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SOLUTION TO NONLINEAR GRADIENT DEPENDENT
SYSTEMS WITH A BALANCE LAW

ZOUBIR DAHMANI, SEBTI KERBAL

Abstract. In this paper, we are concerned with the initial boundary value
problem (IBVP) and with the Cauchy problem to the reaction-diffusion system

ut −∆u = −un|∇v|p,

vt − d∆v = un|∇v|p,

where 1 ≤ p ≤ 2, d and n are positive real numbers. Results on the existence

and large-time behavior of the solutions are presented.

1. Introduction

In the first part of this article, we are interested in the existence of global classical
nonnegative solutions to the reaction-diffusion equations

ut −∆u = −un|∇v|p =: −f(u, v),

vt − d∆v = un|∇v|p,
(1.1)

posed on R+ × Ω with initial data

u(0;x) = u0(x), v(0;x) = v0(x) in Ω (1.2)

and boundary conditions (in the case Ω is a bounded domain in Rn)

∂u

∂η
=

∂v

∂η
= 0, on R+ × ∂Ω. (1.3)

Here ∆ is the Laplacian operator, u0 and v0 are given bounded nonnegative func-
tions, Ω ⊂ Rn is a regular domain, η is the outward normal to ∂Ω. The diffusive
coefficient d is a positive real. One of the basic questions for (1.1)-(1.2) or (1.1)-
(1.3) is the existence of global solutions. Motivated by extending known results on
reaction-diffusion systems with conservation of the total mass but with non linear-
ities depending only for the unknowns, Boudiba, Mouley and Pierre succeeded in
obtaining L1 solutions only for the case un|∇v|p with p < 2. In this article, we are
interested essentially in classical solutions in the case where p = 2 (Ω bounded or
Ω = Rn ; in the latter case, there are no boundary conditions).
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2. Results

The existence of a unique classical solution over the whole time interval [0, Tmax[
can be obtained by a known procedure: a local solution is continued globally by
using a priori estimates on ‖u‖∞, ‖v‖∞, ‖|∇u|‖∞, and ‖|∇v|‖∞.

2.1. The Cauchy problem.

Uniform bounds for u and v. First, we consider the auxiliary problem

Lλω := ωt − λ∆ω = b∇ω, t > 0, x ∈ RN

ω(0, x) = ω0(x) ∈ L∞,
(2.1)

where b = (b1(t, x), . . . , bN (t, x)), bi(t, x) are continuous on [0,∞) × RN , ω is a
classical solution of (2.1).

Lemma 2.1. Assume that ωt,∇ω, ωxixi
, i = 1, . . . , N are continuous,

Lλω ≤ 0, (≥) (0,∞)× RN (2.2)

and ω(t, x) satisfies (2.1)2. Then

ω(t, x) ≤ C := sup
x∈RN

ω0(x), (0,∞)× RN .

ω(t, x) ≥ C := inf
x∈RN

ω0(x), (0,∞)× RN .

The proof of the above lemma is elementary and hence is omitted. Now, we
consider the problem (1.1)-(1.2). It follows by the maximun principle that

u, v ≥ 0, in R+ × RN .

Uniform bounds of u. We have

u ≤ C1 := sup
RN

u0(x),

thanks to the maximum principle.
Uniform bounds of v. Next, we derive an upper estimate for v. Assume that 1 ≤
p < 2. We transform (1.1)2 by the substitution ω = eλv − 1 into

ωt − λ∆ω = λeλv(vt − d∆v − dλ |∇v|2) = λeλv(un|∇v|p − dλ |∇v|2).
Let

φ(x) ≡ Cxp − dλx2; C > 0, x ≥ 0.

By elementary computations,

φ(x) ≥ 0 when x ≤
( C

λd

)1/(2−p)

.

But in this case

|∇v| ≤
( c

λd

)1/(2−p)

.

In the case x ≥ ( c
λd )1/(2−p),

φ(x) ≤ 0 (2.3)
and hence ω ≤ M where

M = C
( pC

2dλ

)p/2−p

(
2− p

2
). (2.4)

Then we have v ≤ C2.
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2.1.1. Uniform bounds for |∇u| and |∇v|. At first, we present the uniform bounds
for |∇v|. We write (1.1)2 in the form

Ldv + kv = kv + un|∇v|p (2.5)

and transform it by the substitutions ω = ektv to obtain

Ldω = ekt(Ldv + kv) = ekt(kv + un|∇v|p), t > 0, x ∈ RN

ω(0, x) = v0(x).

Now let

Gλ = Gλ(t− τ ;x− ξ) =
1

[4πλ(t− τ)]
N
2

exp
( |x− ξ|2

4λ(t− τ)

)
be the fundamental solution related to the operator Lλ. Then, with Qt = (0, t) ×
RN , we have

ω = ektv = v0(t, x) +
∫

Qt

Gd(t− τ ;x− ξ)ekτ (kv + un|∇v|p)dξdτ

or
v = e−ktv0 +

∫
Qt

e−k(t−τ)Gd(t− τ ;x− ξ)(kv + un|∇v|p)dξdτ, (2.6)

where v0(t, x) is the solution of the homogeneous problem

Ldv
0 = 0, v0(0, x) = v0(x).

