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POSITIVE SOLUTIONS FOR SEMIPOSITONE FOURTH-ORDER
TWO-POINT BOUNDARY VALUE PROBLEMS

DANDAN YANG, HONGBO ZHU, CHUANZHI BAI

Abstract. In this paper we investigate the existence of positive solutions of
the following nonlinear semipositone fourth-order two-point boundary-value

problem with second derivative:

u(4)(t) = f(t, u(t), u′′(t)), 0 ≤ t ≤ 1,

u′(1) = u′′(1) = u′′′(1) = 0, ku(0) = u′′′(0),

where −6 < k < 0, f ≥ −M , and M is a positive constant. Our approach
relies on the Krasnosel’skii fixed point theorem.

1. Introduction

Recently an increasing interest in studying the existence of positive solutions
for fourth-order two-point boundary value problems is observed. Among others we
refer to [1, 2, 3, 4, 5, 6, 7, 8, 9].

In this paper we consider the positive solutions of the following nonlinear semi-
positone fourth-order two-point boundary value problem with second derivative:

u(4)(t) = f(t, u(t), u′′(t)), 0 ≤ t ≤ 1,

u′(1) = u′′(1) = u′′′(1) = 0, ku(0) = u′′′(0),
(1.1)

where −6 < k < 0, f is continuous and there exists M > 0 such that f ≥ −M . This
implies that f is not necessarily nonnegative, monotone, superlinear and sublinear.
And also this assumption implies that the problem (1.1) is semipositone .

The purpose of this paper is to establish the existence of positive solutions of
problem (1.1) by using Krasnosel’skii fixed point theorem in cones.

The rest of this paper is organized as follows: in section 2, we present some
preliminaries and lemmas. Section 3 is devoted to proving the existence of positive
solutions of problem (1.1). An example is considered in section 4 to illustrate our
main results.
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2. Preliminaries and lemmas

Let C2[0, 1] be the Banach space with norm ‖u‖0 = max{‖u‖, ‖u′′‖}, where

‖u‖ = max
0≤t≤1

|u(t)|, u ∈ C[0, 1].

By routine calculation, we easily obtain the following Lemma.

Lemma 2.1. If k 6= 0, then

u(4)(t) = h(t), 0 ≤ t ≤ 1,

u′(1) = u′′(1) = u′′′(1) = 0, ku(0) = u′′′(0),

has a unique solution

u(t) =
∫ 1

0

G(t, s)h(s)ds,

where the Green function is

G(t, s) = −1
6

{
6
k + s3, 0 ≤ s ≤ t ≤ 1,
6
k − (s− t)3 + s3, 0 ≤ t ≤ s ≤ 1.

Remark 2.2. If −6 < k < 0, then

0 < (1 +
k

6
)G(0, s) ≤ G(t, s) ≤ G(0, s) = max

0≤t≤1
G(t, s) = −1

k
(2.1)

in closed bounded region D = {(t, s) : 0 ≤ t ≤ 1, 0 ≤ s ≤ 1}.

Let

p(t) :=
∫ 1

0

G(t, s)ds =
1
24

t4 − 1
6
t3 +

1
4
t2 − 1

6
t− 1

k
, 0 ≤ t ≤ 1.

Since

p′(t) =
1
6
t3 − 1

2
t2 +

1
2
t− 1

6
= −1

6
(1− t)3 ≤ 0, 0 ≤ t ≤ 1,

p′′(t) =
1
2
t2 − t +

1
2

=
1
2
(1− t)2 ≥ 0, 0 ≤ t ≤ 1,

we have

‖p‖ = max
0≤t≤1

p(t) = p(0) = −1
k

, min
0≤t≤1

p(t) = p(1) = −1
k
− 1

24
, (2.2)

‖p′′‖ = max
0≤t≤1

|p′′(t)| = 1
2
. (2.3)

Our approach is based on the following Krasnosel’skii fixed point theorem.

Lemma 2.3. Let X be a Banach space, and K ⊂ X be a cone in X. Assume
Ω1,Ω2 are bounded open subsets of K with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let F : K → K
be a completely continuous operator such that either

(1) ‖Fu‖ ≤ ‖u‖, u ∈ ∂Ω1, and ‖Fu‖ ≥ ‖u‖, u ∈ ∂Ω2, or
(2) ‖Fu‖ ≥ ‖u‖, u ∈ ∂Ω1, and ‖Fu‖ ≤ ‖u‖, u ∈ ∂Ω2.

