Electronic Journal of Differential Equations, Vol. 2007(2007), No. 158, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

SOLUTION TO NONLINEAR GRADIENT DEPENDENT SYSTEMS WITH A BALANCE LAW

ZOUBIR DAHMANI, SEBTI KERBAL

Abstract

In this paper, we are concerned with the initial boundary value problem (IBVP) and with the Cauchy problem to the reaction-diffusion system $$
\begin{gathered} u_{t}-\Delta u=-u^{n}|\nabla v|^{p} \\ v_{t}-d \Delta v=u^{n}|\nabla v|^{p} \end{gathered}
$$ where $1 \leq p \leq 2, d$ and n are positive real numbers. Results on the existence and large-time behavior of the solutions are presented.

1. Introduction

In the first part of this article, we are interested in the existence of global classical nonnegative solutions to the reaction-diffusion equations

$$
\begin{gather*}
u_{t}-\Delta u=-u^{n}|\nabla v|^{p}=:-f(u, v), \\
v_{t}-d \Delta v=u^{n}|\nabla v|^{p}, \tag{1.1}
\end{gather*}
$$

posed on $\mathbb{R}^{+} \times \Omega$ with initial data

$$
\begin{equation*}
u(0 ; x)=u_{0}(x), \quad v(0 ; x)=v_{0}(x) \quad \text { in } \Omega \tag{1.2}
\end{equation*}
$$

and boundary conditions (in the case Ω is a bounded domain in \mathbb{R}^{n})

$$
\begin{equation*}
\frac{\partial u}{\partial \eta}=\frac{\partial v}{\partial \eta}=0, \quad \text { on } \mathbb{R}^{+} \times \partial \Omega \tag{1.3}
\end{equation*}
$$

Here Δ is the Laplacian operator, u_{0} and v_{0} are given bounded nonnegative functions, $\Omega \subset \mathbb{R}^{n}$ is a regular domain, η is the outward normal to $\partial \Omega$. The diffusive coefficient d is a positive real. One of the basic questions for (1.1)- (1.2) or (1.1)(1.3) is the existence of global solutions. Motivated by extending known results on reaction-diffusion systems with conservation of the total mass but with non linearities depending only for the unknowns, Boudiba, Mouley and Pierre succeeded in obtaining L^{1} solutions only for the case $u^{n}|\nabla v|^{p}$ with $p<2$. In this article, we are interested essentially in classical solutions in the case where $p=2$ (Ω bounded or $\Omega=\mathbb{R}^{n}$; in the latter case, there are no boundary conditions).

[^0]
2. Results

The existence of a unique classical solution over the whole time interval $\left[0, T_{\max }[\right.$ can be obtained by a known procedure: a local solution is continued globally by using a priori estimates on $\|u\|_{\infty},\|v\|_{\infty},\||\nabla u|\|_{\infty}$, and $\||\nabla v|\|_{\infty}$.

2.1. The Cauchy problem.

Uniform bounds for u and v. First, we consider the auxiliary problem

$$
\begin{gather*}
L_{\lambda} \omega:=\omega_{t}-\lambda \Delta \omega=b \nabla \omega, \quad t>0, x \in \mathbb{R}^{N} \\
\omega(0, x)=\omega_{0}(x) \in L^{\infty}, \tag{2.1}
\end{gather*}
$$

where $b=\left(b_{1}(t, x), \ldots, b_{N}(t, x)\right), b_{i}(t, x)$ are continuous on $[0, \infty) \times \mathbb{R}^{N}, \omega$ is a classical solution of 2.1.
Lemma 2.1. Assume that $\omega_{t}, \nabla \omega, \omega_{x_{i} x_{i}}, i=1, \ldots, N$ are continuous,

$$
\begin{equation*}
L_{\lambda} \omega \leq 0, \quad(\geq) \quad(0, \infty) \times \mathbb{R}^{N} \tag{2.2}
\end{equation*}
$$

and $\omega(t, x)$ satisfies 2.1$)_{2}$. Then

$$
\begin{array}{ll}
\omega(t, x) \leq C:=\sup _{x \in \mathbb{R}^{N}} \omega_{0}(x), & (0, \infty) \times \mathbb{R}^{N} \\
\omega(t, x) \geq C:=\inf _{x \in \mathbb{R}^{N}} \omega_{0}(x), & (0, \infty) \times \mathbb{R}^{N}
\end{array}
$$

