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EXISTENCE OF PERIODIC SOLUTIONS OF A DELAYED
PREDATOR-PREY SYSTEM ON TIME SCALES

DANDAN YANG

Abstract. In this paper, we prove the existence of periodic solutions of a
delayed periodic predator-prey system based on continuation theorem of coin-

cidence degree.

1. Introduction

In recent years, the predator-prey models together with many kinds of functional
responses have been of great interest to both applied mathematicians and ecologists
[7, 9, 11, 15, 16, 18]. In 2006, Yu Yang et al. [17] considered the delayed system
with general functional response in Gilpin model

x′1(t) = x1(t)
[
r(t)− b(t)xθ

1(t− τ1(t))−
α(t)xp−1

1 (t)
1 + mxp

1(t)
x2(t− σ(t))

]
,

x′2(t) = x2(t)
[
− d(t)− a(t)x2(t− τ2(t)) +

β(t)xp
1(t− τ3(t))

1 + mxp
1(t− τ3(t))

]
,

(1.1)

where x1(t), x2(t) represent the densities of the prey population and predator popu-
lation at time t, respectively. They obtained a sufficient condition on the existence
of positive periodic solutions of (1.1) by using the continuation theorem of coinci-
dence degree theory.

In order to unify differential and difference equations, people have done a lot of
research about dynamic equations on time scales [2, 3, 4, 8, 14], since the theory of
time scales is introduced by hilger in [12]. To the best of our knowledge, only a few
results can be found in the literature for predator-prey system by using coincidence
degree theorem on time scales.

Motivated by [12, 17], the aim of this paper is to explore the existence of periodic
solutions of the delayed predator-prey system with general functional response,
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which the prey population growth satisfies Gilpin model on time scales

z∆
1 (t) = r(t)− b(t) exp{θz1(t− τ1(t))} −

α(t) exp{(p− 1)z1(t) + z2(t− σ(t))}
1 + m exp{pz1(t)}

,

z∆
2 (t) = −d(t)− a(t) exp{z2(t− τ2(t))}+

β(t) exp{pz1(t− τ3(t))}
1 + m exp{pz1(t− τ3(t))}

,

(1.2)
for t ∈ T. As we see, if x1(t) = exp z1(t), x2(t) = exp z2(t), and T = R, then (1.2)
reduces to (1.1).

The rest of this paper is organized as follows. In section 2, we present some
preliminaries, including basic definitions time scales and coincidence degree the-
orems. We give our main result in section 3 based on the continuation theorem
of coincidence degree theorem [10]. In the last section, we present an example to
illustrate our main result. Also the numerical simulations are given to support the
theoretical findings.

2. Preliminaries

The study of dynamic equation on time scales goes back to its founder Stefan
Hilger [12] and it is a new area of still fairly theoretical exploration in mathematics.

For convenience, we first introduce some definitions and the theory of calculus
on timescales, which are needed later. For more details on timescales, please see
[1, 5, 6, 12, 13].

A time scale T is an arbitrary nonempty closed subset of real numbers R. The
operators σ and ρ from T to T, defined by [12],

σ(t) = inf{τ ∈ T : τ > t} ∈ T, and ρ(t) = sup{τ ∈ T : τ < t} ∈ T

are called the forward jump operator and the backward jump operator, respectively.
In this definition

inf ∅ := sup T, sup ∅ := inf T.

The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t,
ρ(t) < t, σ(t) = t, σ(t) > t, respectively.

Let f : T → R and t ∈ T (assume t is not left-scattered if t = sup T), then the
delta derivative of f at the point t is defined to be the number f∆(t) (provided it
exists) with the property that for each ε > 0 there is a neighborhood U of t such
that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ |σ(t)− s|, for all s ∈ U.

A function f is said to be delta differentiable on T if f∆ exists for all t ∈ T. A
function F : T → R is called an antiderivative of f : T → R provided F∆ = f(t)
for all t ∈ T. Then we define∫ b

a

f(t)∆t = F (b)− F (a), for a, b ∈ T.