Then F has a fixed point in Ω2 \ Ω1.
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To apply the Krasnosel’skii fixed point theorem, we need to construct a suitable
cone. Let

C2
0 [0, 1] = {u ∈ C2[0, 1] : u(t) ≥ 0, u′′(t) ≥ 0, 0 ≤ t ≤ 1,

u′(1) = u′′(1) = u′′′(1) = 0, ku(0) = u′′′(0)}.

It is easy to check that the following set P is a cone in C2[0, 1]:

P =
{
u ∈ C2

0 [0, 1] : min
0≤t≤1

u(t) ≥ (1 +
k

6
)‖u‖

}
,

where −6 < k < 0. For convenience, let

α(r) = max{f(t, u, v) : (t, u, v) ∈ D1(r)}, (2.4)

β(r) = min{f(t, u, v) : (t, u, v) ∈ D2(r)}, (2.5)

where

D1(r) =
{
(t, u, v) : 0 ≤ t ≤ 1,

M

k
≤ u ≤ r + (

1
k

+
1
24

)M, −M

2
≤ v ≤ r

}
,

D2(r) =
{
(t, u, v) :

1
4
≤ t ≤ 3

4
, (

1
k

+
175
6144

)M ≤ u ≤ r + (
1
k

+
85

2048
)M,

− 9
32

M ≤ v ≤ r − 1
32

M
}

.

C1 = min
{[

max
0≤t≤1

∫ 1

0

G(t, s)ds
]−1

,
[

max
0≤t≤1

∫ 1

0

|G′′(t, s)|ds
]−1}

= min{−k, 2},

C2 = max
{[

max
0≤t≤1

∫ 3
4

1
4

G(t, s)ds
]−1

,
[

max
0≤t≤1

∫ 3
4

1
4

|G′′(t, s)|ds
]−1}

= max
{(
− 1

2k
+

1
6144

)−1
,
32
9

}
.

Obviously, 0 < C1 < C2.

3. Main results

Theorem 3.1. Let −6 < k < 0. Assume that

f : [0, 1]× [
M

k
,+∞)× [−M

2
,+∞) → [−M,+∞) (3.1)

is continuous, where M > 0 is a constant. Suppose there exist two positive numbers
r1 and r2 with min{r1, r2} > −6

6k+k2 M such that

α(r1) ≤ r1C1 −M, β(r2) ≥ r2C2 −M, (3.2)

where α, β are as in (2.4) and (2.5), respectively. Then problem (1.1) has at least
one positive solution.

Proof. Let u0(t) = Mp(t), 0 ≤ t ≤ 1. Then by (2.1) and (2.3) we have

(−1
k
− 1

24
)M ≤ u0(t) ≤ −M

k
, 0 ≤ u′′0(t) ≤ 1

2
M, 0 ≤ t ≤ 1. (3.3)

Consider the fourth-order two-point boundary-value problem

u(4)(t) = f(t, u(t)− u0(t), u′′(t)− u′′0(t)) + M, 0 ≤ t ≤ 1,

u′(1) = u′′(1) = u′′′(1) = 0,

ku(0) = u′′′(0),

(3.4)
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This problem is equivalent to the integral equation

u(t) =
∫ 1

0

G(t, s)[f(s, u(s)− u0(s), u′′(s)− u′′0(s)) + M ]ds.

For u ∈ C2
0 [0, 1], we define the operator A as follows

(Au)(t) =
∫ 1

0

G(t, s)[f(s, u(s)− u0(s), u′′(s)− u′′0(s)) + M ]ds, 0 ≤ t ≤ 1.

Computing the second derivative of (Au)(t), we obtain

(Au)′′(t) =
∫ 1

t

(s− t)[f(s, u(s)− u0(s), u′′(s)− u′′0(s)) + M ]ds, 0 ≤ t ≤ 1.

Noticing (3.3) and that u ∈ C2
0 [0, 1], we have

M

k
≤ u(t)− u0(t) < +∞,

−1
2
M ≤ u′′(t)− u′′0(t) < +∞, 0 ≤ t ≤ 1.

Thus, from (3.1) we get

(Au)(t) ≥ 0, (Au)′′(t) ≥ 0, t ∈ [0, 1].

By the definition of G(t, s),

G′(1, s) = G′′(1, s) = G′′′(1, s) = 0, and G′′′(0, s) = kG(0, s) = −1,

which implies that

(Au)′(1) = (Au)′′(1) = (Au)′′′(1) = 0, and k(Au)(0) = (Au)′′′(0).

