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A NEUMANN PROBLEM WITH THE q-LAPLACIAN ON A
SOLID TORUS IN THE CRITICAL OF SUPERCRITICAL CASE

ATHANASE COTSIOLIS, NIKOS LABROPOULOS

Abstract. Following the work of Ding [21] we study the existence of a non-
trivial positive solution to the nonlinear Neumann problem

∆qu + a(x)uq−1 = λf(x)up−1, u > 0 on T,

∇u|q−2 ∂u

∂ν
+ b(x)uq−1 = λg(x)up̃−1 on ∂T ,

p =
2q

2− q
> 6, p̃ =

q

2− q
> 4,

3

2
< q < 2,

on a solid torus of R3. When data are invariant under the group G = O(2)×I ⊂
O(3), we find solutions that exhibit no radial symmetries. First we find the

best constants in the Sobolev inequalities for the supercritical case (the critical
of supercritical).

1. Introduction

In this paper we study the existence of positive solutions of the Neumann bound-
ary problem

∆qu+ a(x)uq−1 = λf(x)up−1, u > 0 on T,

|∇u|q−2 ∂u

∂ν
+ b(x)uq−1 = λg(x)up̃−1 on ∂T ,

p =
2q

2− q
> 6, p̃ =

q

2− q
> 4,

3
2
< q < 2,

(1.1)

where ∂
∂ν is the outer unit normal derivative, ∆qu = −div(|∇u|q−2∇u) is the q-

Laplacian and for q = 2, ∆2 = ∆ is the Laplace-Beltrami operator.
Let Ω be a bounded domain in Rn, n ≥ 3 with smooth boundary ∂Ω. A host of

literature exists, concerning problems of the same type with (1.1), when q = 2; see
e.g. [8, 41, 2, 3, 42, 34, 15, 31, 35, 25, 44, 37, 26, 10, 12, 11, 20, 13, 16, 9, 33, 38,
39, 36, 43] and the references therein.
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In [17] the first author proved (under symmetry assumptions on Ω) the existence
and the multiplicity of positive solutions and of nodal solutions for the problem

∆u+ a(x)u = f(x)|u|p−2u, on Ω,
∂u

∂ν
+ b(x)u = h(x)|u|p̃−2u on ∂Ω,

p ≥ 2n
n− 2

, p̃ ≥ 2(n− 1)
n− 2

.

(1.2)

where a(x), f(x) are functions in C∞(Ω) and b(x), h(x) are functions in C∞(∂Ω).
In contrast to the case q = 2, the Neumann problem, for q 6= 2, has not been

studied so extensively; see e.g. [5, 7, 19, 32, 22, 6, 24]. In all the above mentioned
cases the supercritical exponent under consideration is not the highest possible one.

In problem (1.1) the main difficulty comes firstly from the dimension 3 of the
domain and secondly because the exponents p = 2q

2−q > 6 and p̃ = q
2−q > 4,

3
2 < q < 2 of the equation and the boundary condition, respectively, are both
the highest possible supercritital exponents (critical of supercritical). Also, the
boundary condition is more complicated than the one in the above problems with
q 6= 2. Additionally, we have to find solutions that exhibit no radial symmetries.
However, since the solid torus T ⊂ R3 is invariant under the group G = O(2)× I ⊂
O(3), the solutions inherit T ’s symmetry property.

Best constants in Sobolev inequalities are fundamental in the study of non-linear
PDEs on manifolds [1, 27, 30, 23, 29, 4] and the references therein. It is also well
known that Sobolev embeddings can be improved in the presence of symmetries
[30, 21, 17, 28, 19] and the references therein.

In our case for any q ∈ [1, 2) real, the embedding Hq
1,G(T ) ↪→ Lp

G(T ) is compact

for 1 ≤ p < 2q/(2 − q), while Hq
1,G(T ) ↪→ L

2q/(2−q)
1,G (T ), is only continuous [18].

