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POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT
BOUNDARY-VALUE PROBLEMS

ZENGQIN ZHAO

Abstract. In this paper, we present the Green’s functions for a second-order

linear differential equation with three-point boundary conditions. We give

exact expressions of the solutions for the linear three-point boundary problems
by the Green’s functions. As applications, we study uniqueness and iteration

of the solutions for a nonlinear singular second-order three-point boundary

value problem.

1. Introduction

The Green’s function plays an important role in solving boundary-value problems
of differential equations. The exact expressions of the solutions for some linear
ordinary differential equations boundary value problems can be denoted by Green’s
functions of the problems (see [3, 12, 20]). The Green’s function method might be
used to obtain an initial estimate for shooting method. the Green’s function method
for solving the boundary value problem is an effective tool in numerical experiments
[6]. Some boundary value problems for nonlinear differential equations can be
transformed into the nonlinear integral equations the kernel of which are the Green’s
functions of corresponding linear differential equations. The integral equations can
be solved by to investigate the property of the Green’s functions (see [2, 4, 7, 8, 14]).
The concept, the significance and the development of Green’s functions can be seen
in [15]. The other study of second-order three-point boundary value problems
can be seen in [5, 9, 10, 16, 18, 19] and its references. In above literatures, the
three-point boundary values are all same conditions u(0) = 0, u(1) = ku(η), the
investigation on the boundary condition u′(0) = 0, u(1) = ku(η) can be seen
[1, 11, 13, 17], the investigation for other three-point boundary conditions is few,
since people may be not familiar with their Green’s functions. The solutions of
the Green’s functions diffuse in the literature, there is a lack of uniform method.
The undetermined parametric method we use in this paper is a universal method,
the Green’s functions of many boundary value problems for ordinary differential
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equations can obtained by similar the method. In addition, our Green’s functions
have orderly expressions.

We consider the Green’s function for the following second-order linear differential
equation three-point boundary value problems

u′′ + f(t) = 0, t ∈ [a, b], (1.1)

subject to the boundary value conditions, respectively,

u(a) = 0, u′(b) = ku(η); (1.2)

u(a) = ku(η), u′(b) = 0; (1.3)

u(a) = 0, u′(b) = ku′(η); (1.4)

u(a) = ku′(η), u′(b) = 0; (1.5)

u′(a) = 0, u(b) = ku(η); (1.6)

u′(a) = ku(η), u(b) = 0; (1.7)

u′(a) = 0, u(b) = ku′(η); (1.8)

u′(a) = ku′(η), u(b) = 0; (1.9)

where a < η < b and k is a constant.
This paper is organized as follows. In §2, we study the Green’s function for

the equation (1.1) satisfying the three-point boundary conditions (1.2) and give
the expression of the unique solution by the Green’s function, that incarnate the
general method of deriving the Green’s functions for a class of boundary problems.
In §3, for some interrelated boundary conditions, we give the Green’s functions of
the problems directly, omitting the particular of derivation. The correctness of the
Green’s functions only need direct verification. As applications, in §4, we study
the uniqueness of the solutions, the iteration and the rate of convergence by the
iteration for a nonlinear singular second-order three-point boundary value problem.

2. The Green’s Function of Equations (1.1) with the Boundary
Condition (1.2)

About the boundary value problem (1.1)-(1.2), we have the following conclusions.

theorem 2.1. If k(η − a) 6= 1, then the second-order linear three-point boundary
value problem (1.1)(1.2) has a unique solution u(t), which is given via

u(t) =
∫ 1

0

G1(t, s)f(s)ds, (2.1)

where

G1(t, s) = K(t, s) +
k(t− a)

1− k(η − a)
K(η, s), (2.2)

K(t, s) =

{
s− a, a ≤ s ≤ t ≤ b

t− a, a ≤ t < s ≤ b.
(2.3)