Notation. Throughout this paper, T denotes a time scale. Let ω > 0, the time
scale T is assumed to be ω−periodic, i.e., t ∈ T implies t + ω ∈ T. Let κ =
min{R+ ∩ T}, and Iω = [κ, κ + ω] ∩ T. A function f : T → R is said to be rd-
continuous if it is continuous at right-dense points in T and it left-sided limits exist
(finite)at left-dense points in T. The set of rd-continuous functions f : T → R will
be denoted by Crd(T).
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Lemma 2.1. If a, b ∈ T, α, β ∈ R and f, g ∈ Crd(T), then
(a) ∫ b

a

[αf(t) + βg(t)]∆t = α

∫ b

a

f(t)∆t + β

∫ b

a

g(t)∆t;

(b) if f(t) ≥ 0 for all a ≤ t ≤ b, then
∫ b

a
f(t)∆t ≥ 0;

(c) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then∣∣ ∫ b

a

f(t)∆t
∣∣ ≤ ∫ b

a

g(t)∆t.

Throughout of this paper, for (1.2) we assume that
(H) For i = 1, 2: a(t), b(t), α(t), β(t), σ(t), τi(t) : R → [0,+∞) are rd-continuous

positive periodic functions with period ω and α(t) 6= 0, β(t) 6= 0; r(t), d(t) :
R → R are rd-continuous functions of period ω and

∫ κ+ω

κ
d(t)∆t > 0,∫ κ+ω

κ
r(t)∆t > 0; p is a positive constant and p ≥ 1; m and θ are positive

constants.
In view of the actual applications of system (1.2), we consider the initial value

problem

zi(s) = Φi(s), s ∈ [κ− τ, κ] ∩ T,Φi(κ) > 0,

Φi(s) ∈ Crd([κ− τ, κ] ∩ T, R+), i = 1, 2,

where τ = maxt∈[κ,κ+ω]{τ1(t), τ2(t), τ3(t), σ(t)}.
Next we give some fundamental definitions about coincidence degree theorem.

These concepts will be used for proving the existence of solutions of (1.2).
Let X and Z be two Banach spaces, L : Dom L ⊂ X → Z be a continuous

mapping. The mapping L will be called a Fredholm mapping of index Zero if
dim kerL = codim Im L < +∞ and Im L is closed in Z. If L is a Fredholm mapping
of index zero and there follows that L|Dom L∩ker P : (I−P )X → ImL is invertible.
We denote the inverse of that map by Kp. If Ω is an open bounded subset of X, the
mapping N will be called L-compact on Ω if QN(Ω) is bounded and Kp(I −Q)N :
Ω → X is compact. Since Im Q is isomorphic to ker L, there exists an isomorphism
J : Im Q → ker L.

The following Lemma is important for the proof of our main results.

Lemma 2.2. (Continuation Theorem [1]) Let L be a Fredholm mapping of index
zero and let N be L-compact on Ω. Suppose

(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x /∈ ∂Ω;
(b) QNx 6= 0 for each x ∈ ∂Ω ∩ ker L and

deg{JQN, Ω ∩ ker L, 0} 6= 0.

Then the equation Lx = Nx has at least one solution lying in Dom L ∩ Ω.

The following lemma will be used in the proof of our results. The proof is similar
to that of Lemma 3.2 established in [16]. So we omit it here.

Lemma 2.3. Let t1, t2 ∈ T and t ∈ T. If g : T → R ∈ Crd(T) is ω−periodic, then

g(t) ≤ g(t1) +
∫ κ+ω

κ

|g∆(s)|∆s, and g(t) ≥ g(t2)−
∫ κ+ω

κ

|g∆(s)|∆s.

By simple calculation, we get the following two lemmas.
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Lemma 2.4. The following algebraic equation

b̄ exp{θz1} − r̄ = 0,

β̄
exp{pz1}

1 + m exp{pz1}
− ā exp{z2} − d̄ = 0,

has a unique solution.