We will prove that for any q ∈ [1, 2) real, the embedding Hq
1,G(T ) ↪→ Lp

G(∂T ) is

compact for 1 ≤ p < q/(2− q), while Hq
1,G(T ) ↪→ L

q/(2−q)
G (∂T ), is only continuous.

In the spirit of [1, 4] we determine the best constants of the Sobolev trace in-
equality

‖u‖q
Lp̃(∂T )

≤ A‖∇u‖q
Lq(T ) +B‖u‖q

Lq(∂T ),

where p̃ = q/(2 − q), 1 ≤ q < 2, which concern the supercritical case (the critical
of supercritical) and we use the above to solve the problem (1.1).

2. Notation and statement of results

Let us define the solid torus

T = {(x, y, z) ∈ R3 : (
√
x2 + y2 − l)2 + z2 ≤ r2, l > r > 0}

and A = {(Ωi, ξi) : i = 1, 2} be an atlas on T defined by

Ω1 = {(x, y, z) ∈ T : (x, y, z) /∈ H+
XZ},

Ω2 = {(x, y, z) ∈ T : (x, y, z) /∈ H−
XZ}

where

H+
XZ = {(x, y, z) ∈ R3 : x > 0 , y = 0}

H−
XZ = {(x, y, z) ∈ R3 : x < 0 , y = 0}
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and ξi : Ωi → Ii ×D, i = 1, 2, with

I1 = (0, 2π), I2 = (−π, π), D = {(t, s) ∈ R2 : t2 + s2 < 1}
and ξi(x, y, z) = (ωi, t, s), i = 1, 2 with

cosωi =
x√

x2 + y2
, sinωi =

y√
x2 + y2

, i = 1, 2

where

ω1 =


arctan y

x , x 6= 0
π/2, x = 0, y > 0
3π/2, x = 0 , y < 0

ω2 =


arctan y

x , x 6= 0
π/2, x = 0, y > 0
−π/2, x = 0 , y < 0

and

t =

√
x2 + y2 − l

r
, s =

z

r
.

The Euclidean metric g on (Ω, ξ) ∈ A can be expressed as

(
√
g ◦ ξ−1)(ω, t, s) = r2(l + rt).

Consider the spaces of all G-invariant functions under the action of the group
G = O(2)× I ⊂ O(3)

Hq
1,G = {u ∈ Hq

1 (T ) : u ◦ τ = u , ∀τ ∈ G},

where Hq
1 (T ) is the completion of C∞(T ) with respect the to norm

‖u‖Hq
1

= ‖∇u‖q + ‖u‖q.

For all G-invariants u we define the functions φ(t, s) = (u ◦ ξ−1)(ω, t, s). Then we
have

‖u‖p
Lp(T ) = 2πr2

∫
D

|φ(t, s)|p(l + rt) dt ds, (2.1)

‖∇u‖q
Lq(T ) = 2πr2−q

∫
D

|∇φ(t, s)|q(l + rt) dt ds, (2.2)

‖u‖p
Lp(∂T ) = 2πr

∫
∂D

|φ(t, 0)|p(l + rt) dt, (2.3)

where by φ we denote the extension of φ on ∂D.
Let K(2, q) be the best constant [1] of the Sobolev inequality

‖ϕ‖Lp(R2) ≤ K(2, q)‖∇ϕ‖Lq(R2)

for the Euclidean space R2, where 1 ≤ q < 2, p = 2q/(2 − q) and K̃(2, q) be the
best constant [30] in the Sobolev trace embedding

‖ϕ‖Lp̃(∂R2
+) ≤ K̃(2, q)‖∇ϕ‖Lq(R2

+)

for the Euclidean half-space R2
+, where 1 ≤ q < 2, p̃ = q/(2− q).

Consider a point Pj(xj , yj , zj) ∈ T , and by OPj
denote the orbit of Pj under the

action of the group G. Let lj =
√
x2

j + y2
j be the horizontal distance of the orbit

OPj
from the axis z′z. For ε > 0 given and δj = ljε, consider a finite covering

(Tj)j=1,...N with

Tj = {(x, y, z) ∈ T : (
√
x2 + y2 − lj)2 + (z − zj)2 < δ2j }

an open small solid torus (a tubular neighborhood of the orbit OPj
).
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2.1. Best constants on the solid Torus.