The proof of the above lemma is elementary and hence is omitted. Now, we consider the problem (1.1)-(1.2). It follows by the maximun principle that

$$
u, v \geq 0, \quad \text { in } \mathbb{R}^{+} \times \mathbb{R}^{N}
$$

Uniform bounds of u. We have

$$
u \leq C_{1}:=\sup _{\mathbb{R}^{N}} u_{0}(x),
$$

thanks to the maximum principle.
Uniform bounds of v. Next, we derive an upper estimate for v. Assume that $1 \leq$ $p<2$. We transform 1_{2} by the substitution $\omega=e^{\lambda v}-1$ into

$$
\omega_{t}-\lambda \Delta \omega=\lambda e^{\lambda v}\left(v_{t}-d \Delta v-d \lambda|\nabla v|^{2}\right)=\lambda e^{\lambda v}\left(u^{n}|\nabla v|^{p}-d \lambda|\nabla v|^{2}\right)
$$

Let

$$
\phi(x) \equiv C x^{p}-d \lambda x^{2} ; \quad C>0, x \geq 0
$$

By elementary computations,

$$
\phi(x) \geq 0 \quad \text { when } x \leq\left(\frac{C}{\lambda d}\right)^{1 /(2-p)}
$$

But in this case

$$
|\nabla v| \leq\left(\frac{c}{\lambda d}\right)^{1 /(2-p)}
$$

In the case $x \geq\left(\frac{c}{\lambda d}\right)^{1 /(2-p)}$,

$$
\begin{equation*}
\phi(x) \leq 0 \tag{2.3}
\end{equation*}
$$

and hence $\omega \leq M$ where

$$
\begin{equation*}
M=C\left(\frac{p C}{2 d \lambda}\right)^{p / 2-p}\left(\frac{2-p}{2}\right) \tag{2.4}
\end{equation*}
$$

Then we have $v \leq C_{2}$.
2.1.1. Uniform bounds for $|\nabla u|$ and $|\nabla v|$. At first, we present the uniform bounds for $|\nabla v|$. We write 1.1$)_{2}$ in the form

$$
\begin{equation*}
L_{d} v+k v=k v+u^{n}|\nabla v|^{p} \tag{2.5}
\end{equation*}
$$

and transform it by the substitutions $\omega=e^{k t} v$ to obtain

$$
\begin{gathered}
L_{d} \omega=e^{k t}\left(L_{d} v+k v\right)=e^{k t}\left(k v+u^{n}|\nabla v|^{p}\right), \quad t>0, x \in \mathbb{R}^{N} \\
\omega(0, x)=v_{0}(x)
\end{gathered}
$$

Now let

$$
G_{\lambda}=G_{\lambda}(t-\tau ; x-\xi)=\frac{1}{[4 \pi \lambda(t-\tau)]^{\frac{N}{2}}} \exp \left(\frac{|x-\xi|^{2}}{4 \lambda(t-\tau)}\right)
$$

be the fundamental solution related to the operator L_{λ}. Then, with $Q_{t}=(0, t) \times$ \mathbb{R}^{N}, we have

$$
\omega=e^{k t} v=v^{0}(t, x)+\int_{Q_{t}} G_{d}(t-\tau ; x-\xi) e^{k \tau}\left(k v+u^{n}|\nabla v|^{p}\right) d \xi d \tau
$$

or

$$
\begin{equation*}
v=e^{-k t} v^{0}+\int_{Q_{t}} e^{-k(t-\tau)} G_{d}(t-\tau ; x-\xi)\left(k v+u^{n}|\nabla v|^{p}\right) d \xi d \tau \tag{2.6}
\end{equation*}
$$

where $v^{0}(t, x)$ is the solution of the homogeneous problem

$$
L_{d} v^{0}=0, \quad v^{0}(0, x)=v_{0}(x)
$$

From (2.6) we have

$$
\begin{equation*}
\nabla v=e^{-k t} \nabla v^{0}+\int_{Q_{t}} e^{-k(t-\tau)} \nabla_{x} G_{d}(t-\tau ; x-\xi)\left(k v+u^{n}|\nabla v|^{p}\right) d \xi d \tau \tag{2.7}
\end{equation*}
$$