Remark 2.2. We call G1(t, s) the Green’s function of the boundary value problem
(1.1)-(1.2).
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Proof. It is well known that the second-order two-point linear boundary value prob-
lem

u′′ + f(t) = 0, t ∈ [a, b],

u(a) = 0, u′(b) = 0

has a unique solution

w(t) =
∫ b

a

K(t, s)f(s)ds. (2.4)

where K(t, s) is as described in (2.3). From (2.4) we obtain

w(a) = 0, w′(b) = 0, w(η) =
∫ b

a

K(η, s)f(s)ds. (2.5)

Assume that u(t) is a solution of problem (1.1)-(1.2). Then u′′(t) = w′′(t) =
−f(t), thus, we can be assume that

u(t) = w(t) + c + dt, (2.6)

where c, d are constants that will be determined. From (2.6) we know that

u′(t) = w′(t) + d. (2.7)

Equations (2.5), (2.6) and (2.7) imply

u(a) = c + da,

u′(b) = d,

u(η) = c + dη + w(η).

Putting these into (1.2) yields

c + da = 0,

d = k(c + dη + w(η)).

Since k(η−a) 6= 1, solving the system of linear equations on the unknown numbers
c, d, we obtain

c =
−akw(η)

1− k(η − a)
,

d =
kw(η)

1− k(η − a)
,

hence, c + dt = k(t−a)
1−k(η−a)w(η). Putting this into (2.6), we obtain

u(t) = w(t) +
k(t− a)

1− k(η − a)
w(η),

which a solution of (1.1)-(1.2). This together with (2.4) imply

u(t) =
∫ b

a

K(t, s)f(s)ds +
k(t− a)

1− k(η − a)

∫ b

a

K(η, s)f(s)ds. (2.8)

Consequently, (2.1) holds.
The uniqueness of a solutions (1.1) (1.2) follows from the fact that the corre-

sponding homogeneous problem has only the trivial solution. �

From Theorem 2.1 we obtain the following corollary.
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Corollary 2.3. Suppose the nonlinear function g(t, u) is continuous on [a, b]×R,
then if k(η − a) 6= 1, the nonlinear three-point boundary-value problem

u′′ + g(t, u) = 0, t ∈ [a, b],

u(a) = 0, u′(b) = ku(η)

is equivalent to the nonlinear integral equation

u(t) =
∫ b

a

G1(t, s)g(s, u(s))ds

with G1(t, s) as in (2.2).

Example 2.4. The second-order three-point linear boundary value problem

u′′(t) + cos(t) = 0, t ∈ [0, 1],

u(0) = 0, u′(1) = −3
2
u(

1
3
)

has an unique solution

u1(t) =
2
3
t sin (1)− t cos

(
1
3

)
+ t + cos (t)− 1, 0 ≤ t ≤ 1. (2.9)

It can be obtained by letting a = 0, b = 1, η = 1
3 , k = − 3

2 , f(t) = cos(t) in
Theorem 2.1 that

u1(t) =
∫ 1

0

B(t, s) cos(s)ds− t

∫ 1

0

B(
1
3
, s) cos(s)ds,

where B(t, s) = min{t, s}, t, s ∈ [0, 1]. Therefore, (2.9) is obtained by direct com-
putation. Some properties of u1(t) are shown in the image Figure 1.
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Figure 1. Graph of u1(t)

3. The Relate Results for Other Boundary Conditions

In this section, we give the Green’s functions for some boundary value problems
directly via the following table, omitting the particular of derivation. The proof
is similar to that of Theorem 2.1. Similarly, the unique solutions of the linear
problems can be denoted by its Green’s functions. Some nonlinear boundary value
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problems can be transformed into the nonlinear integral equations the kernel of
which are the Green’s functions of the corresponding linear problems.

