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RESONANT PROBLEM FOR SOME SECOND-ORDER
DIFFERENTIAL EQUATION ON THE HALF-LINE

KATARZYNA SZYMAŃSKA

Abstract. We prove the existence of at least one solution to a nonlinear

second-order differential equation on the half-line, with the boundary condi-

tions x′(0) = 0 and with the first derivative vanishing at infinity. Our main
tool is the multi-valued version of the Miranda Theorem.

1. Introduction

Most nonlinear differential, integral or, more generally, functional equations have
the form Lx = N(x), where L is a linear and N nonlinear operator, in appropriate
Banach spaces.

We have no problem if L is a linear Fredholm operator of index 0. Then the
kernel of the linear part of the above equation is trivial. It means that there exists
an integral operator and we can apply known topological methods to prove the
existence theorems [1, 5, 12].

If kernel L is nontrivial then the equation is called resonant and one can manage
the problem by using the coincidence degree in that case [13].

But, if the domain is unbounded (for example the half-line) the operator is
usually non-Fredholm (the range of L is not a closed subspace in any reasonable
Banach space) Such problems have been studied by different methods in many
papers. We mention only [2, 7, 8, 16, 17, 18]. For instant, the perturbation method
was developed in a series of papers [10, 10, 9, 19, 20].

We consider the following asymptotic boundary-value problem (BVP) on the
half-line

x′′ = f(t, x, x′), x′(0) = 0, lim
t→∞

x′(t) = 0.

The problem is resonant, since the corresponding homogeneous linear problem:
x′′ = 0, x′(0) = limt→∞ x′(t) = 0 has nontrivial solutions - constant functions.

Similar problem was considered in [17]. There, the asymptotic boundary condi-
tion limt→∞ x′(t) = 0 is replaced by x ∈ H2(R+) that is close but not the same as
our one and assumptions are of completely different kind.
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2 K. SZYMAŃSKA EJDE-2007/160

Our problem has been already studied in [21]. In this paper, we have obtained
the existence result in a completely different way than by using standard methods
for resonant problems. This enables us to get it under weak assumptions: a linear
growth condition and a sign condition for the nonlinear term f . Similar assumptions
appear also for other boundary-value problems.

But there we assumed also that function f is Lipschitz continuous. It was an
artificial condition. We needed it only to show that defined there mapping g is a
function and then to apply the Miranda Theorem [14, p. 124]. In this paper we
omit the assumption of Lipschitz continuity. In this way the mapping g becomes
a multifunction. Consequently, to get the Theorem about the existence of at least
one solution to the resonant problem we have to prove the multi-valued version of
Miranda Theorem (see Appendix, Theorem 3.1).

In this paper we apply Theorem 3.1 only in case k = 1. But as we know the
Theorems of the type of Miranda’s theorem has many applications for instance in
control theory [6]. That’s why it seams that Theorem 3.1 can be very useful as
well.

2. The main result

Let us consider an asymptotic BVP

x′′ = f(t, x, x′), x′(0) = 0, lim
t→∞

, x′(t) = 0 (2.1)

where f : R+ × R× R → R is continuous.
The following assumption will be needed in this paper:

(i) |f(t, x, y)| ≤ b(t)|y|+ c(t), where b, c ∈ L∞(0,∞);
(ii) there exists M > 0 such that xf(t, x, y) ≥ 0 for t ≥ 0, y ∈ R and |x| ≥ M .

First, we consider problem

y′ = f(t, c +
∫ t

0

y, y), y(0) = 0, (2.2)

for fixed c ∈ R. Observe that (2.2) is equivalent to an initial value problem

x′′ = f(t, x, x′), x(0) = c, x′(0) = 0. (2.3)

Since f is continuous, then by assumption (i) and the Local Existence Theorem we
get that problem (2.3) has at least one local solution. We can write (2.2) as

yc(t) =
∫ t

0

f
(
s, c +

∫ s

0

yc(u)du, yc(s)
)
ds (2.4)

Set

B :=
∫ ∞

0

b(s)ds, C :=
∫ ∞

0

c(s)ds. (2.5)

By (i) and (2.5) we get

|yc(t)| ≤
∫ t

0

(b(s)|yc(s)|+ c(s))ds ≤ C +
∫ t

0

b(s)|yc(s)|ds. (2.6)

Now, due to Gronwall’s Lemma [14, p. 17], we have

|yc(t)| ≤ Cexp
∫ t

0

b(s)ds
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Hence, by the Theorem on a Priori Bounds [14, p. 146], (2.3) has a global solution
for t ≥ 0. We obtain that (2.2) has a global solution for t ≥ 0. Moreover, by
assumption (i) and (2.5), we have

|yc(t)| ≤ Cexp
∫ t

0

b(s)ds ≤ Cexp
∫ ∞

0

b(s)ds = CexpB < ∞ (2.7)

Hence all global solutions are bounded for t ≥ 0.
The function t 7→ f(t, c +

∫ t

0
y(u)du, y(t)) is absolutely integrable; i.e.,

∀ε>0 ∃M>0

∣∣ ∫ ∞

M

f
(
t, c +

∫ t

0

y(u)du, y(t)
)
dt

∣∣ < ε.