Now we set $\nu_{1}=\sup |\nabla v|$ and $\nu_{1}^{0}=\sup \left|\nabla v^{0}\right|$, in Q_{t}. From 2.6), and using $v \leq C_{2}$, we have

$$
\nu_{1}=\nu_{1}^{0}+\left(k C_{2}+C_{1}^{n} \nu_{1}^{p}\right) \int_{0}^{t} e^{-k(t-\tau)}\left(\int_{\mathbb{R}^{N}}\left|\nabla_{x} G_{d}(t-\tau ; x-\xi)\right| d \xi\right) d \tau
$$

We also have

$$
\int_{\mathbb{R}^{N}}\left|\nabla_{x} G_{d}(t-\tau ; x-\xi)\right| d \xi=\int_{\mathbb{R}^{N}} \frac{|x-\xi|}{2 d(t-\tau)}\left|G_{d}(t-\tau, ; x-\xi)\right| d \xi
$$

which is transformed by the substitution $\rho=2 \sqrt{d(t-\tau) \nu}$ into

$$
\int_{\mathbb{R}^{N}}\left|\nabla_{x} G_{d}\right| d \rho=\frac{w_{N}}{\pi^{N / 2}} \int_{0}^{\infty} e^{-\nu^{2}} d \nu=\frac{\chi}{\sqrt{d(t-\tau)}}
$$

where $\chi=\frac{w_{N}}{2 \pi^{N / 2}} \Gamma\left(\frac{N+1}{2}\right)=\frac{\Gamma\left(\frac{N+1}{2}\right)}{\Gamma\left(\frac{N}{2}\right)}$. It follows that

$$
\begin{equation*}
\nu_{1}=\nu_{1}^{0}+\left(k C_{2}+C_{1}^{n} \nu_{1}^{p}\right) \frac{\chi}{\sqrt{d}} \int_{0}^{t} e^{-k(t-\tau)} \frac{d \tau}{\sqrt{t-\tau}} \tag{2.8}
\end{equation*}
$$

Recall that

$$
\int_{0}^{t} e^{-k(t-\tau)} \frac{d \tau}{\sqrt{t-\tau}}=\frac{2}{\sqrt{k}} \int_{0}^{t} e^{-z^{2}} d z<\sqrt{\frac{\pi}{k}}
$$

If we set $s=\sqrt{k}$ in 2.8 then we have

$$
\begin{equation*}
\nu_{1} \leq \nu_{1}^{0}+\left(s C_{2}+\frac{C_{1}^{n}}{s} \nu_{1}^{p}\right) \chi \sqrt{\frac{\pi}{d}} \tag{2.9}
\end{equation*}
$$

Now we minimize the right hand side of 2.9 with respect to s to obtain

$$
\begin{equation*}
\nu_{1} \leq \nu_{1}^{0}+\frac{2 \chi \sqrt{\pi}}{d}\left(C_{2} C_{1}^{n} \nu_{1}^{p}\right)^{1 / p} \tag{2.10}
\end{equation*}
$$

Note that $\nu_{1}^{0}=C_{2}$.
We have two cases: Case (i) $1 \leq p<2$. In this case 2.10 implies

$$
\begin{equation*}
|\nabla v| \leq \nu_{1} \leq \bar{\nu}(p)=D, \quad \text { in } Q_{t} \tag{2.11}
\end{equation*}
$$

where D is a positive constant.
Case (ii) $p=2$. In this case 2.10 holds under the additional condition

$$
\begin{equation*}
C_{2} C_{1}^{n} \leq \frac{d}{4 \pi \chi} \tag{2.12}
\end{equation*}
$$

Similarly we obtain from 1.11_{1},

$$
\begin{equation*}
U_{1}:=\sup _{Q_{T}}|\nabla u| \leq C_{1}+C_{1} \frac{2 \sqrt{\pi} \chi}{\sqrt{d}} \nu_{1}^{p / 2} \leq \text { Constant } . \tag{2.13}
\end{equation*}
$$

