referred to the cover story of New
Scientist [16] or the monographs by Bohner and Peterson [3] and Bohner et al [4].

The field of dynamic equations on time scales is not only about unification. It
is important to emphasize that by researching dynamic equations on time scales,
new advances can be made into each of the theories of differential and difference
equations in their own right. For example, once a result is proved in the general
time scale setting, special cases of the new results may give new theorems for each
of the theories of differential and difference equations.
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In this work, we consider a generalization of two classical resonant periodic
problems to the context of time scales. On the one hand, we study the forced
pendulum equation

y∆∆ + a sin(yσ) = p(t), t ∈ [0, T ]T (1.1)

where a is a positive constant.
For the continuous case T = R, Castro proved in [5, Theorem A] that if a ≤ ( 2π

T )2

and p0 = p− c with c = p := 1
T

∫ T
0
p(t)dt, then there exist two real numbers d(p0)

and D(p0) with
−a ≤ d(p0) ≤ 0 ≤ D(p0) ≤ a

such that equation (1.1) admits T -periodic solutions if and only if

d(p0) ≤ c ≤ D(p0).

A more general result has been obtained by Mawhin and Willem in [13], and by
Fournier and Mawhin in [6], using topological methods.

Also, we investigate the existence of periodic solutions y : [0, σ2(T )]T → RN to
the following nonlinear system of second order differential equations on time scales

y∆∆ = f(t, yσ), t ∈ [0, T ]T; (1.2)
under Landesman-Lazer type conditions. We shall assume that the nonlinearity
f : [0, T ]T × RN → RN is bounded and continuous although, unlike the pendulum
equation, f(t, z) will be typically a non-periodic function of z.

By investigating the general equation (1.2), special cases of our results give novel
results for (classical) difference equations and also for non-classical difference equa-
tions, such as q-difference equations (used in physics). Thus this article not only
makes a new contribution to time scales, it also provides new results for difference
equations.

There exists a vast literature on Landesman-Lazer type conditions for resonant
problems, starting at the pioneering work [10] for a second order elliptic (scalar)
differential equation under Dirichlet conditions. For a survey on Landesman-Lazer
conditions see e.g. [12]. In [14], Nirenberg extended the Landesman-Lazer con-
ditions to a system of elliptic equations. Nirenberg’s result can be adapted for a
system of periodic ODE’s in the following way:

Theorem 1.1. Let p ∈ C([0, T ],RN ) and let g : RN → RN be continuous and
bounded. Further, assume that the radial limits gv := limr→+∞ g(rv) exist uni-
formly respect to v ∈ SN−1, the unit sphere of RN . Then the problem

y′′ + g(y) = p(t)

has at least one T -periodic solution if the following conditions hold:

• gv 6= p := 1
T

∫ T
0
p(t)dt for any v ∈ SN−1.

• The degree of the mapping θ : SN−1 → SN−1 given by

θ(v) =
gv − p

|gv − p|
is non-zero.

For completeness, let us introduce the essential terminology of time scales.

Definition 1.2. A time scale T is a non-empty, closed subset of R, equipped with
the topology induced from the standard topology on R.
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Definition 1.3. The forward (backward) jump operator σ(t) at t for t < sup T
(respectively ρ(t) at t for t > inf T) is given by

σ(t) = inf{τ > t : τ ∈ T}, (ρ(t) = sup{τ < t : τ ∈ T}, ) for all t ∈ T.
Additionally σ(sup T) = sup T, if sup T < ∞, and ρ(inf T) = inf T, if inf T > −∞.
Furthermore, denote σ2(t) = σ(σ(t)) and yσ(t) = y(σ(t)).

Definition 1.4. If σ(t) > t then the point t is called right-scattered; while if
ρ(t) < t then t is termed left-scattered. If t < sup T and σ(t) = t then the point t
is called right-dense; while if t > inf T and ρ(t) = t then we say t is left-dense.