In particular, there exists a limit limt→∞ yc(t), for every c. Thus all solutions of
(2.2) have finite limits at +∞.

Denote by BC(R+, R) the space of continuous and bounded functions with supre-
mum norm and by BCL(R+, R) its closed subspace of continuous and bounded
functions which have finite limits at +∞.

Let us consider the nonlinear operator F : BCL(R+, R) → BCL(R+, R) given
by

F (c, x)(t) =
∫ t

0

f(s, c +
∫ s

0

x(u)du, x(s))ds, (2.8)

where c ∈ R is fixed. It is easy to see that F is well defined. By using the Lebesgue
Dominated Convergence Theorem one can prove the continuity of F .

The following theorem gives a sufficient condition for compactness in the space
BC(R+, R), ([15]).

Theorem 2.1. If A ⊂ BC(R+, R) satisfies following conditions:

(1) There exists M > 0, that for every x ∈ A i t ∈ [0,∞) we have |x(t)| ≤ L;
(2) for each t0 ≥ 0, the family A is equicontinuous at t0;
(3) for each ε > 0 there exists T > 0 and δ > 0 such that if |x(T )− y(T )| ≤ δ,

then |x(t)− y(t)| ≤ ε for t ≥ T and all x, y ∈ A.

Then A is relatively compact in BC(R+, R).

Now, we can prove that operator F is completely continuous.

Proposition 2.2. Under assumption (i) operator F is completely continuous.

Proof. We shall show that the image of A := {x ∈ BCL(R+, R) | ‖x‖BC(R+,R) ≤
M} under F is relatively compact. Condition (1) of Theorem 2.1 is satisfied, since
|F (c, x)(t)| ≤ C + MB.

Now, we prove condition (2). We show that for any t0 ≥ 0 and ε > 0 there exists
δ > 0 that for each x ∈ B if |t− t0| < δ, then |F (c, x)(t)− F (c, x)(t0)| < ε. Let us
choose an arbitrary ε > 0. By (i) there exist δ1, δ2 > 0 such that

if |t− t0| < δ1, then
∫ max{t0,t}

min{t0,t}
b(s)ds <

ε

2M
,

if |t− t0| < δ2, then
∫ max{t0,t}

min{t0,t}
c(s)ds <

ε

2
.
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Let δ = min{δ1, δ2}. Then, for |t− t0| < δ, we get

|F (c, x)(t)− F (c, x)(t0)| ≤
∫ max{t0,t}

min{t0,t}
|f(s, c +

∫ s

0

x(u)du, x(s))|ds

≤ M

∫ max{t0,t}

min{t0,t}
b(s)ds +

∫ max{t0,t}

min{t0,t}
c(s)ds

< M
ε

2M
+

ε

2
= ε.

It remains to prove condition (3). By assumption (i) for every ε > 0 there exist t1,
t2 large enough that ∫ ∞

t1

b(s)ds <
ε

6M
,

∫ ∞

t2

c(s)ds <
ε

6
.

Let T = max{t1, t2} and δ := ε/3. If |F (c, x)(T )− F (c, y)(T )| ≤ δ, then for t ≥ T
we get

|F (c, x)(t)− F (c, y)(t)|

≤ |F (c, x)(T )− F (c, y)(T )|+
∫ ∞

T

∣∣f(s, c +
∫ s

0

x(u)du, x(s))
∣∣ds

+
∫ ∞

T

∣∣f(s, c +
∫ s

0

y(u)du, y(s))
∣∣ds

≤ |F (c, x)(T )− F (c, y)(T )|+ 2
∫ ∞

T

Mb(s)ds + 2
∫ ∞

T

c(s)ds

≤ ε

3
+ 2

ε

6M
+ 2

ε

6
= ε.

The proof is complete. �

Note that the solutions of (2.2) are fixed points of operator F defined by (2.8).
Let fixF (c, ·) denote the set of fixed points of operator F , where c is given. Let us
consider the multifunction g : R → 2R given by

g(c) := { lim
t→∞

yc(t) : yc ∈ fixF (c, ·)}.