Theorem 2.1. Let T be the solid torus and p̃, q be two positive real numbers such
that p̃ = q/(2− q) with 1 < q < 2. Then for all ε > 0 there exists a real number Bε

such that for all u ∈ Hq
1,G the following inequality holds:

‖u‖q
Lp̃(∂T )

≤
[ K̃q(2, q)

[2π(l − r)
]q−1 + ε

]
‖∇u‖q

Lq(T ) +Bε‖u‖q
Lq(∂T ) (2.4)

In addition the constant K̃q(2, q)/[2π(l − r)]q−1 is the best constant for the above
inequality.

2.2. Resolution of the problem. Consider the set

Λ = {c = (α, β) ∈ R2 : α− β ≥ δ, q ≤ α ≤ p, q ≤ β ≤ p̃},
with δ ∈ (0, p− p̃) =

(
0, q/(2− q)

)
, and define the functionals

I(u) =
∫

T

(|∇u|q + a|u|q)dV +
∫

∂T

b|u|qdS

Ic(u) =
∫

T

f |u|αdV +
α

β

∫
∂T

g|u|βdS

for all u ∈ Hq
1,G and for any c ∈ Λ. I(u) and Ic(u) are well defined because the

imbeddings of Hq
1,G onto Lp and Lep are continue according to the Sobolev theorem.

Define, also

Σc = {u ∈ Hq
1,G : Ic(u) = 1},

µc = inf{I(u) : u ∈ Σc},
c0 = (p, p̃), t+ = sup(t, 0),

for all t ∈ R. Consequently for the problem (1.1) we have the following theorem.

Theorem 2.2. Let a, f , b and g be four smooth functions, G-invariant and q,
p, p̃ be three real numbers defined as in (1.1). Suppose that the function f has
constant sign (e.g. f ≥ 0). The problem (1.1) has a positive solution u ∈ Hq

1,G if
the following holds:

(sup
T
f)

[Kq(2, q)µ+
c0

[π(l − r)]q/2

]p/2

+
p

p̃
(sup

∂T
g)+

[ K̃q(2, q)µ+
c0

[2π(l − r)]q−1

]ep/2

< 1 (2.5)

and if
(1) f > 0 everywhere and g is arbitrary, or
(2) f ≥ 0, g > 0 everywhere and (−infTa)+κ < 1, where

κ = inf{A > 0 : ∃B > 0 s.t.‖ψ‖q
Lq(T ) ≤ A‖∇ψ‖q

Lq(T ) +B‖ψ‖q
Lq(∂T )}. (2.6)

In the rest of this paper we denote K = K(2, q), K̃ = K̃(2, q) and L = 2π(l− r).

3. Proofs

Proof of Theorem 2.1. The proof is carried out in two steps.
Step 1. Suppose that there exist two real numbers A, B such that for all u ∈ Hq

1,G

the following inequality holds:

‖u‖q
Lp̃(∂T )

≤ A‖∇u‖q
Lq(T ) +B‖u‖q

Lq(∂T ).
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Then

A ≥ K̃q(2, q)
|2π(l − r)|q−1

Consider a transformation F : D → R2
+. Such a transformation, for example, is

F (t, s) = (
4t

t2 + (1 + s)2
,
2(1− t2 − s2)
t2 + (1 + s)2

),

see [23]. Denote by (g̃ij) the Euclidian metric on D, dx dy the Euclidian metric on
R2

+ and dσ the induced on ∂R2
+. Choose a finite covering of D̄ consisting of disks

Dk, centered on pk, such that: If pk ∈ D, then entire Dk lies in D and if pk ∈ ∂D,
Dk is a Fermi neighborhood. In these neighborhoods we have

1− ε0 6
√

det(g̃ij) 6 1 + ε0 (3.1)

Suppose by contradiction that, there exists

A <
K̃q

Lq−1
and B ∈ R

such that the inequality

‖u‖q

Lp̃
G(∂T )