Lemma 2.5. If y(t) > 0 for t ∈ T, then

yp−1(t)
1 + myp(t)

≤ max{ 1
m

, 1}.

3. Main result

For convenience, we denote

zi(ξi) = min
t∈Iω

zi(t), zi(ηi) = max
t∈Iω

zi(t), i = 1, 2. (3.1)

Theorem 3.1. Assume that condition (H) holds and

ār̄ −max{ 1
m

, 1}αβ exp{(D + d)ω} > 0,
β exp{pH2}

1 + m exp{pH2}
− d > 0,

where

H2 =
1
θ
ln
(mār̄ −max{ 1

m , 1}ᾱβ̄exp{(D̄ + d̄)ω}
māb̄

)
− (R̄ + r̄)ω,

ā =
1
ω

∫ κ+ω

κ

a(t)∆t, r̄ =
1
ω

∫ κ+ω

κ

r(t)∆t,

R̄ =
1
ω

∫ κ+ω

κ

|r(t)|∆t, ᾱ =
1
ω

∫ κ+ω

κ

α(t)∆t,

d̄ =
1
ω

∫ κ+ω

κ

d(t)∆t, D̄ =
1
ω

∫ κ+ω

κ

|d(t)|∆t,

β̄(t) =
1
ω

∫ κ+ω

κ

β∆t,

then system (1.2)has at least one ω−periodic solution.

Proof. Define

X = Z = {(z1, z2)T ∈ C(T, R2) : zi(t + ω) = zi(t), i = 1, 2, t ∈ T},

‖(z1, z2)T ‖ =
2∑

i=1

max |zi(t)|, (z1, z2)T ∈ X(Z).

then X, Z are both Banach spaces endowed with norm ‖ · ‖. Let

L : Dom L → Z, L

(
z1

z2

)
=
(

z∆
1 (t)

z∆
2 (t)

)
,
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where Dom L = X, and N : Dom L → Z,

N

(
z1

z2

)

=

r(t)− b(t) exp{θz1(t− τ1(t))} − α(t) exp{(p−1)z1(t)}
1+m exp{pz1(t)} exp{z2(t− σ(t))}

−d(t)− a(t) exp{z2(t− τ2(t))}+ β(t) exp{pz1(t−τ3(t))}
1+m exp{p(t−τ3(t))}

 ,

P

(
z1

z2

)
= Q

(
z1

z2

)
=

(
1
ω

∫ κ+ω

κ
z1(t)∆t

1
ω

∫ κ+ω

κ
z2(t)∆t

)
,

where (z1, z2)T ∈ X. Then

ker L = {(z1, z2)T ∈ X|(z1, z2)T = (h1, h2)T ∈ R2, t ∈ T},

Im L = {(z1, z2)T ∈ Z|
∫ κ+ω

κ

z1(t)∆(t) = 0,

∫ κ+ω

κ

z2(t)∆(t) = 0},

dim kerL = 2 = codim Im L.

Since Im L is closed in Z , then L is a Fredholm mapping of index zero. It is easy
to show that P and Q are continuous projectors such that

Im P = kerL, ker Q = Im L = Im(I −Q).

Furthermore, the generalized inverse (of L) Kp : Im L → ker P ∩Dom L exists and
is given by

Kp

(
z1

z2

)
=

(∫ t

κ
z1(s)∆s− 1

ω

∫ κ+ω

κ

∫ t

κ
z1(s)∆s∆t∫ t

κ
z2(s)∆s− 1

ω

∫ κ+ω

κ

∫ t

κ
z2(s)∆s∆t

)
.