We will show that g is upper semicontinuous map from R into its compact connected
subsets. To prove this we will define two maps: ϕ and Φ.

Let us consider the function ϕ : BCL(R+, R) → R given by

ϕ(yc) = lim
t→∞

yc(t).

It is easily seen that function ϕ is continuous. Set

Φ : R 3 c → fixF (c, ·) ⊂ BCL(R+, R).

We can now formulate the following result.

Proposition 2.3. Let assumption (i) hold. Then the multi-valued map Φ is upper
semicontinuous, that is for each c0 ∈ R and for any neighborhood U ⊂ BCL(R+, R)
of Φ(c0) there exists a neighborhood V of c0 such that Φ(c) ⊂ U , for all c ∈ V .

Proof. Suppose, contrary to our claim, that Φ is not upper semicontinuous; i. e., for
some c0 ∈ R there exist neighborhood U ⊂ BCL(R+, R) of fixF (c0, ·) and sequence
cn → c0 and xn ∈ fixF (cn, ·) \ U .
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By (2.7) we get that the solutions of (2.2) are equibounded for any c. Hence the
sequence (xn) is bounded. Moreover, we have

xn = F (cn, xn). (2.9)

Proposition 2.2 yields that operator F is completely continuous. Then, by (2.9),
(xn) is relatively compact. Hence, from the sequence (xn), we can extract a subse-
quence (xnl

) which is convergent to some x0 in BCL(R+, R). Moreover, cnk
→ c0.

Letting k →∞ in the equality

xnk
= F (cnk

, xnk
),

we get
x0 = F (c0, x0).

Hence, x0 ∈ fixF (c0, ·) ⊂ U . This contradicts the fact that xnk
∈ fixF (cnk

, ·) \ U ,
for every nk, and completes the proof. �

Proposition 2.4. Let assumption (i) hold. Then the set-valued map Φ has compact
and connected values.

Proof. By (2.7) we know that the set of solutions of IVP (2.2) is equibounded for
any c. Now, the proof that fix F (c, ·) is relatively compact in BCL(R+, R) follows
by the same method as in Proposition 2.2.

We next show that fixF (c, ·) is closed. Let (yn) be an arbitrary convergent
sequence such that yn ∈ fixF (c, ·), and let yn → y. We have

F (c, yn)(t) =
∫ t

0

f(s, c +
∫ s

0

yn(u)du, yn(s))ds. (2.10)

The sequence (yn) is bounded, since it is convergent. Moreover yn is uniformly con-
vergent to y on [0,∞). By (i) and the Lebesgue Dominated Convergence Theorem,
letting n →∞, we get

lim
n→∞

F (c, yn)(t) =
∫ t

0

f(s, c +
∫ s

0

y(u)du, y(s))ds.

On the other hand, yn = F (c, yn) and consequently

y(t) = lim
n→∞

yn(t) = lim
n→∞

F (c, yn)(t) = F (c, y)(t)

Hence y ∈ fixF (c, ·). From the above it follows that fix F (c, ·) is compact.
It is left is to show that fixF (c, ·) is connected in BCL(R+, R). On the contrary,

suppose that the set is not connected. Since fixF (c, ·) is compact, there exist
compact sets A and B such that A,B 6= ∅, A ∩B = ∅ and A ∪B = fixF (c, ·). Let
ε := dist(A,B), ε > 0. Then

∀y∈A,z∈B ‖y − z‖ ≥ ε. (2.11)

By (2.7) there exists T > 0 such that for any y ∈ fixF (c, ·) we get∫ ∞

T

∣∣f(
t, c +

∫ t

0

y(u)du, y(t)
)∣∣dt <

1
3
ε. (2.12)

Let y ∈ A, i z ∈ B. Now, consider the functions y and z cut to the compact set [0, T ]
and set y|[0,T ] and z|[0,T ]. By Kneser’s Theorem [11, p. 413], the set fix F (c, ·)|[0,T ]
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is connected in C([0, T ], R). From this, there exist x1, . . . , xk in fixF (c, ·)|[0,T ] such
that x1 = y |[0,T ], xk = z |[0,T ] and

‖xi − xi+1‖C([0,T ],R) <
1
3
ε. (2.13)

Hence, at least two sequel xi, xi+1 in fix F (c, ·)|[0,T ] are such that xi ∈ A i xi+1 ∈ B.
Moreover, xi, xi+1 ∈ fixF (c, ·). By (2.11), (2.12) and (2.13) we get a contradiction.
Indeed

ε ≤ ‖xi − xi+1‖BCL(R+,R)

≤ max{‖xi − xi+1‖C([0,T ],R), sup
t≥T

|xi(t)− xi+1(t)|}

≤ ‖xi − xi+1‖C([0,T ],R) +
i+1∑
j=i

∫ ∞

T

|f(t, c +
∫ t

0

xj(u)du, xj(t))|dt

<
1
3
ε +

1
3
ε +

1
3
ε = ε.