Hence, A : C2
0 [0, 1] → C2

0 [0, 1]. Moreover, for each t ∈ [0, 1], (By (2.1) we have

(Au)(t) =
∫ 1

0

G(t, s)[f(s, u(s)− u0(s), u′′(s)− u′′0(s)) + M ]ds

≥ (1 +
k

6
)
∫ 1

0

G(0, s)[f(s, u(s)− u0(s), u′′(s)− u′′0(s)) + M ]ds

≥ (1 +
k

6
) max

0≤t≤1

∫ 1

0

G(t, s)[f(s, u(s)− u0(s), u′′(s)− u′′0(s)) + M ]ds

= (1 +
k

6
)‖Au‖.

Thus, A : P → P .
We can check that A is completely continuous by routine method. Since C1 < C2,

it is easy to check that r1 6= r2. Without loss of generality, we assume r1 < r2. Let

Ω1 = {u ∈ P : ‖u‖0 < r1}, Ω2 = {u ∈ P : ‖u‖0 < r2}.
If u ∈ ∂Ω1, then ‖u‖0 = r1. So, ‖u‖ ≤ r1 and ‖u′′‖ ≤ r1. This implies

0 ≤ u(t) ≤ r1 0 ≤ u′′(t) ≤ r1, 0 ≤ t ≤ 1.

By (2.2), for 0 ≤ t ≤ 1, we have
1
k

M ≤ u(t)− u0(t) ≤ r1 +
(1
k

+
1
24

)
M, −1

2
M ≤ u′′(t)− u′′0(t) ≤ r1.

By (3.2),

f(t, u(t)− u0(t), u′′(t)− u′′0(t)) ≤ α(r1) ≤ r1C1 −M, 0 ≤ t ≤ 1.
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It follows that

‖Au‖ = max
0≤t≤1

∫ 1

0

G(t, s)[f(s, u(s)− u0(s), u′′(s)− u′′0(s)) + M ]ds

≤ r1C1 max
0≤t≤1

∫ 1

0

G(t, s)ds ≤ r1,

‖(Au)′′‖ = max
0≤t≤1

∫ 1

0

|G′′(t, s)|[f(s, u(s)− u0(s), u′′(s)− u′′0(s)) + M ]ds

≤ r1C1 max
0≤t≤1

∫ 1

0

|G′′(t, s)|ds ≤ r1.

Therefore, ‖Au‖0 ≤ r1 = ‖u‖0.
If u ∈ ∂Ω2, then ‖u‖0 = r2. So, ‖u‖ ≤ r2 and ‖u′′‖ ≤ r2. This implies that

0 ≤ u(t) ≤ r2, 0 ≤ u′′(t) ≤ r2, 0 ≤ t ≤ 1.

Since

− 85
2048

− 1
k

= p(
3
4
) ≤ p(t) ≤ p(

1
4
) = − 175

6144
− 1

k
,

1
4
≤ t ≤ 3

4
,

1
32

≤ p′′(t) =
1
2
(1− t)2 ≤ 9

32
,

1
4
≤ t ≤ 3

4
,

we have

(
1
k

+
175
6144

)M ≤ u(t)− u0(t) ≤ r2 + (
1
k

+
85

2048
)M,

1
4
≤ t ≤ 3

4
,

and

− 9
32

M ≤ u′′(t)− u′′0(t) ≤ r2 −
M

32
,

1
4
≤ t ≤ 3

4
.

Thus, by (3.2) we obtain

f(t, u(t)− u0(t), u′′(t)− u′′0(t)) ≥ β(r2) ≥ r2C2 −M,
1
4
≤ t ≤ 3

4
.

From this,

‖Au‖ ≥ max
0≤t≤1

∫ 3
4

1
4

G(t, s)[f(s, u(s)− u0(s), u′′(s)− u′′0(s)) + M ]ds

≥ r2C2 max
0≤t≤1

∫ 3
4

1
4

G(t, s)ds ≥ r2,

and

‖(Au)′′‖ ≥ max
0≤t≤1

∫ 3
4

1
4

G′′(t, s)[f(s, u(s)− u0(s), u′′(s)− u′′0(s)) + M ]ds

≥ r2C2 max
0≤t≤1

∫ 3
4

1
4

G′′(t, s)ds ≥ r2.

It follows that ‖Au‖0 ≥ r2 = ‖u‖0. By Lemma 2.3, we assert that the operator A
has at least one fixed point u ∈ P with r1 ≤ ‖u‖0 ≤ r2. This implies that (3.4) has
at least one solution u ∈ P with r1 ≤ ‖u‖0 ≤ r2.
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Let u∗(t) = u(t) − u0(t), 0 ≤ t ≤ 1. We will check that u∗ is a solution of the
problem (1.1). In fact, since Au = u, we have

u∗(t) + u0(t) = u(t) = (Au)(t)

=
∫ 1

0

G(t, s)[f(s, u(s)− u0(s), u′′(s)− u′′0(s)) + M ]ds

=
∫ 1

0

G(t, s)f(s, u∗(s), u′′∗(s))ds + u0(t).

