Electronic Journal of Differential Equations, Vol. 2007(2007), No. 154, pp. 1–8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF POSITIVE SOLUTIONS FOR THE SYMMETRY THREE-POINT BOUNDARY-VALUE PROBLEM

QIAOZHEN MA

ABSTRACT. In this paper, we show the existence of single and multiple positive solutions for the symmetry three-point boundary value problem under suitable conditions by using classical fixed point theorem in cones.

1. INTRODUCTION

Since Gupta [3] studied three-point boundary value problems for the nonlinear ordinary differential equation, many classical results have been obtained by using Leray-Schauder continuation theorem, nonlinear alternatives of Leray-Schauder and coincidence degree theory. For more information, we refer the reader to [1, 3, 6, 7] and reference therein. The study of multi-point boundary-value problems for linear second-order differential equations was initiated by II'in and Moiseev [4]. While the multi-point boundary value problem arise in the different areas of applied mathematics and physics. For instance, many problems in the theory of elastic stability can be handled as a multi-point problem [8]. Therefore, it's necessary to continue to extend and investigate.

Ma [6], by using fixed-point index theorems and Leray-Schauder degree and upper and lower solutions, considered the multiplicity of positive solutions of the problem

$$u'' + \lambda h(t)f(u) = 0, \quad t \in (0, 1), \tag{1.1}$$

$$u(0) = 0, \quad u(1) = \alpha u(\eta),$$
 (1.2)

where $0 < \eta < 1$, $0 < \alpha < 1/\eta$, assuming that $f \in C([0,\infty), [0,\infty))$, $h \in C([0,1), [0,\infty))$, and f is superlinear. In the present paper, we study the existence of single and multiple positive solutions to nonlinear symmetry three-point boundary value problem

$$u'' + \lambda a(t)f(u) = 0, \quad t \in (0,1), \tag{1.3}$$

$$u(0) = \beta u(\eta), \quad u(1) = \alpha u(\eta). \tag{1.4}$$

2000 Mathematics Subject Classification. 34B10.

©2007 Texas State University - San Marcos.

Key words and phrases. Positive solution; three-point boundary value problem.

Submitted November 24, 2006. Published November 16, 2007.

Supported by grants 10671158 from NSFC, 10626042 from the Mathematical Tianyuan Foundation, and 3ZS061-A25-016 from the Natural Sciences Foundation of Gansu, and NWNU-KJCXGC-03-40.

Where $\lambda > 0$ is a positive parameter, $\alpha > 0$, $\beta > 0$, $0 < \eta < 1$.

Clearly, problem (1.3)-(1.4) is more generic than (1.1)-(1.2), that is to say, our problem is (1.1)-(1.2) for $\beta = 0$. Moreover, (1.3)-(1.4) is transformed immediately into the classical Dirichlet problem for $\alpha = \beta = 0$. And when $\beta = 0$, $\alpha = 1$, $\eta \to 1$ problem (1.3)-(1.4) is changed into the mixed boundary value problem. In addition, our results will be obtained under conditions that do not require f to be either superlinear or sublinear. In short, our problem gives a frame to these problems under more generic conditions. We make the following assumptions.

- (i) $a \in C([0, 1], [0, +\infty))$ and there exists $x_0 \in [0, 1]$ such that $a(x_0) > 0$.
- (ii) $f \in C([0, +\infty), [0, +\infty))$ and there exist nonnegative constants in the extended reals, f_0, f_∞ , such that

$$f_0 = \lim_{u \to 0+} \frac{f(u)}{u}, \quad f_\infty = \lim_{u \to \infty} \frac{f(u)}{u}.$$

(iii) f(0) > 0, for $t \in [0, 1]$.

Remark 1.1. It is easy to see that if (iii) holds, then there exist two constants $a, b \in (0, \infty)$, such that $0 < f(u) \le b$, for $u \in [0, a]$.

The key tool in our approach is the following Krasnoselskii's fixed point theorem in a cone.