If T has a left-scattered maximum at m then we define Tk = T−{m}. Otherwise
Tk = T.

Definition 1.5. Fix t ∈ Tk and let y : T → Rn. Then y∆(t) is the vector (if it
exists) with the property that given ε > 0 there is a neighborhood U of t such that,
for all s ∈ U and each i = 1, . . . , n

|[yi(σ(t))− yi(s)]− y∆
i (t)[σ(t)− s]| ≤ ε|σ(t)− s|.

Here y∆(t) is termed the (delta) derivative of y(t) at t.

Theorem 1.6 ([9]). Assume that y : T → Rn and let t ∈ Tk.
(i) If y is differentiable at t then y is continuous at t.
(ii) If y is continuous at t and t is right-scattered then y is differentiable at t

and

y∆(t) =
y(σ(t))− y(t)

σ(t)− t
.

(iii) If y is differentiable and t is right-dense then

y∆(t) = lim
s→t

y(t)− y(s)
t− s

.

(iv) If y is differentiable at t then y(σ(t)) = y(t) + µ(t)y∆(t).

Definition 1.7. The function y is said to be right-dense continuous, that is y ∈
Crd(T; Rn) if:

(a) y is continuous at every right-dense point t ∈ T, and
(b) lims→t− y(s) exists and is finite at every left-dense point t ∈ T.

Proposition 1.8. For any right-dense continuous function y there exists an anti-
derivative; i.e., a differentiable function Y such that Y ∆(t) = y(t). Moreover, Y is
unique up to a constant term, and the time scale integral of y is thus defined by∫ t

a

y(s)∆s = Y (t)− Y (a).

We shall use the standard notation for the different intervals in T. For example,
if a, b ∈ R with a < b, then the closed interval of numbers between a and b will be
denoted by [a, b]T := {t ∈ T : a ≤ t ≤ b}.

In this context, the periodic boundary conditions for problems (1.1) and (1.2)
read:

y(0) = y(σ2(T )), y∆(0) = y∆(σ(T )). (1.3)
The paper is organized as follows. In Section 2 we introduce some preliminary

results concerning the Lebesgue integral on time scales, and the associated linear
problem for (1.1) and (1.2).
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In the third section, we study the periodic problem for equation (1.1). Following
the ideas in [6], we generalize Castro’s result for an equation on time scales.

Finally, in Section 4 we study an extension of the standard Landesman-Lazer
conditions for system (1.2). We shall obtain a general result that extends Theorem
1.1 for a system of differential equations in time scales.

2. Preliminary results

Let us define a measure in the following way. For a < b ∈ T, consider A ⊂
P([a, b)T) the completion of the Borel σ-algebra generated by the family

{[x, y)T : a ≤ x < y ≤ b, x, y ∈ T}.
Hence, there is a unique σ-additive measure µ : A → R+ defined over this basis as:
µ([x, y)T) = y − x.

In the following lemma we establish the equivalence between the Lebesgue inte-
gral with respect to µ and the Cauchy integral on time scales when the integrand
is right-dense continuous. A more precise result is given in [7]; in particular, it is
proved that any right-dense continuous function is Lebesgue integrable.

Lemma 2.1. If ϕ ∈ Crd([a, b]T), then∫ b

a

ϕ(t)∆t =
∫

[a,b)

ϕdµ :=
∫ b

a

ϕdµ.

Proof. For t ∈ [a, b)T, define φ(t) =
∫
[a,t)

ϕdµ. If t is right-dense, take s ∈ [a, b)T −
{t}. Assume for example that s > t, then:

φ(s)− φ(t)
s− t

− ϕ(t) =
1

s− t

∫
[t,s)

ϕ− ϕ(t) dµ.