It follows that

u∗(t) =
∫ 1

0

G(t, s)f(s, u∗(s), u′′∗(s))ds, 0 ≤ t ≤ 1.

In other words, u∗ is a solution of (1.1). Therefore, the problem (1.1) has at least
one solution u∗ satisfying u∗ + u0 ∈ P and r1 ≤ ‖u∗ + u0‖0 ≤ r2.

Since r1 = min{r1, r2} > − 6
6k+k2 M , we have

u∗(t) = [u∗(t) + u0(t)]− u0(t) = [u∗(t) + u0(t)]−Mp(t)

≥ (1 +
k

6
)‖u∗(t) + u0(t)‖+

M

k

≥ (1 +
k

6
)[r1 +

6
6k + k2

M ] > 0, 0 ≤ t ≤ 1,

which implies that u∗ is a positive solution of (1.1). �

Using Theorem 3.1, we can prove following result.

Theorem 3.2. Let −6 < k < 0. Assume that

f : [0, 1]× [
M

k
,+∞)× [−M

2
,+∞) → [−M,+∞) (3.5)

is continuous, where M ≥ 0 is a constant. Suppose that there exist three positive
numbers r1 < r2 < r3 with r1 > − 6

6k+k2 M such that one of the following conditions
is satisfied:

(1) α(r1) ≤ r1C1 −M , β(r2) > r2C2 −M , α(r3) ≤ r3C1 −M ;
(2) β(r1) ≥ r1C2 −M , α(r2) < r2C1 −M , β(r3) ≥ r3C2 −M .

Then problem (1.1) has at least two positive solutions.

4. Examples

Example 4.1. Consider the boundary-value problem

u(4)(t) = f(t, u(t), u′′(t)), 0 ≤ t ≤ 1,

u′(1) = u′′(1) = u′′′(1) = 0, −2u(0) = u′′′(0),
(4.1)

where f : [0, 1]× [−1,+∞)× [−1,+∞) → [−2,+∞) is defined by

f(t, u, v)=


t2 +

√
u + 1 + 9

√
v + 1− 2, (t, u, v) ∈ [0, 1]× [−1,− 1

2 ]× [−1,− 1
2 ],

t2 + u
4 + 9

√
v + 1 +

√
2

2 − 15
8 , (t, u, v) ∈ [0, 1]× [− 1

2 ,∞)× [−1,− 1
2 ],

t2 +
√

u + 1 + v
5 + 9

2

√
2− 19

10 , (t, u, v) ∈ [0, 1]× [−1,− 1
2 ]× [− 1

2 ,∞),
t2 + u

4 + v
5 + 5

√
2− 71

40 , (t, u, v) ∈ [0, 1]× [− 1
2 ,∞)× [− 1

2 ,∞).
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Thus, k = −2, M = 2, C1 = 2 and C2 = 6144
1537 . For

D1(r) =
{
(t, u, v) : 0 ≤ t ≤ 1, −1 ≤ u ≤ r − 11

12
, −1 ≤ v ≤ r

}
,

D2(r) =
{
(t, u, v) :

1
4
≤ t ≤ 3

4
, −2897

3072
≤ u ≤ r − 939

1024
, − 9

16
≤ v ≤ r − 1

16
}
.

By simple computations, we obtain

α(6) = max{f(t, u, v) : (t, u, v) ∈ D1(6)}

= max
{
f(1,

61
12

, 6), f(1,
61
12

,−1
2
), f(1,−1

2
, 6), f(1,−1

2
,−1

2
)
}

= f(1,
61
12

, 6) = 8.76 < 10 = 6C1 −M,

and

β(
13
8

)

= min
{
f(t, u, v) : (t, u, v) ∈ D2(

13
8

)
}

= min
{
f(

1
4
,−2897

3072
,− 9

16
), f(

1
4
,−2897

3072
,−1

2
), f(

1
4
,−1

2
,− 9

16
), f(

1
4
,−1

2
,−1

2
)
}

= f(
1
4
,−2897

3072
,− 9

16
) = 4.76 > 4.49 =

13
8

C2 −M.

Take r1 = 6 and r2 = 13
8 . Then (3.2) holds. Moreover, we have

min{r1, r2} =
13
8

>
3
2

= − 6
6k + k2

M.

So, by Theorem 3.1, problem (4.1) has at least one positive solution.
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