Hence, fix F (c, ·) is connected in BCL(R+, R), which proves the Proposition. �

Proposition 2.5. Let assumption (i) hold. Then the multifunction g is upper
semicontinuous map from R into its compact intervals.

Proof. By Proposition 2.4 we know that Φ has compact and connected values. Now,
by continuity of ϕ, the set

{ lim
t→∞

yc(t) | yc ∈ fix F (c, ·)}

is compact and connected subset of R for every c. From this, we conclude that
multifunction g(c) = (ϕ ◦ Φ)(c) maps R into its compact intervals. Moreover, g
is upper semicontinuous as a superposition of set-valued map with compact values
and continuous function [4, p. 47]. �

We can now formulate our main result.

Theorem 2.6. Under assumption (i)-(ii) problem (2.1) has at least one solution.

Proof. Let yc ∈ fixF (c, ·) be the bounded global solution of (2.2) and

g(c) := { lim
t→∞

yc(t) | yc ∈ fixF (c, ·)}.

Observe that x(t) = c +
∫ t

0
yc(s)ds is a solution of (2.1) if there exists an c ∈ Rk

such that 0 ∈ g(c).
We shall show that g satisfies assumptions of the multi-valued version of Miranda

Theorem for k = 1 (see Appendix).
By Proposition 2.5 we get that multifunction g is upper semicontinuous map

from R into its compact (so convex) intervals.
Let c = M + 1, where M > 0 is the constant from assumption (ii). Set M̂ :=

M + 1. We will show that ycM (t) ≥ 0 for t ≥ 0 and all ycM ∈ fixF (M̂, ·).
By (2.2) we have ycM (0) = 0. Assume that for some t and ycM ∈ fixF (M̂, ·) we

have ycM (t) < 0. Then there exist t∗ := inf{t | ycM (t) < 0} such that ycM (t∗) = 0
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and ycM (t) ≥ 0 for t < t∗ (if t∗ 6= 0). By continuity of ycM (t) there exists t1 > t∗

such that
∫ t1

t∗
|ycM (t)|dt ≤ 1. Hence, we get

x(t) = c +
∫ t

t∗

ycM (s)ds = M̂ +
∫ t

t∗

ycM (s)ds ≥ M for t ∈ [t∗, t1] .

Now, by (ii) we have

x(t)f(t, x(t), y(t)) = x(t)y′M+1(t) ≥ 0.

Hence y′cM (t) ≥ 0 for t ∈ [t∗, t1]. It means that ycM (t) is nondecreasing on [t∗, t1].
Since ycM (t∗) = 0 we get a contradiction. Hence ycM (t) ≥ 0 for t ≥ 0. In conse-
quence, if d ∈ g(M̂) = limt→∞ yM+1(t), then d ≥ 0.

To prove that if d ∈ g(−M̂), then d ≤ 0 we proceed analogously. Hence, by
multi-valued version of Miranda Theorem, there exists an c ∈ [−M̂, M̂ ] such that,
0 ∈ g(c). This completes the proof. �

3. Appendix

The theorem below is a generalization of the well known Miranda Theorem [14,
p. 214] which gives zeros of point-valued continuous maps.

Theorem 3.1. Let g be an upper semicontinuous map from the hypercube [−M̂, M̂ ]k

into convex and compact subsets of Rk and satisfying for d = (d1, . . . , dk) ∈ Rk the
conditions

if d ∈ g(x1, . . . , xi−1, M̂ , xi+1, . . . , xk), then di ≥ 0 (3.1)
and

if d ∈ g(x1, . . . , xi−1,−M̂, xi+1, . . . , xk), then di ≤ 0, (3.2)

for every i = 1, . . . , k. Then there exists x̃ ∈ [−M̂, M̂ ]k such that 0 ∈ g(x̃).

Proof. To prove this theorem, first of all suppose that the inequalities in (3.1)
and (3.2) hold in the strict sense. Let gi = Pig for i = 1, . . . , k, where Pi is the
projection of multifunction g on i-th axis. By (3.1) and (3.2) for i = 1, . . . , k we
have

gi(x1, . . . , xi−1, M̂ , xi+1, . . . , xk) ⊂ (0,∞),

gi(x1, . . . , xi−1,−M̂, xi+1, . . . , xk) ⊂ (−∞, 0).