A similar equality holds for s < t, and by continuity of ϕ it is immediate to prove
that φ(s)−φ(t)

s−t −ϕ(t) → 0 as s→ t. Hence φ is ∆-differentiable at t and φ∆(t) = ϕ(t).
If t is right-scattered, it is clear that φ is continuous at t, and

φ(σ(t))− φ(t) =
∫
{t}

ϕdµ = ϕ(t)(σ(t)− t).

It follows that φ∆(t) = ϕ(t). We conclude that φ is an antiderivative of ϕ, and the
result holds. �

Remark 2.2. It follows from the previous lemma that all the theorems for the
Lebesgue integral theory such as dominated convergence or Fatou Lemma hold.

Lemma 2.3. Let ϕ ∈ Crd([0, T ]T) and s ∈ R. Then there exists a unique solution
of the problem

y∆∆(t) = ϕ(t) in [0, T ]T

y(0) = y(σ2(T )) = s.
(2.1)

Furthermore,

y(t) = s+
∫ σ(T )

0

G(t, s)ϕ(s)∆s,

where the Green function G is given by

G(t, s) =

{
−t

σ2(T ) (σ
2(T )− σ(s)) if t ≤ s

−σ(s)
σ2(T ) (σ

2(T )− t) if t ≥ σ(s).
(2.2)
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Proof. By integration, it follows that

y(t) = s+
∫ t

0

φ(r)∆r − t

σ2(T )

∫ σ2(T )

0

φ(r)∆r,

where φ(r) =
∫ r
0
ϕ(s)∆s. From the previous lemma, we have that∫ r

0

ϕ(s)∆s =
∫

[0,σ(T ))

ϕ(s).χ[0,r)(s)dµ =
∫

[0,σ(T ))

ϕ(s).χ(s,σ2(T ))(r)dµ.

If s is right-scattered then χ(s,σ2(T )) = χ[σ(s),σ2(T )). On the other hand, if s is
right-dense, then µ({s}) = 0 and we conclude that

φ(r) =
∫

[0,σ(T ))

ϕ(s).χ[σ(s),σ2(T ))(r)dµ.

Hence,

y(t) = s+
∫ σ(T )

0

ϕ(s)
( ∫ σ2(T )

0

χ[σ(s),σ2(T ))(r)
[
χ[0,t)(r)−

t

σ2(T )
]
∆r

)
∆s,

and the result holds. �

3. The forced pendulum equation

In this section we extend Castro’s result to the context of time scales. More
precisely:

Theorem 3.1. Assume that p0 is rd-continuous, and that p0 = 0, where

p0 :=
1

σ(T )

∫ σ(T )

0

p0(t)∆t.

Then there exist two real numbers d(p0) and D(p0) with

−a ≤ d(p0) ≤ D(p0) ≤ a

such that problem (1.1-1.3) for p = p0 + c admits at least one solution if and only
if d(p0) ≤ c ≤ D(p0).

Remark 3.2. It may be noticed that no condition on a is assumed. Thus, Theorem
3.1 is indeed a generalization of a Mawhin-Willem result (see [13]).

Remark 3.3. In the continuous case T = R a standard variational argument shows
that d(p0) ≤ 0 ≤ D(p0). The matter of extending this result to a general time scale
was considered in [2].

Proof of Theorem 3.1. Let us introduce the function P0(t) =
∫ σ(T )

0
G(t, s)p0(s)∆s,

where G is given by (2.2), and consider the following equivalent problem for u =
y − P0:

u∆∆ + a sin(uσ + Pσ0 ) = c, (3.1)
under periodic conditions. Define c : Crd([0, T ]T) → R by

c(u) =
a

σ(T )

∫ σ(T )

0

sin(uσ + Pσ0 )∆t

and consider the following integro-differential equation on time scales:

u∆∆ + a sin(uσ + Pσ0 ) = c(u) (3.2)
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Claim: For each r ∈ R problem (3.2-1.3) admits at least one solution u such that
u(0) = r.