6 A‖∇u‖q
Lq

G(T )
+B‖u‖q

Lq
G(∂T )

(3.2)

holds for all u ∈ Hq
1,G(T ). Fix a point P0 ∈ ∂T , that belongs to the orbit of

minimum range l − r. For any ε0 > 0, we can choose δ = ε0(l − r) < 1 and

Tδ = {Q ∈ R3 : d(Q,OP0) < δ}

such that, if I ×U ⊂ I ×D is the image of a neighborhood of P0 ∈ ∂T through the
chart ξ of T and V ⊂ R2

+ the image of U through F , (3.1) holds. It follows that,
for any u ∈ C∞0 (Tδ), we have successively:(∫

∂Tδ

|u|p̃dS
)q/p̃

6 A

∫
Tδ

|∇u|qdV +B

∫
∂Tδ

|u|qdS,(
2πδ

∫
∂D

|φ|p̃(l − r + δt)dt
)q/p̃

6 2πδ2−qA

∫
D

|∇φ|q(l − r + δt) dt ds+ +2πδB
∫

∂D

|φ|q(l − r + δt)dt,(
(1− ε0)δL

∫
F (∂D)

(|φ|p̃
√
g̃) ◦ F−1dσ

)q/p̃

≤ (1 + ε0)δ2−qAL

∫
F (D)

(|∇φ|q
√
g̃) ◦ F−1 dx dy

+ (1 + ε0)δLB
∫

F (∂D)

(|φ|q
√
g̃) ◦ F−1dσ,(

(1− ε0)2δL
∫

∂R2
+

|Φ|p̃dσ
)q/p̃

6 (1 + ε0)2δL
(
δ1−qA

∫
R2

+

|∇Φ|q dx dy +B

∫
∂R2

+

|Φ|qdσ
)
,
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(∫
∂R2

+

|Φ|p̃dσ
)q/p̃

6 f(ε0)Lq−1A

∫
R2

+

|∇Φ|q dx dy + B̃

∫
∂R2

+

|Φ|qdσ, (3.3)

where f(ε0) = (1 + ε0)2/(1− ε0)2q/p̃, B̃ = f(ε0)(δL)q−1B and p̃ = q/(2 − q).
Because of (3.2) and since the above function f : (0, 1) → (1,+∞) with

f(t) =
(1 + t)2

(1− t)2q/p̃

is monotonically increasing, we can choose ε0 small enough, such that the following
inequality holds

A < f(ε0)A <
K̃q

Lq−1

hence A′ < K̃q where A′ = f(ε0)Lq−1A.
So for ε0 small enough and for all Φ ∈ C∞0 (D) we have(∫

∂R2
+

|Φ|p̃dσ
)q/p̃

6 A′
∫

R2
+

|∇Φ|q dx dy + B̃

∫
∂R2

+

|Φ|qdσ (3.4)

On the other hand by Hölder’s inequality, for all Φ ∈ C∞0 (Dδ), where Dδ ⊂ D, we
have ∫

∂Dδ

|Φ|qdσ0 6 [V ol(∂Dδ)]1−(q/p̃)
(∫

∂Dδ

(|Φ|q)p̃/q
dσ0

)q/p̃

and since p̃ = q/(2− q), that is 1− (q/p̃) = 1− (2− q) = q − 1, we have∫
∂Dδ

|Φ|qdσ0 6 V ol(∂Dδ)q−1
(∫

∂Dδ

|Φ|p̃dσ0

)q/p̃

(3.5)

Hence, choosing ε0 small enough, by (3.4) and (3.5), we get that there exists A′′ <
K̃q, such that for all Φ ∈ C∞0 (Dδ),(∫

∂R2
+

|Φ|p̃dσ
)q/p̃

6 A′′
∫

R2
+

|∇Φ|q dx dy . (3.6)

Let Ψ ∈ C∞0 (R2
+) and set Ψλ(x) = λ1/p̃Ψ(λx), λ > 0. For λ > 0, sufficiently

large, Ψλ ∈ C∞0 (D) and since ‖Ψλ‖Lp̃(∂R2
+) = ‖Ψ‖Lp̃(∂R2

+) and ‖∇Ψλ‖Lq(R2
+) =

‖∇Ψ‖Lq(R2
+), by (3.6), the following inequality(∫

∂R2
+

|Ψ|p̃dσ
)q/p̃

6 A′′
∫

R2
+

|∇Ψ|q dx dy

holds for all Ψ ∈ C∞0 (R2
+). This is a contradiction since K̃ is the best constant for

the Sobolev inequality in R2
+.