Theorem 1.2 ([2]). Let E be a Banach space and $K \subset E$ be a cone in E. Suppose that Ω_1, Ω_2 are bounded open subset of K with $0 \in \Omega_1, \overline{\Omega}_1 \subset \Omega_2$, and $A: K \to K$ is a completely continuous operator such that either

$$\begin{aligned} \|Aw\| &\leq \|w\|, \quad w \in \partial\Omega_1, \quad \|Aw\| \geq \|w\|, \quad w \in \partial\Omega_2, \quad or \\ \|Aw\| &\geq \|w\|, \quad w \in \partial\Omega_1, \quad \|Aw\| \leq \|w\|, \quad w \in \partial\Omega_2. \end{aligned}$$

Then A has a fixed point in $\overline{\Omega}_2 \setminus \Omega_1$.

2. Preliminary Lemmas

Lemma 2.1 ([5]). Let $\beta \neq \frac{1-\alpha\eta}{1-\eta}$. Then, for $y \in C[0,1]$, boundary-value problem

$$u'' + y(t) = 0, \quad t \in (0, 1),$$
(2.1)

$$u(0) = \beta u(\eta), \quad u(1) = \alpha u(\eta). \tag{2.2}$$

has a unique solution

$$u(t) = -\int_0^t (t-s)y(s)ds + \frac{(\beta-\alpha)t-\beta}{(1-\alpha\eta)-\beta(1-\eta)}\int_0^\eta (\eta-s)y(s)ds + \frac{(1-\beta)t+\beta\eta}{(1-\alpha\eta)-\beta(1-\eta)}\int_0^1 (1-s)y(s)ds.$$

Lemma 2.2 ([5]). Let $0 < \alpha < 1/\eta$, $0 < \beta < \frac{1-\alpha\eta}{1-\eta}$. Then, for $y \in C[0,1]$, and $y \ge 0$, the unique solution of problem (2.1)-(2.2) satisfies

$$u(t) \ge 0, \ t \in [0,1].$$

Lemma 2.3 ([5]). Let $0 < \alpha < \frac{1}{\eta}$, $0 < \beta < \frac{1-\alpha\eta}{1-\eta}$. Then, for $y \in C[0,1]$, and $y \ge 0$, the unique solution of problem (2.1)-(2.2) satisfy

$$\min_{t \in [0,1]} u(t) \ge \gamma \|u\|,$$

EJDE-2007/154

where

$$\gamma = \min\{\frac{\alpha(1-\eta)}{1-\alpha\eta}, \alpha\eta, \beta\eta, \beta(1-\eta)\}.$$

Note that u = u(t) is a solution of (1.3)-(1.4), if and only if

$$u(t) = \lambda \left[-\int_{0}^{t} (t-s)a(s)f(u(s))ds + \frac{(\beta-\alpha)t-\beta}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{\eta} (\eta-s)a(s)f(u(s))ds + \frac{(1-\beta)t+\beta\eta}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{1} (1-s)a(s)f(u(s))ds \right] := A_{\lambda}u(t).$$
(2.3)

Define a cone K in the Banach space C[0, 1],

$$K = \{ u : u \in C[0,1], \ u \ge 0, \ \min_{t \in [0,1]} u(t) \ge \gamma \|u\| \}.$$

By Lemmas 2.2 and 2.3, we know that $A_{\lambda}K \subset K$ and it is not hard to verify that $A_{\lambda}: K \to K$ is a completely continuous.

3. Main Results

Throughout this paper, we shall use the following notation

$$A = \frac{1 + \beta(1+\eta)}{(1-\alpha\eta) - \beta(1-\eta)} \int_0^1 (1-s)a(s)ds, \quad B = \frac{\beta(1-\eta)}{(1-\alpha\eta) - \beta(1-\eta)} \int_0^\eta sa(s)ds.$$

Here and below we assume that $\alpha \eta < 1$.