Equation: u′′(t) + f(t) = 0, t ∈ [a, b], a < η < b, k is a constant.

no. assume boundary Green’s function

1 k(η − a) 6= 1 (1.2) G1(t, s) = K(t, s) + k(t−a)
1−k(η−a)K(η, s)

2 k 6= 1 (1.3) G2(t, s) = K(t, s) + k
1−kK(η, s),

3 k 6= 1 (1.4) G3(t, s) = K(t, s) + k(t−a)
1−k Kt(η, s),

4 (1.5) G4(t, s) = K(t, s) + kKt(η, s),

5 k 6= 1 (1.6) G5(t, s) = H(t, s) + k
1−kH(η, s),

6 k(b− η) 6= −1 (1.7) G6(t, s) = H(t, s)− k(b−t)
1+k(b−η)H(η, s),

7 (1.8) G7(t, s) = H(t, s) + kHt(η, s),

8 k 6= 1 (1.9) G8(t, s) = H(t, s)− k(b−t)
1−k Ht(η, s),

where

K(t, s) =

{
s− a, a ≤ s ≤ t ≤ b

t− a, a ≤ t < s ≤ b;
Kt(η, s) =

{
0, a ≤ s < η,

1, η < s ≤ b;

H(t, s) =

{
b− t, a ≤ s ≤ t ≤ b

b− s, a ≤ t < s ≤ b;
Ht(η, s) =

{
−1, a ≤ s < η,

0, η < s ≤ b.

4. Applications in Nonlinear Singular Boundary Value Problems

In this section,we study the iteration process for the following nonlinear three-
point boundary value problem

u′′ + f(t, u) = 0, t ∈ (0, 1),

u(0) = 0, u′(1) = ku(η),
(4.1)

with η ∈ (0, 1), kη < 1, f(t, u) may be singular at t = 0 and/or t = 1.
Concerning the function f we impose the following hypotheses:

f(t, u) is nonnegative continuous on (0, 1)× [0,+∞),

f(t, u) is monotone increasing on u, for fixed t ∈ (0, 1),

there exist q ∈ (0, 1) such that

f(t, ru) ≥ rqf(t, u), ∀ 0 < r < 1, (t, u) ∈ (0, 1)× [0,+∞).

(4.2)

Obviously, from (4.2) we obtain

f(t, λu) ≤ λqf(t, u), ∀ λ > 1, (t, u) ∈ (0, 1)× [0,+∞). (4.3)

It is easy to see that if 0 < αi < 1, ai(t) are nonnegative continuous on (0, 1), for
i = 0, 1, 2, . . . ,m, then f(t, u) =

∑m
i=1 ai(t)uαi satisfy the condition (4.2).

Concerning the boundary value problem (4.1), we have following conclusions.



6 Z. ZHAO EJDE-2007/156

theorem 4.1. Suppose the function f(t, u) satisfy the condition (4.2), and

0 <

∫ 1

0

f(t, t)dt < ∞. (4.4)

Then the problem (4.1) has an unique solution w(t) in D
⋂

C2(0, 1), here

D = {x ∈ C[0, 1] | ∃Mx ≥ mx > 0, such that mxt ≤ x(t) ≤ Mxt, t ∈ I} .

Constructing successively the sequence of functions

hn(t) =
∫ 1

0

G(t, s)f(s, hn−1(s))ds, n = 1, 2, . . . , (4.5)

for any initial function h0(t) ∈ D, then {hn(t)} must converge to w(t) uniformly
on [0, 1] and the rate of convergence is

max
t∈[0,1]

|hn(t)− w(t)| = O
(
1−Nqn)

, (4.6)

where 0 < N < 1, which depends on initial function h0(t),

G(t, s) = B (t, s) +
ktB (η, s)
1− kη

, B(t, s) = min{t, s}, t, s ∈ [0, 1]. (4.7)

Proof. Let J = (0, 1), I = [0, 1], R+ = [0,+∞),

P = {x(t)
∣∣ x(t) ∈ C(I), x(t) ≥ 0},

Fx(t) =
∫ 1

0

G(t, s)f(s, x(s))ds, ∀x(t) ∈ D. (4.8)