Thus

QN

(
z1

z2

)

=

 1
ω

∫ κ+ω

κ
(r(t)− b(t) exp{θz1(t− τ1(t))} − α(t) exp{(p−1)z1(t)}

1+m exp{pz1(t)} exp{z2(t− σ(t))})∆t

1
ω

∫ κ+ω

κ
(−d(t)− a(t) exp{z2(t− τ2(t))}+ β(t) exp{pz1(t−τ3(t))}

1+m exp{p(t−τ3(t))} )∆t

 ,

Kp(I −Q)N
(

z1

z2

)
=

(∫ t

κ
z1(s)∆s− 1

ω

∫ κ+ω

κ

∫ t

κ
z1(s)∆s∆t− (t− κ− 1

ω

∫ κ+ω

κ
(t− κ)∆t)z̄1∫ t

κ
z2(s)∆s− 1

ω

∫ κ+ω

κ

∫ t

κ
z2(s)∆s∆t− (t− κ− 1

ω

∫ κ+ω

κ
(t− κ)∆t)z̄2

)
.

Obviously, QN and Kp(I−Q)N are continuous. According to Arela-Ascoli theorem,
it is easy to show that Kp(I−Q)N(Ω̄) is compact for any open bounded set Ω ∈ X
and QN(Ω̄) is bounded. Thus, N is L-compact on Ω.

Now,we shall search an appropriate open bounded subset Ω for the application
of the continuation theorem. For the operator equation Lx = λNx, λ ∈ (0, 1), we
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have

z∆
1 (t) = λ

[
r(t)− b(t) exp{θz1(t− τ1(t))}

− α(t) exp{(p− 1)z1(t)}
1 + m exp{pz1(t)}

exp{z2(t− σ(t))}
]
,

z∆
2 (t) = λ

[
− d(t)− a(t) exp{z2(t− τ2(t))}+

β(t) exp{pz1(t− τ3(t))}
1 + m exp{pz1(t− τ3(t))}

]
,

(3.2)

where t ∈ T. Assume (z1(t), z2(t))T is a solution of (3.2). Integrating (3.2), we get∫ κ+ω

κ

b(t) exp{θz1(t− τ1)}∆t

+
∫ κ+ω

κ

α(t) exp{(p− 1)z1(t)} exp{z2(t− σ(t))}
1 + m exp{pz1(t)}

∆t = r̄ω,

(3.3)

∫ κ+ω

κ

β(t) exp{pz1(t− τ3)}
1 + m exp{pz1(t− τ3)}

∆t−
∫ κ+ω

κ

a(t) exp{z2(t− τ2)}∆t = d̄ω, (3.4)

By the first equation of (3.2) and (3.3), we get∫ κ+ω

κ

|z∆
1 (t)|∆t ≤

∫ κ+ω

κ

|r(t)|∆t +
∫ κ+ω

κ

[
b(t) exp{θz1(t− τ1(t))}

+
α(t) exp{(p− 1)z1(t)} exp{z2(t− σ(t))}

1 + m exp{pz1(t)}

]
∆t

≤ (R̄ + r̄)ω.

By the second equation of (3.2) and (3.4), we have∫ κ+ω

κ

|z∆
2 (t)|∆t

≤
∫ κ+ω

κ

|d(t)|∆t +
∫ κ+ω

κ

[ β(t) exp{pz1(t− τ3(t))}
1 + m exp{pz1(t− τ3(t))}

+ a(t) exp{z2(t− τ2(t))
]
∆t

≤ (D̄ + d̄)ω.

By (3.1) and (3.4), we obtain

āω exp{z2{ξ2}} ≤
∫ κ+ω

κ

a(t) exp{z2(t− τ2(t))}∆t

=
∫ κ+ω

κ

β(t) exp{pz1(t− τ3(t))}
1 + m exp{pz1(t− τ3(t))}

∆t− d̄ω ≤ β̄ω

m
;

that is,

z2(ξ2) ≤ ln{ β̄

mā
} := L2,

hence

z2(t) ≤ z2(ξ2) +
∫ κ+ω

κ

|z∆
2 (t)|∆t ≤ ln{ β̄

mā
}+ (D̄ + d̄)ω := H3. (3.5)