Step 2. For all ε > 0 there exists a real number Bε such that for all u ∈ Hq
1,G the

following inequality holds:

‖u‖q
Lp̃(∂T )

≤
[ K̃q(2, q)
[2π(l − r)]q−1

+ ε
]
‖∇u‖q

Lq(T ) +Bε‖u‖q
Lq(∂T )

Assume by contradiction that there exists ε0 > 0 such that for all α > 0 we can
find u ∈ Hq

1,G(T ) with

‖u‖q

Lp̃
G(∂T )

> (
K̃q

Lq−1
+ ε0)‖∇u‖q

Lq
G(T )

+ α‖u‖q
Lq

G(∂T )
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or
‖∇u‖q

Lq
G(T )

+ α‖u‖q
Lq

G(∂T )

‖u‖Lp̃
G(∂T )

<
( K̃q

Lq−1
+ ε0

)−1

It follows that, the above inequality remains true for all ε ∈ (0, ε0) and setting

Iα = inf
u∈H1,q

G (T )\{0}

‖∇u‖q
Lq

G(T )
+ α‖u‖q

Lq
G(∂T )

‖u‖q

Lp̃
G(∂T )

we conclude that for all α > 1, there exists θ0 > 0 independent of α such that

Iα <
( K̃q

Lq−1
+ ε0

)−1 =
Lq−1

K̃q
− θ0 (3.7)

As the quotient
‖∇u‖q

Lq
G(T )

+ α‖u‖q
Lq

G(∂T )

‖u‖q

Lp̃
G(∂T )

is homogeneous, for any fixed α we can take a minimizing sequence (uk) ⊂ Hq
1,G(T )

for it satisfying ‖uk‖q

Lp̃
G(∂T )

= 1. As

‖∇uk‖q
Lq

G(T )
+ α‖uk‖q

Lq
G(∂T )

→ Iα , (3.8)

we conclude that (uk) is bounded in Lq
G(∂T ) and (∇uk) is bounded in Lq

G(∂T ). By
the standard Sobolev trace inequality, we easily take, by contradiction, that there
exists a constant C such that

‖u‖q
Lq(T ) ≤ C(‖∇u‖q

Lq(T ) + ‖u‖q
Lq(∂T )). (3.9)

These two facts together imply that uk ⇀ u in Hq
1 (T ), uk → u in Lq(T ) and uk → u

in Lq(∂T ). Since convergence in Lp spaces implies a.e. convergence, the function u
will be G-invariant. By theorem 4 of [4] we have uk → u in Lp̃

G(∂T ), ‖u‖q

Lp̃
G(∂T )

= 1

and
‖∇u‖q

Lq
G(T )

+ α‖u‖q
Lq

G(∂T )
= Iα,

that is u is minimizing of Iα. Now, for each α > 0, let uα ∈ Hq
1,G(T ) satisfy

‖uα‖Lp̃
G(∂T ) = 1 and

‖∇uα‖q
Lq

G(T )
+ α‖uα‖q

Lq
G(∂T )

= Iα 6
Lq−1

K̃q
− θ0 (3.10)

Following arguments similar to the ones that proved u is G-invariant minimizing of
Iα, we conclude that (uα) is bounded in Hq

1,G(T ), thus we can take a subsequence
of (uα), denoted (uα) too, such that uα ⇀ u in Hq