Indeed, for v ∈ Crd([0, T ]T) let us define u := T rv as the unique solution of the
linear problem

u∆∆ + a sin(vσ + Pσ0 )) = c(v)

u(0) = u(σ2(T )) = r.

From Lemma 2.3, we have that

T r(v)(t) = r +
∫ σ(T )

0

G(t, s)(c(v)− a sin(vσ + Pσ0 ))∆s,

and it follows from Arzelá-Ascoli Theorem that T r : Crd([0, T ]T) → Crd([0, T ]T)
is compact. Furthermore, ‖T r(v)‖Crd([0,T ]T) ≤ C for some constant C, and by
Schauder Theorem T r has a fixed point u. Integrating the equation, it follows that
u∆(0) = u∆(σ(T )), and then u is a solution of (3.2-1.3).

Next, define the set

E = {u : u solves (3.1-1.3) for some c}.
It is clear that u ∈ E if and only if u is a solution of (3.2-1.3), with c = c(u). Thus,
E is nonempty, and it suffices to prove that I(p0) := c(E) is a compact interval.

From the periodicity of the equation it is immediate that c(E) = c(E2π), where

E2π = {u ∈ E : u(0) ∈ [0, 2π]}.
Let {un} be a sequence in E2π. Using the above Green representation, it follows

that ‖un−un(0)‖Crd([0,T ]T) ≤ C for some constant C independent of n. Moreover, as
un−un(0) = T 0(un) and un(0) ∈ [0, 2π], there exists a subsequence that converges
to a function u for the Crd-norm. By Lemma 2.1 and dominated convergence we
obtain that u = u(0) + T 0(u), and hence u ∈ E2π. By continuity of the function c,
compactness of I(p0) follows.

In order to see that I(p0) is connected, assume that c1, c2 ∈ I(p0), c1 < c2, and
let c ∈ (c1, c2). Choose ui ∈ E such that

u∆∆
i + a sin(uσi + Pσ0 ) = ci.

As u1 and u2 are bounded, adding a multiple of 2π if necessary, we may assume
that u1 ≥ u2. Hence

u∆∆
1 + a sin(uσ1 + Pσ0 ) ≤ c ≤ u∆∆

2 + a sin(uσ2 + Pσ0 ).

It follows that (u2, u1) is an ordered couple of a lower and an upper solution of
the problem u∆∆ + a sin(uσ + Pσ0 ) = c, and the proof follows from Theorem 5 in
[17]. �

The following proposition gives some bounds for the numbers d(p0) and D(p0).

Proposition 3.4. Let K = supt∈[0,σ(T )]T

∫ σ(T )

0
|G(t, s)| ∆s, and

R(p0) =
[( ∫ σ(T )

0

cos(Pσ0 ) ∆t
)2

+
( ∫ σ(T )

0

sin(Pσ0 ) ∆t
)2]1/2

.

Then

d(p0) ≤ −a
(R(p0)
σ(T )

− 2aK
)
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and

D(p0) ≥ a
(R(p0)
σ(T )

− 2aK
)
.

In particular, if a < R(p0)
2Kσ(T ) , then d(p0) < 0 < D(p0).

Proof. Let v be a solution of (3.2-1.3). A simple computation shows that

|c(v)− c(v(0))| ≤ a

σ(T )

∫ σ(T )

0

|vσ − v(0)| ∆t ≤ a‖v − v(0)‖Crd([0,σ(T )]),

and

|v − v(0)| ≤
∫ σ(T )

0

|G(t, s)|.|c(v)− a sin(vσ + Pσ0 )| ∆t ≤ 2aK.

Thus, |c(v)− c(v(0))| ≤ 2a2K, and it follows that

d(p0) = inf
v∈E

c(v) ≤ inf
v∈E

c(v(0)) + 2a2K = inf
x∈[0,2π]

c(x) + 2a2K.

In the same way,
D(p0) ≥ sup

x∈[0,2π]

c(x)− 2a2K.