From (3.1) and (3.3), we have

r̄ω ≥
∫ κ+ω

κ

b(t) exp{θz1(t− τ1(t))}∆t ≥ b̄ω exp{θz1(ξ1)};
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that is

z1(ξ1) ≤
1
θ

ln{ r̄

b̄
} := L1,

then

z1(t) ≤ z1(ξ1) +
∫ κ+ω

κ

|z∆
1 (t)|∆t ≤ 1

θ
ln{ r̄

b̄
}+ (R̄ + r̄)ω := H1. (3.6)

By (3.1), (3.3), (3.6), lemma 2.5 and under the assumptions of theorem 3.1, we
have

b̄ω exp{θz1(η1)} ≥
∫ κ+ω

κ

b(t) exp{θz1(η1)}∆t

= r̄ω −
∫ κ+ω

κ

α(t) exp{(p− 1)z1(t)} exp{z2(t− σ(t))}
1 + m exp{pz1(t)}

≥ r̄ω − ᾱβ̄

mā
exp{(D̄ + d̄)ω},

thus

z1(η1) ≥
1
θ

ln(
mār̄ −max{ 1

m , 1}ᾱβ̄ exp{(D̄ + d̄)ω}
māb̄

) := l1.

We also can get that

z1(t) ≥ z1(η1)−
∫ κ+ω

κ

|z∆
1 (t)|∆t

≥ 1
θ

ln(
mār̄ −max{ 1

m , 1}ᾱβ̄ exp{(D̄ + d̄)ω}
māb̄

)− (R̄ + r̄)ω := H2.

(3.7)

By (3.6) and (3.7), we have

max
t∈[0,ω]

|z1(t)| ≤ max{|H1|, |H2|} := H5. (3.8)

Now we are in a position to estimate z2(η2). From (3.1), (3.4) and (3.7), we get

āω exp{z2(η2)} ≥
∫ κ+ω

κ

a(t) exp{z2(t− τ2)}∆t

=
∫ κ+ω

κ

β(t) exp{pz1(t− τ3(t))}
1 + m exp{pz1(t− τ3(t))}

− d̄ω

≥ β̄ωexp{pH2}
1 + m exp{pH2}

− d̄ω,

thus

z2(η2) ≥ ln{
β̄ exp{pH2}

1+m exp{pH2} − d̄

ā
} := l2,

we have also

z2(t) ≥ z(η2)−
∫ κ+ω

κ

|z∆
2 |∆t ≥ ln{

β̄ exp{pH2}
1+m exp{pH2} − d̄

ā
} − (D̄ + d̄)ω := H4. (3.9)

By (3.5) and (3.9), we get

max
t∈[0,ω]

|z2(t)| ≤ max{|H3|, |H4|} := H6,
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clearly, H5,H6 are dependent on λ. Let H8 = H5 + H6 + H7, where H7 is large
enough, such that H8 ≥ |l1|+ |L1|+ |l2|+ |L2|. Next, for (z1, z2)T ∈ R2, µ ∈ [0, 1],
we shall consider the following algebraic equations:

b̄ exp{θz1}+ µ
ᾱ exp{(p− 1)z1} exp{z2}

1 + m exp{pz1}
− r̄ = 0,

β̄ exp{pz1}
1 + m exp{pz1}

− ā exp{z2} − d̄ = 0.

(3.10)

Similar to the above discussion, we can easily check that, every solution (z∗1 , z∗2)T

of (3.10) satisfies
l1 ≤ z∗1 ≤ L1, l2 ≤ z∗2 ≤ L2.

Take Ω = {(z1(t), z2(t))T ∈ z : ‖(z1, z2)T ‖ < H8}. Obviously, Ω satisfies the
condition (a) of lemma 2.2. When z ∈ ∂Ω ∩ ker L, (z1, z2)T is a constant vector in
R2, and ‖(z1, z2)T ‖ = H8. So we have

QNz =

(
b̄ exp{θz1}+ ᾱ exp{(p−1)z1} exp{z2}

1+m exp{pz1} − r̄
β̄ exp{pz1}

1+m exp{pz1} − ā exp{z2} − d̄

)
6=
(

0
0

)
.