Theorem 3.1. Suppose that (i)-(ii) hold. Then we have

- (1) If $Af_0 < \gamma Bf_{\infty}$, then for each $\lambda \in (\frac{1}{\gamma Bf_{\infty}}, \frac{1}{Af_0})$, the problem (1.3)-(1.4) has at least one positive solution.
- (2) If $f_0 = 0$ and $f_{\infty} = \infty$, then for any $\lambda \in (0, \infty)$, the problem (1.3)-(1.4) has at least one positive solution.
- (3) If $f_{\infty} = \infty$, $0 < f_0 < \infty$, then for each $\lambda \in (0, \frac{1}{Af_0})$, the problem (1.3)-(1.4) has at least one positive solution.
- (4) If $f_0 = 0$, $0 < f_{\infty} < \infty$, then for each $\lambda \in (\frac{1}{\gamma B f_{\infty}}, \infty)$, the problem (1.3)-(1.4) has at least one positive solution.

Proof. Since the proof of (2)-(4) is similar to the proof of (1), we only prove (1). Let $\lambda \in (\frac{1}{\gamma B f_{\infty}}, \frac{1}{A f_0})$, and choose $\varepsilon > 0$ such that

$$\frac{1}{\gamma B(f_{\infty} - \varepsilon)} \le \lambda \le \frac{1}{A(f_0 + \varepsilon)}.$$
(3.1)

By the definition of f_0 , there exists $H_1 > 0$ such that $f(x) \leq (f_0 + \varepsilon)x$ for $x \in [0, H_1]$. Let $u \in K$ with $||u|| = H_1$, by (2.3) and (3.1), we conclude that

$$\begin{aligned} A_{\lambda}u(t) &\leq \frac{\lambda\beta t}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{\eta} (\eta-s)a(s)f(u(s))ds \\ &+ \frac{\lambda(t+\beta\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{1} (1-s)a(s)f(u(s))ds \\ &\leq \frac{\lambda\beta}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{1} (1-s)a(s)f(u(s))ds \\ &+ \frac{\lambda(1+\beta\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{1} (1-s)a(s)f(u(s))ds \\ &= \frac{\lambda(1+\beta+\beta\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{1} (1-s)a(s)f(u(s))ds \\ &\leq \frac{\lambda(1+\beta+\beta\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{1} (1-s)a(s)(f_{0}+\varepsilon)u(s)ds \\ &\leq \lambda A(f_{0}+\varepsilon)\|u\| \leq \|u\|. \end{aligned}$$

As a result, $||A_{\lambda}u|| \le ||u||$. Let $\Omega_1 = \{u \in K : ||u|| < H_1\}$, then

$$||A_{\lambda}u|| \le ||u||, \quad \text{for } u \in K \cap \partial\Omega_1.$$
(3.3)

Again thanks to the definition of f_{∞} , there exists $\hat{H}_2 > 0$ such that $f(x) \ge (f_{\infty} - \varepsilon)x$, for every $x \in [\hat{H}_2, \infty)$. Denote $H_2 = \max\{2H_1, \frac{\hat{H}_2}{\gamma}\}, \Omega_2 = \{u \in K : ||u|| < H_2\}.$

If $u \in K$ with $||u|| = H_2$, then $\min_{t \in [0,1]} u(t) \ge \gamma ||u|| \ge \hat{H}_2$. It leads to

$$A_{\lambda}u(0) = -\frac{\lambda\beta}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{\eta} (\eta-s)a(s)f(u(s))ds + \frac{\lambda\beta\eta}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{1} (1-s)a(s)f(u(s))ds \geq -\frac{\lambda\beta}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{\eta} (\eta-s)a(s)f(u(s))ds + \frac{\lambda\beta\eta}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{\eta} (1-s)a(s)f(u(s))ds = \frac{\lambda\beta(1-\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{\eta} sa(s)f(u(s))ds \geq \frac{\lambda\beta(1-\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{\eta} sa(s)(f_{\infty}-\varepsilon)u(s)ds \geq \lambda\gamma B(f_{\infty}-\varepsilon)||u|| \geq ||u||.$$
(3.4)

Consequently, $||A_{\lambda}u|| \ge ||u||$ for $u \in K \cap \partial \Omega_2$.