The estimates 2.10 and 2.13 are independent of t, hence $T_{\max }=+\infty$.
Finally, we have the main result.
Theorem 2.2. Let $p=2$ and $\left(u_{0}, v_{0}\right)$ be bounded such that 2.12 holds, then system (1.1)-(1.2) admits a global solution.
2.2. The Neumann Problem. In this section, we are concerned with the Neumann problem

$$
\begin{gather*}
u_{t}-\Delta u=-u^{n}|\nabla v|^{2} \\
v_{t}-d \Delta v=u^{n}|\nabla v|^{2} \tag{2.14}
\end{gather*}
$$

where Ω be a bounded domain in \mathbb{R}^{N}, with the homogeneous Neumann boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}=0, \quad \text { on } \mathbb{R}^{+} \times \partial \Omega \tag{2.15}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
u(0 ; x)=u_{0}(x) ; \quad v(0 ; x)=v_{0}(x) \quad \text { in } \Omega . \tag{2.16}
\end{equation*}
$$

The initial nonnegative functions u_{0}, v_{0} are assumed to belong to the Holder space $C^{2, \alpha}(\Omega)$.

Uniform bounds for u and v. In this section a priori estimates on $\|u\|_{\infty}$ and $\|v\|_{\infty}$ are presented.

Lemma 2.3. For each $0<t<T_{\max }$ we have

$$
\begin{equation*}
0 \leq u(t, x) \leq M, \quad 0 \leq v(t, x) \leq M \tag{2.17}
\end{equation*}
$$

for any $x \in \Omega$.
Proof. Since $u_{0}(x) \geq 0$ and $f(0, v)=0$, we first obtain $u \geq 0$ and then $v \geq 0$ as $v_{0}(x) \geq 0$. Using the maximum principle, we conclude that

$$
0 \leq u(t, x) \leq M, \quad \text { on } Q_{T}
$$

where

$$
M \geq M_{1}:=\max _{x \in \Omega} u_{0}(x)
$$

Using $\omega=e^{\lambda v}-1$, with $d \lambda \geq M_{1}^{n}$, from 2.14, we obtain

$$
\begin{gathered}
\omega_{t}-d \Delta \omega=\lambda|\nabla v|^{2}\left(u^{n}-d \lambda\right) e^{\lambda v}, \quad \text { on } Q_{T} \\
\frac{\partial u}{\partial v}=0 \quad \text { on } \partial S_{T} .
\end{gathered}
$$

Consequently as $d \lambda>\max _{\Omega} u^{n}$, we deduce from the maximum principle that

$$
0 \leq \omega(t, x) \leq \exp \left(\lambda\left|v_{0}\right|_{\infty}\right)-1
$$

Hence

$$
v(x, t) \leq \frac{1}{\lambda} \ln \left(|\omega|_{\infty}+1\right) \leq \text { Constant }<\infty
$$

Uniform bounds for $|\nabla v|$ and $|\nabla u|$. To obtain uniform a priori estimates for $|\nabla v|$, we make use of some techniques already used by Tomi [8 and von Wahl 9]

Lemma 2.4. Let (u, v) be a solution to 2.10 -2.12 in its maximal interval of existence $\left[0, T_{\max }[\right.$. Then there exist a constant C such that

$$
\|u\|_{L^{\infty}\left(\left[0, T\left[, W^{2, q}(\Omega)\right)\right.\right.} \leq C \quad \text { and } \quad\|v\|_{L^{\infty}\left(\left[0, T\left[, W^{2, q}(\Omega)\right)\right.\right.} \leq C
$$

Proof. Let us introduce the function

$$
f_{\sigma, \epsilon}(t, x, u, \nabla v)=\sigma u^{n}(t, x) \frac{\epsilon+|\nabla v|^{2}}{1+\epsilon|\nabla v|^{2}} .
$$

It is clear that $\left|f_{\sigma, \epsilon}(t, x, u, \nabla v)\right| \leq C\left(1+|\nabla v|^{2}\right)$ and a global solution $v_{\sigma, \epsilon}$ differentiable in σ for the equation

$$
v_{t}-d \Delta v=f_{\sigma, \epsilon}(t, x, u, \nabla v)
$$

exists. Moreover, $v_{\sigma, \epsilon} \rightarrow v$ as $\sigma \rightarrow 1$ and $\epsilon \rightarrow 0$, uniformly on every compact of $\left[0, T_{\text {max }}[\right.$.