It is easy to see that the operator F : D → P is increasing. By direct verifications
we know that if u ∈ D satisfies

u(t) = Fu(t), t ∈ I, (4.9)

then u ∈ C1(I)
⋂

C2(J) is a solution of (4.1).
For any x ∈ D, there exist positive numbers 0 < mx < 1 < Mx such that

mx s ≤ x(s) ≤ Mx s, s ∈ I,

(mx)qf(s, s) ≤ f(s, x(s)) ≤ (Mx)qf(s, s), s ∈ J. (4.10)

By (4.7) we have

G(t, s) = B(t, s) +
kt

1− kη
B(η, s) ≥ t

k

1− kη
B(η, s), (4.11)

G(t, s) ≤ t +
kt

1− kη
B(η, s) ≤ t

(
1 +

k

1− kη
B(η, s)

)
. (4.12)

Using (4.8), (4.3), (4.10), (4.11), (4.12) and the conditions (4.2), we obtain

Fx(t) ≥ t(mx)q k

1− kη

∫ 1

0

B(η, s)f(s, s)ds, t ∈ I, (4.13)

Fx(t) =
∫ 1

0

G(t, s)f(s, x(s))ds

≤ t(Mx)q

∫ 1

0

(
1 +

k

1− kη
B(η, s)

)
f(s, s)ds, t ∈ I.

(4.14)

Equations (4.4), (4.13) and (4.14) imply that F : D → D.
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For any h0 ∈ D, we let

lh0 = sup {l > 0 : lh0(t) ≤ (Fh0)(t), t ∈ I} ,

Lh0 = inf {L > 0 : (Fh0)(t)) ≤ Lh0(t), t ∈ I} ,

m = min{1, (lh0)
1

1−q }, M = max{1, (Lh0)
1

1−q },
(4.15)

u0(t) = mh0(t), v0(t) = Mh0(t),

un(t) = Fun−1(t), vn(t) = Fvn−1(t), n = 0, 1, 2, . . . .
(4.16)

Since the operator F is increasing, (4.2), (4.15) and (4.16) imply

u0(t) ≤ u1(t) ≤ · · · ≤ un(t) · · · ≤ vn(t) ≤ · · · ≤ v1(t) ≤ v0(t), t ∈ I. (4.17)

For t0 = m/M , from (4.8), (4.2) and (4.16), it can obtained by induction that

un(t) ≥ (t0)qn

vn(t), t ∈ I, n = 0, 1, 2, . . . . (4.18)

From (4.17) and (4.18) we know that

0 ≤ un+p(t)− un(t) ≤ vn(t)− un(t) ≤
(
1− (t0)qn)

Mh0(t),∀n, p, (4.19)

so that there exists a function w(t) ∈ D such that

un(t) → w(t), vn(t) → w(t), (uniformly on I), (4.20)

un(t) ≤ w(t) ≤ vn(t), t ∈ I, n = 0, 1, 2, . . . . (4.21)

From the operator F being increasing and (4.16) we have

un+1(t) = Fun(t) ≤ Fw(t) ≤ Fvn(t) = vn+1(t), n = 0, 1, 2, . . . .

This together with (4.20) and uniqueness of the limit imply that w(t) satisfy (4.9),
hence w(t) ∈ C1(I)

⋂
C2(J) is a solution of (4.1).

Form (4.5) (4.16) and the operator F being increasing, we obtain

un(t) ≤ hn(t) ≤ vn(t), t ∈ I, n = 0, 1, 2, . . . , (4.22)

thus, it follows from (4.19), (4.21) and (4.22) that

|hn(t)− w(t)| ≤ |hn(t)− un(t)|+ |un(t)− w(t)|
≤ 2|vn(t)− un(t)|

≤
(
1− (t0)qn)

M |h0(t)|.

Therefore,

max
t∈I

|hn(t)− w(t)| ≤
(
1− (t0)qn)

M max
t∈I

|h0(t)|.

So that (4.6) holds. From h0(t) is arbitrary in D we know that w(t) is the unique
solution of the equation (4.9) in D. �

Remark 4.2. If f(t, u) is continuous on I × R+, then it is quite evident that the
condition (4.4) holds. Hence the unique solution w(t) is in C2(I).
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