1,G(T ), uα → u in Lq
G(T ) and

uα → u in Lq
G(∂T ). Moreover, by (3.10) we obtain

‖uα‖q
Lq

G(∂T )
<

1
α

(Lq−1

K̃q
− θ0

)
,

and sending α to +∞ we have u = 0 on ∂T . Finally following the proof of theorem
4 of [4] we obtain that ∇uα → ∇u a.e. and so (∇uα) is bounded in Lq

G(T ). Because
of (2.1), (2.2) and (2.3) and since 1 < q < 2, p̃ = q/ (2− q) we have

‖∇uα‖q
Lq(T ) + α‖uα‖q

Lq(∂T )

‖uα‖q
Lp̃(∂T )
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=

∫
T
|∇uα|qdV + α

∫
∂T
|uα|qdS

(
∫

∂T
|uα|p̃dS)q/p̃

=
2π

(
δ
λ

)2−q ∫
D
|∇φα|q

(
l − r + δ t

λ

)
dtds+ 2π δ

λα
∫

∂D
|φα|q

(
l − r + δ t

λ

)
dt(

2π δ
λ

∫
∂D

|φα|p̃
(
l − r + δ t

λ

)
dt

)q/p̃

=
2π

(
δ
λ

)2−q ∫
D
|∇φα|q

(
l − r + δ t

λ

)
dtds(

2π δ
λ

∫
∂D

|φα|p̃
(
l − r + δ t

λ

)
dt

)q/p̃
+

2π δ
λα

∫
∂D

|φα|q
(
l − r + δ t

λ

)
dt(

2π δ
λ

∫
∂D

|φα|p̃
(
l − r + δ t

λ

)
dt

)q/p̃

=
(

1
λ

)2−q− q
p̃ 2πδ2−q

∫
D
|∇φα|q

(
l − r + δ t

λ

)
dtds(

2πδ
∫

∂D
|φα|p̃

(
l − r + δ t

λ

)
dt

)q/p̃

+
(

1
λ

)1− q
p̃ 2πδα

∫
∂D

|φα|q
(
l − r + δ t

λ

)
dt(

2πδ
∫

∂D
|φα|p̃

(
l − r + δ t

λ

)
dt

)q/p̃

≤
2πδ2−q

∫
D
|∇φα|q(l − r + δ t

λ ) dt ds+ 2πδα
∫

∂D
|φα|q(l − r + δ t

λ )dt
(2πδ

∫
∂D

|φα|p̃(l − r + δ t
λ )dt)q/p̃

and as λ→ +∞ the above inequality yields

‖∇uα‖q
Lq(T ) + α‖uα‖q

Lq(∂T )

‖uα‖q
Lp̃(∂T )

≤
Lδ2−q

∫
D
|∇φα|q dt ds+ Lδα

∫
∂D

|φα|qdt
(Lδ

∫
∂D

|φα|p̃dt)q/p̃

= Lq−1

∫
D
|∇φα|q dt ds+ δ1−(q/p̃)α

∫
∂D

|φα|qdt
(
∫

∂D
|φα|p̃dt)q/p̃

< Lq−1

∫
D
|∇φα|q dt ds+ α

∫
∂D

|φα|qdt
(
∫

∂D
|φα|p̃dt)q/p̃

From the above inequality and (3.10) we obtain

Lq−1

∫
D
|∇φα|q dt ds+ α

∫
∂D

|φα|qdt
(
∫

∂D
|φα|p̃dt)q/p̃

<
Lq−1

K̃
− θ0

or ∫
D
|∇φα|q dt ds+ α

∫
∂D

|φα|qdt
(
∫

∂D
|φα|p̃dt)q/p̃

<
1
K̃q

− θ (3.11)

According to [4, Theorem 4] such a function satisfying inequality (3.11) does not
exist, and the theorem is proved. �

3.1. Proof of the main theorem.

Proof of Theorem 2.2. The proof is based on ideas from [14]. We recall, in this
point, some notation:

Λ = {c = (α, β) ∈ R2 : α− β ≥ δ, q ≤ α ≤ p, q ≤ β ≤ p̃},
where δ ∈ (0, p− p̃) =

(
0, q/(2− q)

)
,

I(u) =
∫

T

(|∇u|q + a|u|q)dV +
∫

∂T

b|u|qdS,
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Ic(u) =
∫

T

f |u|αdV +
α

β

∫
∂T

g|u|βdS

where u ∈ Hq
1,G and c ∈ Λ,

Σc = {u ∈ Hq
1,G : Ic(u) = 1},

µc = inf{I(u) : u ∈ Σc},
c0 = (p, p̃), t+ = sup(t, 0), t ∈ R.