Thus, according to the first condition of Theorem 1.2, A_{λ} has a fixed point u(t) with $H_1 \leq ||u|| \leq H_2$ in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

Theorem 3.2. Suppose that (i)-(ii) hold. Then we have

(1) If $Af_{\infty} < \gamma Bf_0$, then for each $\lambda \in (\frac{1}{\gamma Bf_0}, \frac{1}{Af_{\infty}})$, the problem (1.3)-(1.4) has at least one positive solution.

Q. MA

EJDE-2007/154

- (2) If $f_0 = \infty$ and $f_{\infty} = 0$, then for any $\lambda \in (0, \infty)$, the problem (1.3)-(1.4) has at least one positive solution.
- (3) If $f_{\infty} = \infty$, $0 < f_0 < \infty$, then for each $\lambda \in (0, \frac{1}{Af_{\infty}})$, the problem (1.3)-(1.4) has at least one positive solution.
- (4) If $f_0 = 0$, $0 < f_{\infty} < \infty$, then for each $\lambda \in (\frac{1}{\gamma B f_0}, \infty)$, the problem (1.3)-(1.4) has at least one positive solution.

Proof. Since the proof of (2)-(4) is similar to the proof of (1), we only prove (1). Let $\lambda \in \left(\frac{1}{\gamma B f_0}, \frac{1}{A f_{\infty}}\right)$, and choose $\varepsilon > 0$ such that

$$\frac{1}{\gamma B(f_0 - \varepsilon)} \le \lambda \le \frac{1}{A(f_\infty + \varepsilon)}.$$
(3.5)

By the definition of f_0 , there exists $H_3 > 0$ such that $f(x) \ge (f_0 - \varepsilon)x$ for $x \in [0, H_3]$. Let $u \in K$ with $||u|| = H_3$ such that $\min_{t \in [0,1]} u(t) \ge \gamma ||u||$. Similar to the estimates of (3.4), we obtain

$$A_{\lambda}u(0) \geq \frac{\lambda\beta(1-\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{\eta} sa(s)f(u(s))ds$$

$$\geq \frac{\lambda\beta(1-\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{\eta} sa(s)(f_{0}-\varepsilon)u(s)ds$$

$$\geq \lambda\gamma B(f_{0}-\varepsilon)\|u\| \geq \|u\|.$$
(3.6)

Hence, it follows that $||A_{\lambda}u|| \ge ||u||$. Set $\Omega_1 = \{u \in K : ||u|| < H_3\}$, we claim

$$||A_{\lambda}u|| \ge ||u||, \text{ for } u \in K \cap \partial\Omega_1.$$

Again in line with the definition of f_{∞} , there exists \tilde{H}_4 such that $f(x) \leq (f_0 + \varepsilon)x$, for $x \in [\tilde{H}_4, \infty)$. We discuss two possible cases:.

Case 1. Suppose that f is bounded, that is, there exists a positive constant M_1 such that $f(x) \leq M_1$ for all $x \in [0, \infty)$. Set $H_4 = \max\{2H_3, \lambda M_1A\}$. If $u \in K$ with $||u|| = H_4$, similar to (3.2), we obtain

$$A_{\lambda}u(t) \leq \frac{\lambda(1+\beta+\beta\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_0^1 (1-s)a(s)f(u(s))ds$$

$$\leq \lambda M_1 A \leq H_4 = \|u\|.$$
(3.7)