From (2.6) we have

∇v = e−kt∇v0 +
∫

Qt

e−k(t−τ)∇xGd(t− τ ;x− ξ)(kv + un|∇v|p)dξdτ. (2.7)

Now we set ν1 = sup |∇v| and ν0
1 = sup |∇v0|, in Qt. From (2.6), and using v ≤ C2,

we have

ν1 = ν0
1 + (kC2 + Cn

1 νp
1 )

∫ t

0

e−k(t−τ)
( ∫

RN

|∇xGd(t− τ ;x− ξ)|dξ
)
dτ.

We also have∫
RN

|∇xGd(t− τ ;x− ξ)|dξ =
∫

RN

|x− ξ|
2d(t− τ)

|Gd(t− τ, ;x− ξ)|dξ

which is transformed by the substitution ρ = 2
√

d(t− τ)ν into∫
RN

|∇xGd|dρ =
wN

πN/2

∫ ∞

0

e−ν2
dν =

χ√
d(t− τ)

where χ = wN

2πN/2 Γ(N+1
2 ) = Γ( N+1

2 )

Γ( N
2 )

. It follows that

ν1 = ν0
1 + (kC2 + Cn

1 νp
1 )

χ√
d

∫ t

0

e−k(t−τ) dτ√
t− τ

. (2.8)

Recall that ∫ t

0

e−k(t−τ) dτ√
t− τ

=
2√
k

∫ t

0

e−z2
dz <

√
π

k
.

If we set s =
√

k in (2.8) then we have

ν1 ≤ ν0
1 +

(
sC2 +

Cn
1

s
νp
1

)
χ

√
π

d
. (2.9)
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Now we minimize the right hand side of (2.9) with respect to s to obtain

ν1 ≤ ν0
1 +

2χ
√

π

d

(
C2C

n
1 νp

1

)1/p

. (2.10)

Note that ν0
1 = C2.

We have two cases: Case (i) 1 ≤ p < 2. In this case (2.10) implies

|∇v| ≤ ν1 ≤ ν(p) = D, in Qt, (2.11)

where D is a positive constant.
Case (ii) p = 2. In this case (2.10) holds under the additional condition

C2C
n
1 ≤

d

4πχ
. (2.12)

Similarly we obtain from (1.1)1,

U1 := sup
QT

|∇u| ≤ C1 + C1
2
√

πχ√
d

ν
p/2
1 ≤ Constant. (2.13)

The estimates (2.10) and (2.13) are independent of t, hence Tmax = +∞.
Finally, we have the main result.

Theorem 2.2. Let p = 2 and (u0, v0) be bounded such that (2.12) holds, then
system (1.1)-(1.2) admits a global solution.

2.2. The Neumann Problem. In this section, we are concerned with the Neu-
mann problem

ut −∆u = −un|∇v|2

vt − d∆v = un|∇v|2
(2.14)

where Ω be a bounded domain in RN , with the homogeneous Neumann boundary
condition

∂u

∂ν
=

∂v

∂ν
= 0, on R+ × ∂Ω (2.15)

subject to the initial conditions

u(0;x) = u0(x); v(0;x) = v0(x) in Ω. (2.16)

The initial nonnegative functions u0, v0 are assumed to belong to the Holder space
C2,α(Ω).

Uniform bounds for u and v. In this section a priori estimates on ‖u‖∞ and ‖v‖∞
are presented.

Lemma 2.3. For each 0 < t < Tmax we have

0 ≤ u(t, x) ≤ M, 0 ≤ v(t, x) ≤ M, (2.17)

for any x ∈ Ω.

Proof. Since u0(x) ≥ 0 and f(0, v) = 0, we first obtain u ≥ 0 and then v ≥ 0 as
v0(x) ≥ 0. Using the maximum principle, we conclude that

0 ≤ u(t, x) ≤ M, on QT

where
M ≥ M1 := max

x∈Ω
u0(x).
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Using ω = eλv − 1, with dλ ≥ Mn
1 , from (2.14), we obtain

ωt − d∆ω = λ|∇v|2(un − dλ)eλv, on QT

∂u

∂v
= 0 on ∂ST .

Consequently as dλ > maxΩ un, we deduce from the maximum principle that

0 ≤ ω(t, x) ≤ exp(λ|v0|∞)− 1.

Hence
v(x, t) ≤ 1

λ
ln(|ω|∞ + 1) ≤ Constant < ∞.