The function $\omega_{\sigma}:=\frac{\partial v_{\sigma, \epsilon}}{\partial \sigma}$ satisfies

$$
\begin{equation*}
\partial_{t} \omega_{\sigma}-d \Delta \omega_{\sigma}=u^{n}(t, x) \frac{\epsilon+\left|\nabla v_{\sigma}\right|^{2}}{1+\epsilon|\nabla v \sigma|^{2}}-2 \sigma u^{n} \frac{\left(\epsilon^{2}-1\right) \nabla v_{\sigma} . \nabla \omega_{\sigma}}{\left(1+\epsilon\left|\nabla v_{\sigma}\right|^{2}\right)^{2}} . \tag{2.18}
\end{equation*}
$$

Hereafter, we derive uniform estimates in σ and ϵ. Using Solonnikov's estimates for parabolic equation 5] we have

$$
\left\|\omega_{\sigma}\right\|_{L^{\infty}\left(\left[0, T\left(u_{0}, v_{0}\right)\left[, W^{2, p}(\Omega)\right)\right.\right.} \leq C\left[\left\|\nabla v_{\sigma}\right\|_{L^{p}(\Omega)}^{2}+\left\|\nabla v_{\sigma} . \nabla \omega_{\sigma}\right\|_{L^{p}(\Omega)}^{2}\right]
$$

The Gagliardo-Nirenberg inequality [5] in the in the form

$$
\|u\|_{W^{1,2 p}(\Omega)} \leq C\|u\|_{L^{\infty}(\Omega)}^{1 / 2} C\|u\|_{W^{2, p}(\Omega)}^{1 / 2}
$$

and the δ-Young inequality (where $\delta>0$)

$$
\alpha \beta \leq \frac{1}{2}\left(\delta \alpha^{2}+\frac{\beta^{2}}{\delta}\right)
$$

allows one to obtain the estimate

$$
\left\|\omega_{\sigma}\right\|_{L^{\infty}\left(\left[0, T\left(u_{0}, v_{0}\right)\left[W^{2, p}(\Omega)\right)\right.\right.} \leq C\left(1+\left\|\omega_{\sigma}\right\|_{W^{2, p}(\Omega)}\right)
$$

But $\omega_{\sigma}=\frac{\partial v_{\sigma}}{\partial \sigma}$, hence by Gronwall's inequality we have

$$
\left\|v_{\sigma}\right\|_{L^{\infty}\left(\left[0, T\left[, W^{2, p}(\Omega)\right)\right.\right.} \leq C e^{C \sigma}
$$

Letting $\sigma \rightarrow 1$ and $\epsilon \rightarrow 0$, we obtain

$$
\|v\|_{L^{\infty}\left(\left[0, T\left[, W^{2, p}(\Omega)\right)\right.\right.} \leq C
$$

On the other hand, the Sobolev injection theorem allows to assert that $u \in C^{1, \alpha}(\Omega)$. Hence in particular $|\nabla u| \in C^{0, \alpha}(\Omega)$. Since $|\nabla v|$ is uniformly bounded, it is easy then to bound $|\nabla u|$ in $L^{\infty}(\Omega)$. As a consequence, one can affirm that the solution (u, v) to problem $2.14-2.16$ is global; that is $T_{\max }=\infty$.
2.3. Large-time behavior. In this section, the large time behavior of the global solutions to $2.14-2.16$ is briefly presented.

Theorem 2.5. Let $\left(u_{0}, v_{0}\right) \in C^{2, \epsilon}(\Omega) \times C^{2, \epsilon}(\Omega)$ for some $0<\epsilon<1$. The system (2.14)-(2.16) has a global classical solution. Moreover, as $t \rightarrow \infty, u \rightarrow k_{1}$ and $v \rightarrow k_{2}$ uniformly in x, and

$$
k_{1}+k_{2}=\frac{1}{|\Omega|} \int_{\Omega}\left[u_{0}(x)+v_{0}(x)\right] d x
$$

Proof. The proof of the first part of the Theorem is presented above. Concerning the large time behavior, observe first that for any $t \geq 0$,

$$
\int_{\Omega}[u(t, x)+v(t, x)] d x=\int_{\Omega}\left[u_{0}(x)+v_{0}(x)\right] d x
$$

Then, the function $t \rightarrow \int_{\Omega} u(x) d x$ is bounded; as it is decreasing, we have

$$
\int_{\Omega} u(x) d x \rightarrow k_{1} \quad \text { as } t \rightarrow \infty
$$

the function $t \rightarrow \int_{\Omega} v(x) d x$ is increasing and bounded, hence admits a finite limit k_{2} as $t \rightarrow \infty$. As $\bigcup_{t \geq 0}\{(u(t), v(t))\}$ is relatively compact in $C(\bar{\Omega}) \times C(\bar{\Omega})$,

$$
u\left(\tau_{n}\right) \rightarrow \widetilde{u}, \quad v\left(\tau_{n}\right) \rightarrow \widetilde{v} \quad \text { in } C(\bar{\Omega})
$$

through a sequence $\tau_{n} \rightarrow \infty$. It is not difficult to show that in fact $(\widetilde{u}, \widetilde{v})$ is the stationary solution to 2.14)-2.16 (see [3]).