Thus, by setting $\Omega_2 = \{ u \in K : ||u|| < H_4 \}$, we get

$$||A_{\lambda}u|| \leq ||u||, \text{ for } u \in K \cap \partial\Omega_2.$$

Case 2. Suppose that f is unbounded, we choose $H_4 > \max\{2H_3, \gamma^{-1}\tilde{H}_4\}$ such that $f(x) \leq f(H_4)$, for $x \in [0, H_4]$. Let $u \in K$ with $||u|| = H_4$, we have

$$A_{\lambda}u(t) \leq \frac{\lambda(1+\beta+\beta\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{1} (1-s)a(s)f(u(s))ds$$

$$\leq \frac{\lambda(1+\beta+\beta\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{1} (1-s)a(s)f(H_{4})ds$$

$$\leq \lambda A(f_{\infty}+\varepsilon)H_{4} \leq ||u||.$$
(3.8)

Let $\Omega_2 = \{ u \in K : ||u|| < H_4 \}$, this yields

$$||A_{\lambda}u|| \le ||u||, \text{ for } u \in K \cap \partial\Omega_2$$

As a result, from the above estimates and by Theorem 1.2, it follows that A_{λ} has a fixed point $u \in K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

Theorem 3.3. Suppose that (i)-(ii) are true. In addition, assume that there exist two positive constants H_5, H_6 with $H_5 < \gamma H_6$ and $AH_6 \leq BH_5$ such that

- (1) $f(x) \leq \frac{H_5}{\lambda A}, \forall x \in [0, H_5],$ (2) $f(x) \geq \frac{H_6}{\lambda B}, \forall x \in [\gamma H_6, H_6].$

Then problem (1.3)-(1.4) has at least one positive solution $u^* \in K$ with $H_5 \leq$ $\|u^*\| \le H_6.$

The proof is similar to the proofs of Theorems 3.1 and 3.2, so we omit it.

Theorem 3.4. Suppose that (i)-(iii) hold, moreover, $f_{\infty} = \infty$. Then there exists a positive constant Λ_1 such that problem (1.3)-(1.4) has at least two positive solutions for λ small enough.

Proof. From (3) of theorems 3.1 and 3.2, we can see that (1.3)-(1.4) has a positive solution u_1 satisfying

$$\|u_1\| \ge H,\tag{3.9}$$

where H is a suitable constant for $\lambda \in (0, \mu^*)$, and $\mu^* = \min\{\frac{1}{Af_0}, \frac{1}{Af_\infty}\}$. To find the second positive solution of (1.3)-(1.4), we set

$$f^*(u) = \begin{cases} f(u), & \text{for } u \in [0, a], \\ f(a), & \text{for } u \in [a, \infty), \end{cases}$$
(3.10)

then $0 < f^*(u) \le b$ for $u \in [0, \infty)$, where a, b are given in remark 1.1.

Now we consider the auxiliary equation

$$u'' + \lambda a(t) f^*(u) = 0, \quad t \in (0, 1)$$
(3.11)

with the boundary value conditions

$$u(0) = \beta u(\eta), \quad u(1) = \alpha u(\eta). \tag{3.12}$$

It is easy to check that (3.11)-(3.12) is equivalent to the fixed point equation u = $F_{\lambda}u$, where

$$F_{\lambda}u(t) := \lambda \left[-\int_{0}^{t} (t-s)a(s)f^{*}(u(s))ds + \frac{(\beta-\alpha)t-\beta}{(1-\alpha\eta)-\beta(1-\eta)}\int_{0}^{\eta} (\eta-s)a(s)f^{*}(u(s))ds + \frac{(1-\beta)t+\beta\eta}{(1-\alpha\eta)-\beta(1-\eta)}\int_{0}^{1} (1-s)a(s)f^{*}(u(s))ds \right].$$

Clearly, $F_{\lambda}: K \to K$ is completely continuous and $F_{\lambda}(K) \subset K$. Set

$$H_{7} = \min\{\frac{H}{2}, a\},$$

$$\Lambda = \min\{H_{7}[\frac{(1+\beta+\beta\eta)M}{(1-\alpha\eta)-\beta(1-\eta)}\int_{0}^{1}(1-s)a(s)ds]^{-1}, \mu^{*}\}$$
(3.13)

and fix $\lambda \in (0, \Lambda)$, where $M = \max\{f^*(u) : 0 \le u \le H_7\}$.