To calculate the Brouwer degree, we consider the homotopy:

Hµ(z1, z2) = µQN(z1, z2) + (1− µ)G(z1, z2), µ ∈ (0, 1],

where

G

(
z1

z2

)
=

(
b̄ exp{θz1} − r̄

β̄ exp{pz1}
1+m exp{pz1} − ā exp{z2} − d̄

)
.

It is easy to show that 0 6∈ Hµ(∂ ∩ ker L, 0), for µ ∈ (0, 1]. Moreover, by lemma
2.4, algebraic equation G(z1, z2) = 0 has a unique solution in R2. Because of the
invariance property of homotopy, we have

deg{JQN, Ω ∩ ker L, 0} = deg{QN, Ω ∩ ker L, 0} = deg{G, Ω ∩ ker L, 0} 6= 0.

We have proved that Ω satisfies all requirements of lemma 2.2. Thus, in Ω̄, system
(1.2) has at least one ω-periodic solution. The proof is complete. �

Remark 3.2. Obviously, (1.1) in [17] is the special case of (1.2). So our result is
general than that of [17]. Moreover, few papers discuss on the general functional
response, such as Gillpin model we concern in this paper.

4. An example

Consider the system

x∆
1 (t) =

1
5
− 1

20
(1 + sin t) exp{x1(t− 0.5)} − exp{x1(t) + x2(t)}

15(1 + 3 exp{2x1(t)}
,

x∆
2 (t) = − 1

16
(1− sin t)− 2 exp{x2(t− 0.3)}+

3 exp{2x1(t− 0.8)}
1 + 3 exp{2x1(t− 0.8)}

,

(4.1)

where a(t) = 2, b(t) = 1
20 (1 + sin t), r(t) = 1

5 , d(t) = 1
16 (1 − sin t), α(t) = 1

15 ,
β(t) = 3, τ1(t) = 0.5, τ2(t) = 0.3, σ(t) = 0, and τ3(t) = 0.8 are 2π−period
functions.
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If T = R, then (4.1) reduces to the differential system

x′1(t) =
1
5
− 1

20
(1 + sin t) exp{x1(t− 0.5)} − exp{x1(t) + x2(t)}

15(1 + 3 exp{2x1(t)}
,

x′2(t) = − 1
16

(1− sin t)− 2 exp{x2(t− 0.3)}+
3 exp{2x1(t− 0.8)}

1 + 3 exp{2x1(t− 0.8)}
,

(4.2)

Obviously, m = 3, p = 2, θ = 1 and ω = 2π. It is easy to show that ā = 2, b̄ = 1
20 ,

r̄ = R̄ = 1
5 , d̄ = D̄ = 1

16 , ᾱ = 1
15 and β̄ = 3. By some calculations, we get

mār̄ −max{ 1
m

, 1}ᾱβ̄ exp{(D̄ + d̄)ω} = 0.7613 > 0,

and
β̄ exp{pH2}

1 + m exp{pH2}
− d̄ = 0.05 > 0.

According to theorem 3.1, it is easy to see that (4.2) has at least one 2π-periodic
solution. Numerical simulations of solution for (4.2) and the solution tends to the
2π-periodic solution see Figure 1a and Figure 1b, respectively. The simulation is
performed using MATLAB software.

0 20 40 60 80 100 120 140 160 180 200
−2
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Figure 1. (a) Numerical solution x1(t), x2(t) of system (4.2),
where x1(s) = x2(s) = 0 for s ∈ [−0.8, 0]. (b) Phase trajectories
of system (4.2), where x1(s) = x2(s) = 0 for s ∈ [−0.8, 0].

Numerical simulations of solution for (4.2) and the solution tends to the 2π-
periodic solution; see Fig. 1.
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