For x ∈ R,

c(x) =
a

σ(T )

∫ σ(T )

0

sin(x+ Pσ0 ) ∆t

=
a

σ(T )

(
sinx

∫ σ(T )

0

cos(Pσ0 ) ∆t+ cosx
∫ σ(T )

0

sin(Pσ0 ) ∆t
)
.

Thus,

sup
x∈[0,2π]

c(x) = − inf
x∈[0,2π]

c(x) =
a

σ(T )
R(p0),

and the proof is complete. �

Remark 3.5. The smallness condition on a in the previous proposition may be
improved by observing that:

|v − v(0)| ≤ K2

( ∫ σ(T )

0

[c(v)− a sin(vσ + Pσ0 )]2 ∆t
)1/2

,

where

K2 = sup
t∈[0,σ(T )]T

( ∫ σ(T )

0

G(t, s)2 ∆s
)1/2

.

As ∫ σ(T )

0

[c(v)− a sin(vσ + Pσ0 )]2 ∆t

= −a
∫ σ(T )

0

sin(vσ + Pσ0 )[c(v)− a sin(vσ + Pσ0 )] ∆t

≤ aσ(T )1/2
( ∫ σ(T )

0

[c(v)− a sin(vσ + Pσ0 )]2 ∆t
)1/2

,
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it follows that |v − v(0)| ≤ K2aσ(T )1/2. Hence,

d(p0) ≤ −a
(R(p0)
σ(T )

− aK2σ(T )1/2
)
,

D(p0) ≥ a
(R(p0)
σ(T )

− aK2σ(T )1/2
)
,

and the smallness condition for a reads:

a <
R(p0)

K2σ(T )3/2
.

For example, if T = R then K = T 2/8, and K2 = T 3/2

4
√

3
, and thus 2Kσ(T )1/2 >

K2σ(T )3/2.

Remark 3.6. It follows from the proof of Theorem 3.1 that E is infinite. However,
the interval I(p0) = [d(p0), D(p0)] might reduce to a single point c0; in this case the
equation is called singular, and problem (1.1-1.3) with p = p0 + c0 admits infinitely
many solutions.

The problem of finding p0 for which (1.1-1.3) is singular, or proving that such a
p0 does not exist, is still open. For the standard case T = R, Ortega and Tarallo
have proved in [15] that the following statements are equivalent:

(i) I(p0) = {0}.
(ii) For any r ∈ R there exists a unique T -periodic solution ur of (1.1-1.3) for

p = p0 such that ur(0) = r.
(iii) There exists a continuous path r → ur which satisfies

lim
r→±∞

ur(t) = ±∞

uniformly in t.

When a is small, the following proposition gives a necessary condition for singu-
larity.

Proposition 3.7. Let a < 1
K , where K is defined as before, and assume that

I(p0) = {c0}. Then every solution of the problem

u∆∆ + a sin(uσ) = p0 + c0

u(0) = u(σ2(T ))

also satisfies: u∆(0) = u∆(σ(T )).

Proof. For s, c ∈ R define us,c as the unique solution of the problem

u∆∆ + a sin(uσ) = p0 + c0 + c

u(0) = u(σ2(T )) = s.

We claim that the operator given by (s, c) → us,c is well defined and continuous.
Indeed, if u and v are solutions of the previous problem, it follows that

(u− v)(t) = −a
∫ σ(T )

0

G(t, s)[sin(uσ(s))− sin(vσ(s))]∆s,

and hence
‖u− v‖Crd([0,σ(T )]) ≤ aK‖u− v‖Crd([0,σ(T )]).
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As aK < 1, it follows that u = v. Moreover, if c→ ĉ and s→ ŝ, then

(us,c − uŝ,ĉ)(t) = s− ŝ+ a

∫ σ(T )

0

G(t, ξ)[c− ĉ− sin(uσs,c(ξ)) + sin(uσŝ,ĉ(ξ))]∆ξ.