EJDE-2007/154

Choose $\Omega_3 = \{ u \in C[0,1] : ||u|| < H_7 \}$, then for $u \in K \cap \partial \Omega_3$, we have

$$F_{\lambda}u(t) \leq \frac{\lambda(1+\beta+\beta\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{1} (1-s)a(s)f^{*}(u(s))ds$$

$$\leq \frac{\lambda M(1+\beta+\beta\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{1} (1-s)a(s)ds$$

$$< H_{7}.$$
(3.14)

Therefore, $||F_{\lambda}u|| \leq ||u||$, for $u \in K \cap \partial\Omega_3$.

From (iii) we know that $\lim_{u\to 0+} \frac{f^*(u)}{u} = +\infty$. This means that there exists a constant H_8 $(H_8 < H_7)$ such that $f^*(u) \ge \rho u$ for $u \in [0, H_8]$, where

$$\frac{\lambda\rho\beta\gamma(1-\eta)}{(1-\alpha\eta)-\beta(1-\eta)}\int_0^1 sa(s)ds \ge 1.$$

Also

$$F_{\lambda}u(0) \geq \frac{\lambda\beta(1-\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{\eta} sa(s)f^{*}(u(s))ds$$

$$\geq \frac{\lambda\beta(1-\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{\eta} sa(s)\rho u(s)ds$$

$$\geq \frac{\lambda\rho\beta\gamma(1-\eta)}{(1-\alpha\eta)-\beta(1-\eta)} \int_{0}^{\eta} sa(s)ds ||u|| \geq ||u||.$$

(3.15)

Thus, we may let $\Omega_4 = \{u \in C[0,1] : ||u|| < H_8\}$, so that $||F_{\lambda}u|| \ge ||u||$, for $u \in K \cap \partial \Omega_4$.

By the second part of Theorem 1.2, it follows that (3.11)-(3.12) has a positive solution u_2 satisfying

$$H_8 \le \|u_2\| \le H_7. \tag{3.16}$$

Combining with (3.10), (3.13), we obtain that u_2 is also a solution of (1.3)-(1.4).

In other words, from (3.9) and (3.16) we show that (1.3)-(1.4) has two distinct positive solutions u_1 and u_2 for $\lambda \in (0, \Lambda_1)$.

Theorem 3.5. Suppose that (i)-(iii) hold, furthermore, $f_0 = f_{\infty} = 0$. Then the problem (1.3)-(1.4) has at least two positive solutions for λ large enough.

Proof is the same as that of Theorem 3.4, we omit it.

References

- W. Feng and J. R. L.Webb; Solvability of a three-point nonlinear boundary value problem at resonance. Nonlinear Analysis(TMA), 1997, 30(6), 3227-3238.
- [2] D. Guo and V.Lakshmikantham; Nonlinear problems in abstract cones. Academic Press, San Diego, 1988.
- [3] C. P. Gupta; Solvability of three-point nonlinear boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl., 168(1992), 540-551.
- [4] V. A. II'in, E. I. Moiseev; Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator. Differential Equations, 1987, 23(8), 979-987.
- [5] H. Luo and Q. Ma; positive solutions to a generalized second-order three-point boundary value problem on time scales. Electronic Journal of Differential Equations. 2005, 17, 1-14.
- [6] R. Ma; Multiplicity of positive solutions for second-order three-point boundary value problem. Comp. Math. Appl. 40(2000), 193-204.
- [7] R. Ma and Q. Ma; Positive solutions for semipositone m-point boundary value problem. Acta Mathematica Sinica, English series. 2004, Vol.20, No.2, 273-282.
- [8] S. Timoshenko; Theory of elastic stability. McGraw-Hill, New York, 1961.

Qiaozhen Ma

College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu, 730070, China

 $E\text{-}mail\ address: \verb"maqzh@nwnu.edu.cn"$