It is easy to see that gi is upper semicontinuous map from [−M̂, M̂ ]k into compact
convex intervals for every i.

By (3.1) and the fact that gi is upper semicontinuous there exists γi > 0 such
that for any x ∈ [−M̂, M̂ ]k, where xi ∈ (M̂ − γi, M̂ ], we get gi(x) ⊂ (0,∞), for
every i = 1, . . . , k. Similarly, by (3.2) and the fact that gi is upper semicontinuous
there exists βi > 0 such that for any x ∈ [−M̂, M̂ ]k, where xi ∈ [−M̂,−M̂ + βi),
we have gi(x) ⊂ (−∞, 0), for every i = 1, . . . , k.

An upper semicontinuous map with compact values from a compact space has
compact graph ([3]). Hence

ĝ := sup{|d| | d ∈ gi(x), x ∈ [−M̂, M̂ ]k, i = 1, . . . , k} < ∞.

Let δ := min{β1, . . . , βk, γ1, . . . , γk, M̂}. Set ε := δbg and consider the set-valued
mapping given by

Fi(x) = xi − εgi(x).
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Then, for any xi ∈ [−M̂ + δ, M̂ − δ] and y ∈ gi(x) we have

−M̂ = −M̂ + δ − δ = −M̂ + δ − εĝ ≤ xi − εy ≤ M̂ − δ + εĝ = M̂ − δ + δ = M̂.

For xi ∈ [−M̂,−M̂ + δ), if y ∈ gi(x), then y < 0 and from this −εy > 0. We get

−M̂ ≤ xi ≤ xi − εy ≤ −M̂ + δ + εĝ ≤ −M̂ + 2δ ≤ M̂.

Next, for xi ∈ (M̂ − δ, M̂ ], if y ∈ gi(x), then y > 0 and in this way −εy < 0. We
get

−M̂ ≤ M̂ − 2δ ≤ M̂ − δ − εĝ ≤ xi − εy ≤ xi ≤ M̂.

Now, let us consider the multi-valued mapping

F (x) = x− εg(x),

where ε := δbg and x ∈ [−M̂, M̂ ]k. By the assumptions of multifunction g, F is
upper semicontinuous with convex and compact values in Rk. However, we know
more. We get that F maps from the hypercube [−M̂, M̂ ]k into its compact and
convex sets. Indeed, the projection PiF = Fi of F on i-th axis is compact interval
contained in [−M̂, M̂ ] for every i = 1, . . . , k.

Hence, by Kakutani’s Theorem ([3]), there exists x ∈ [−M̂, M̂ ]k such that x ∈
F (x). On the other hand

F (x) = x− εg(x).

Thus 0 ∈ F (x)− x = −εg(x), and from this 0 ∈ g(x).
Now, suppose that the inequalities in (3.1) and (3.2) hold in a weak sense. Then

for the following set-valued mapping

Hn(x) = g(x) +
1
n

x, n ∈ N

we have sharp inequalities. By the first part of the proof it follows that there exists
x̃n ∈ [−M̂, M̂ ]k such that 0 ∈ Hn(x̃n), for every n. Hence 0 ∈ g(x̃n) + 1

n x̃n. Since
sequence (x̃n) is bounded, we can extract a convergent subsequence of (xn). Let
(x̃n) denote the subsequence and let x̃n → x̃.

It suffices to show that 0 ∈ g(x̃). Suppose, contrary to our claim, that 0 /∈
g(x̃). Let η := dist(0, g(x̃)). Since g(x̃) is compact, we have that η > 0. Choose
neighborhood U := {y | |y − z| < 1

3η, z ∈ g(x̃)} of g(x̃). For every n we have
0 ∈ g(x̃n)+ 1

n x̃n. From this there exists yn ∈ g(x̃n) such that yn + 1
n x̃n = 0, n ∈ N.

In particular, g is upper semicontinuous at x̃. Hence, there exists N1 such that for
every n ≥ N1 we have g(x̃n) ⊂ U .

Moreover, 1
n x̃n → 0, as n → ∞. Hence, there exists N2 such that for any

n ≥ N2 we have | 1n x̃n| < 1
3η. Set N = max{N1, N2}. Then for n ≥ N we get

|yn| = | − 1
n x̃n| < 1

3η. On the other hand, yn ∈ g(x̃n) ⊂ U , which is impossible.
Hence 0 ∈ g(x̃) and the proof is complete. �
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