Thus,
(1− aK)‖us,c − uŝ,ĉ‖Crd([0,σ(T )]) ≤ |s− ŝ|+ aK|c− ĉ|

and continuity follows. Next, define θ(s, c) = u∆
s,c(σ(T ))− u∆

s,c(0). By definition of
us,c it is clear that

θ(s, c) =
∫ σ(T )

0

[p0 + c0 + c− a sin(uσs,c)]∆t = cσ(T )− a

∫ σ(T )

0

sin(uσs,c)∆t.

It follows that θ is continuous, and

θ(s, a) ≥ 0 ≥ θ(s,−a).
We conclude that for each s there exists a number c(s) such that θ(s, c(s)) = 0.
As the problem is singular, we deduce that c(s) = 0, and it follows that us,0 also
satisfies: u∆

s,0(σ(T ))− u∆
s,0(0) = 0. �

4. Landesman-Lazer conditions for a resonant system

In this section we shall give an existence result for problem (1.2-1.3), which may
be regarded as an extension of Theorem 1.1.

Remark 4.1. A different existence result for (1.2-1.3) is given in [1] Theorem 3.3,
assuming that f satisfies the Hartman-type condition (see [8]):

〈f(t, z), z〉 > 0 for z ∈ RN with |z| = R.

Our Landesman-Lazer type condition reads as follows.
Condition (F1): There exists a family {(Uj , wj)}j=1,...,K where Uj is an

open subset of SN−1 and wj ∈ SN−1, such that {Uj} covers SN−1 and the
limit

lim sup
s→+∞

〈f(t, su), wj〉 := fu,j(t) (4.1)

exists uniformly for u ∈ Uj .

Remark 4.2. If condition (F1) holds, then a straightforward computation shows
that the mapping u 7→ fu,j(t) is continuous in Uj for each fixed t.

Theorem 4.3. Assume that f is bounded, and that condition (F1) holds. Then
the periodic boundary value problem (1.2-1.3) admits at least one solution, provided
that

(1) For each u ∈ SN−1 there exists j such that u ∈ Uj and∫ σ(T )

0

fu,j(t)dµ < 0,

where µ is the measure introduced in section 2.
(2) There exists a constant R0 such that dB(F,BR, 0) 6= 0 for any R ≥ R0,

where dB is the Brouwer degree, BR ⊂ RN denotes the open ball of radius
R centered at 0, and F : RN → RN is defined by

F (y) =
∫ σ(T )

0

f(t, y)∆t.



10 P. AMSTER, C. C. TISDELL EJDE-2007/149

Remark 4.4. It follows from the proof below that F (y) 6= 0 for y ∈ RN with |y|
large. Thus, the Brouwer degree in condition 2 is well defined.

Proof of Theorem 4.3. For λ ∈ [0, 1], let us define the compact operator Tλ :
Crd([0, T ]T) → Crd([0, T ]T) given by

Tλy(t) = y(0) + f(·, yσ) + λ

∫ σ(T )

0

G(t, s)f(s, yσ(s))∆s.

For λ 6= 0, if y = Tλy then evaluating at t = 0 it follows that f(·, yσ) = 0. Moreover,
y(σ2(T )) = y(0), and y∆∆(t) = λf(t, yσ). Integrating this last equation, we deduce
that also y∆(0) = y∆(σ(T )).