As the stationary solution $\left(u_{s}, v_{s}\right)$ to 2.14$\left.)-2.16\right)$ satisfies

$$
\begin{gathered}
-\Delta u_{s}=-u_{s}^{n}\left|\nabla v_{s}\right|^{2}, \quad \text { in } \Omega \\
-d \Delta v_{s}=u_{s}^{n}\left|\nabla v_{s}\right|^{2}, \quad \text { in } \Omega, \frac{\partial u_{s}}{\partial \nu}=\frac{\partial v_{s}}{\partial \nu}=0, \quad \text { on } \partial \Omega
\end{gathered}
$$

we have

$$
-\int_{\Omega} \Delta u_{s} \cdot u_{s} d x=-\int_{\Omega} u_{s}^{n+1}\left|\nabla v_{s}\right|^{2} d x
$$

which in the light of the Green formula can be written

$$
\int_{\Omega}\left|\nabla u_{s}\right|^{2} d x=-\int_{\Omega} u_{s}^{n+1}\left|\nabla v_{s}\right|^{2} d x
$$

hence $\left|\nabla u_{s}\right|=\left|\nabla v_{s}\right|=0$ implies $u_{s}=k_{1}$ and $v_{s}=k_{2}$.
Remarks. (1) It is very interesting to address the question of existence global solutions of the system $(2.14)-(2.16)$ with a genuine nonlinearity of the form $u^{n}|\nabla v|^{p}$ with $p \geq 2$.
(2) It is possible to extend the results presented here for systems with nonlinear boundary conditions satisfying reasonable growth restrictions.

References

[1] N. Boudiba, M. Piere, S. Moulay; Global existence for gradient-dependent system with balance law, Proceedings of the Second International conference on Differential Equations in Marakech.
[2] M. Kirane; Global bounds and asymptotic for a system of reaction-diffusion equations, J. of Math. Anal. and Appl.,138, 1989, 328-342.
[3] M. Kirane, S. Kouachi; Global solutions to a system of strongly coupled reaction-diffusion equations, Nonlin. Anal. Theo. Methods and Appl., 26, 1996, 1387-1396.
[4] S. N. Kruzhkov; The Cauchy problem of some classes of quasilinear parabolic equations, Mathematicheskies Zametki, 6. 1979, 295-300.
[5] O. Ladyzhenskaya, V. Sollonnikov and N. Ural'ceva; Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Providence, RI, 1968 (reprinted with corrections in 1988).
[6] M. H. Protter and H. F. Weinberger; Maximum principles in differential equations, Springer, New York, 1984.
[7] R. Rendlinger; Pontwise a priori bounds for strongly coupled semilinear problems, Indiana Univ. Math. Journ., 36, 1987, 441-454.
[8] F. Tomi; Uber semilineare elliptische differentialgleichungen zweiter ordnung, Math. Z., 111, 1969, 350-366.
[9] W. von Wahl; A-priori schranken fur semilineare und quasilineare parabolische differentialgleichungen in der ebene, Math. Z., 128, 1972, 93-108.

Zoubir Dahmani
Department of Mathematics, Faculty of Sciences, University of Mostaganem, Mostaganem, Algeria

E-mail address: zzdahmani@yahoo.fr
Sebti Kerbal
Department of Mathematics and Statistics, Sultan Qaboos Uiverstiy, Alkhod, Muscat, Sultanate of Oman

E-mail address: skerbal@squ.edu.om

[^0]: 2000 Mathematics Subject Classification. 35B40, 35B50, 35K57.
 Key words and phrases. Reaction-diffusion systems; global existence; asymptotic behavior; maximum principle.
 (C)2007 Texas State University - San Marcos.

 Submitted April 15, 2007. Published November 21, 2007.