�

Uniform bounds for |∇v| and |∇u|. To obtain uniform a priori estimates for |∇v|,
we make use of some techniques already used by Tomi [8] and von Wahl [9]

Lemma 2.4. Let (u, v) be a solution to (2.10) -(2.12) in its maximal interval of
existence [0, Tmax[. Then there exist a constant C such that

‖u‖L∞([0,T [,W 2,q(Ω)) ≤ C and ‖v‖L∞([0,T [,W 2,q(Ω)) ≤ C.

Proof. Let us introduce the function

fσ,ε(t, x, u,∇v) = σun(t, x)
ε + |∇v|2

1 + ε|∇v|2
.

It is clear that |fσ,ε(t, x, u,∇v)| ≤ C(1 + |∇v|2) and a global solution vσ,ε differen-
tiable in σ for the equation

vt − d∆v = fσ,ε(t, x, u,∇v)

exists. Moreover, vσ,ε → v as σ → 1 and ε → 0, uniformly on every compact of
[0, Tmax[.

The function ωσ := ∂vσ,ε

∂σ satisfies

∂tωσ − d∆ωσ = un(t, x)
ε + |∇vσ|2

1 + ε|∇vσ|2
− 2σun (ε2 − 1)∇vσ.∇ωσ

(1 + ε|∇vσ|2)2
. (2.18)

Hereafter, we derive uniform estimates in σ and ε. Using Solonnikov’s estimates
for parabolic equation [5] we have

‖ωσ‖L∞([0,T (u0,v0)[,W 2,p(Ω)) ≤ C[‖∇vσ‖2Lp(Ω) + ‖∇vσ.∇ωσ‖2Lp(Ω)].

The Gagliardo-Nirenberg inequality [5] in the in the form

‖u‖W 1,2p(Ω) ≤ C‖u‖1/2
L∞(Ω)C‖u‖

1/2
W 2,p(Ω)

and the δ-Young inequality (where δ > 0)

αβ ≤ 1
2
(δα2 +

β2

δ
),

allows one to obtain the estimate

‖ωσ‖L∞([0,T (u0,v0)[,W 2,p(Ω)) ≤ C(1 + ‖ωσ‖W 2,p(Ω)).

But ωσ = ∂vσ

∂σ , hence by Gronwall’s inequality we have

‖vσ‖L∞([0,T [,W 2,p(Ω)) ≤ CeCσ.
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Letting σ → 1 and ε → 0, we obtain

‖v‖L∞([0,T [,W 2,p(Ω)) ≤ C.

On the other hand, the Sobolev injection theorem allows to assert that u ∈ C1,α(Ω).
Hence in particular |∇u| ∈ C0,α(Ω). Since |∇v| is uniformly bounded, it is easy
then to bound |∇u| in L∞(Ω). As a consequence, one can affirm that the solution
(u, v) to problem (2.14) -(2.16) is global; that is Tmax = ∞. �

2.3. Large-time behavior. In this section, the large time behavior of the global
solutions to (2.14)-(2.16) is briefly presented.

Theorem 2.5. Let (u0, v0) ∈ C2,ε(Ω) × C2,ε(Ω) for some 0 < ε < 1. The system
(2.14)-(2.16) has a global classical solution. Moreover, as t → ∞, u → k1 and
v → k2 uniformly in x, and

k1 + k2 =
1
|Ω|

∫
Ω

[u0(x) + v0(x)]dx.

Proof. The proof of the first part of the Theorem is presented above. Concerning
the large time behavior, observe first that for any t ≥ 0,∫

Ω

[u(t, x) + v(t, x)]dx =
∫

Ω

[u0(x) + v0(x)]dx.

Then, the function t →
∫
Ω

u(x)dx is bounded; as it is decreasing, we have∫
Ω

u(x)dx → k1 as t →∞;

the function t →
∫
Ω

v(x)dx is increasing and bounded, hence admits a finite limit
k2 as t →∞. As

⋃
t≥0{(u(t), v(t))} is relatively compact in C(Ω)× C(Ω),

u(τn) → ũ, v(τn) → ṽ in C(Ω),

through a sequence τn → ∞. It is not difficult to show that in fact (ũ, ṽ) is the
stationary solution to (2.14)-(2.16) (see [3]).

As the stationary solution (us, vs) to (2.14)-(2.16) satisfies

−∆us = −un
s |∇vs|2, in Ω,

−d∆vs = un
s |∇vs|2, in Ω,

∂us

∂ν
=

∂vs

∂ν
= 0, on ∂Ω,

we have

−
∫

Ω

∆us.usdx = −
∫

Ω

un+1
s |∇vs|2dx

which in the light of the Green formula can be written∫
Ω

|∇us|2dx = −
∫

Ω

un+1
s |∇vs|2dx

hence |∇us| = |∇vs| = 0 implies us = k1 and vs = k2. �

Remarks. (1) It is very interesting to address the question of existence global
solutions of the system (2.14)-(2.16) with a genuine nonlinearity of the form un|∇v|p
with p ≥ 2.

(2) It is possible to extend the results presented here for systems with nonlinear
boundary conditions satisfying reasonable growth restrictions.
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