We claim that the solutions of the equation y = Tλy are a priori bounded.
Indeed, if yn = Tλn

yn with λn ∈ (0, 1] and ‖y‖Crd([0,σ(T )]) →∞, then

‖yn − yn(0)‖Crd([0,σ(T )]) ≤ K‖f‖C ,

and yn(0) →∞. Let zn(t) = yn(t)
|yn(t)| , then taking a subsequence if necessary we may

assume that zn(t) → u ∈ SN−1 as n → ∞, uniformly in t. Thus, for some j we
have by Fatou’s Lemma that

0 =
∫ σ(T )

0

〈f(t, yσn), wj〉dµ < 0

for n large, a contradiction.
On the other hand, if y = T0y then y is constant and F (y) = 0. As before, if

we suppose that F (yn) = 0 with |yn| → ∞, a contradiction yields. We conclude
that if Ω = BR(0) ⊂ Crd([0, T ]T) with R large enough, then the Leray-Schauder
degree dLS(I − Tλ,Ω, 0) is well defined and dLS(I − T1,Ω, 0) = dLS(I − T0,Ω, 0).
Moreover, as T0y = y(0) + f(·, yσ) ∈ RN for any y, it follows that

dLS(I − T0,Ω, 0) = dB((I − T0)|RN ,Ω ∩ RN , 0).

As (I − T0)|RN = −σ(T )F , this last degree is non-zero. We conclude that the
equation y = T1y admits a solution in Ω, which corresponds to a solution of (1.2-
1.3). �

Some examples are now provided to illustrate the main ideas of the paper.

Example 4.5. If f(t, y) = p(t) − g(y) and gv := limr→+∞ g(rv) exist uniformly
respect to v ∈ SN−1, then for any w ∈ SN−1 we have that 〈f(t, sv), w〉 → 〈p−gv, w〉
uniformly in SN−1. If p 6= gv, then for any v0 ∈ SN−1 there exists w ∈ SN−1 such
that 〈p − gv, w〉 < 0 in a neighborhood of v0. By compactness, (F1) and the first
condition of Theorem 4.3 are fulfilled. Furthermore, if the degree of the mapping
θ(v) = gv−p

|gv−p| is non-zero, it is immediate to see that F (y) =
∫ σ(T )

0
p(t)− g(y)∆t =

σ(T )(p− g(y)) satisfies: dB(F,BR, 0) 6= 0 when R is large. Thus, Theorem 1.1 can
be regarded as a particular case of Theorem 4.3 for T = R.

Example 4.6. Let f = (f1, . . . , fN ) with fi(t, y) = ψi(t,y)
|y|2+1 + ξi(t)arctan(yi), where

ψi is continuous such that |ψi(t, y)| ≤ A|y|r + B for some r < 2, and ξ is rd-
continuous. Then (1.2-1.3) admits at least one solution, provided that

∫ σ(T )

0
ξi∆t 6=

0 for i = 1, · · · , N . Indeed, for y ∈ RN with yi 6= 0, set k = sgn
(
sgn(yi)

∫ σ(T )

0
ξi∆t

)
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and wi = kei. Then

lim
s→+∞

〈f(t, sy), wi〉 = k sgn(yi)
π

2
ξi(t) := fy,wi

(t),

and ∫ σ(T )

0

fy,wi
(t)dµ = k sgn(yi)

∫ σ(T )

0

ξi ∆t < 0.

Moreover, it is easy to see that if |yi| � 0 then

Fi(y).Fi(−y) < 0.

Thus, the second condition in Theorem 4.3 is fulfilled.
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of resonance. Bol. de la Sociedad Española de Mat. Aplicada 16 (2000), 45–65.
[13] Mawhin, J.; Willem, M. Multiple solutions of the periodic boundary value problem for some

forced pendulum-type equations. Journal of Differential Equations, Volume 52, Issue 2, April
1984, Pages 264-287

[14] Nirenberg, L. Generalized degree and nonlinear problems. Contributions to nonlinear func-

tional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971),

1–9. Academic Press, New York, 1971.
[15] Ortega, Rafael; Tarallo, Massimo. Degenerate equations of pendulum-type. Commun. Con-

temp. Math. 2 (2000), no. 2, 127–149.
[16] Spedding, Vanessa. Taming Nature’s Numbers, New Scientist, July 19, 2003, 28–31.
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