Because the imbeddings of Hq
1,G(T ) in Lp

G(T ) and Lp̃
G(∂T ) are continuous but not

compact, we adopt the procedure of solving an approximating equation and then
we pass to the limit as in [1].
1. The proof of this part is carried out in six steps.
Step 1. A real tc ∈ Σc. Define on [0,+∞) the continuous function hc with

hc(t) = tα
∫

T

fdV +
α

β
tβ

∫
∂T

gdS

Since α > β we have hc(0) = 0, limt→∞ hc(t) = +∞ and there exists tc > 0 such
that h(tc) = 1. Hence the constant function, which in every point is equal to tc,
belongs to Σc, and then Σc 6= ∅.
Step 2. sup{µc : c ∈ Λ} < +∞. We will prove that there exists t̃ ∈ R such that
tc 6 t̃ for all c ∈ Λ and the following holds

µc 6 I(tc) =
(∫

T

adV +
∫

∂T

bdS
)
tqc 6

(∫
T

|a|dV +
∫

∂T

|b|dS
)
t̃q

• If
∫

∂T
gdS > 0, since f > 0 and α > β, by equality

1 = Ic(tc) = tαc

∫
T

fdV +
α

β
tβc

∫
∂T

gdS

arises

tc =
(∫

T

fdV +
α

β
tβ−α
c

∫
∂T

gdS
)−1/α

> sup{
(∫

T

fdV
)−1/α : q 6 α 6 p}

However, if
∫

T
fdV < 1, since q 6 α 6 p, the following holds(∫

T

fdV
)−1/q

6
(∫

T

fdV
)−1/α

< 1

while, if
∫

T
fdV > 1, we have the inequality(∫

T

fdV
)−1/q

>
(∫

T

fdV
)−1/α

> 1

Therefore, in this case, we set

t̃ = max{1,
(∫

T

fdV
)−1/q} > sup{

(∫
T

fdV
)−1/α : q 6 α 6

2q
2− q

}

• If
∫

∂T
gdS < 0, let t̃0 ∈ R such that

t̃0 > max
{
1,

(
p
|
∫

∂T
gdS|∫

T
fdV

)1/δ}
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When t > t̃0, because of q 6 α 6 p, q 6 β 6 p̃ and β 6 α−δ, we get (α/β) 6 (p/q),
and then

hc(t) = tα
∫

T

fdV +
α

β
tβ

∫
∂T

gdS

> tα
∫

T

fdV +
p

q
tα−δ

∫
∂T

gdS

= tα
(
1 +

p

q

|
∫

∂T
gdS|∫

T
fdV

t−δ
) ∫

T

fdV

> tq
(
1 +

p

q

|
∫

∂T
gdS|∫

T
fdV

t̃−δ
0

) ∫
T

fdV

>
tq

q

∫
T

fdV

Hence, for

t̃ = max{q1/q
(∫

T

fdV
)−1/q

, t̃0}

we have hc(t̃) > 1 and then tc 6 t̃.
Step 3. inf{µc : c ∈ Λ} > −∞. Since f > 0 everywhere, m = infT f > 0 and
because of Hq

1,G(T ) ↪→ Lp̃
G(∂T ) is continuous (see [18, lemma 2.1]) there exists

C > 1 such that for all ψ ∈ Hq
1,G(T ),

‖ψ‖p̃,∂T 6 C(‖∇ψ‖q,T + ‖ψ‖q,T )

We set

C1 = sup
q6α6p

[
m−1/q

(∫
T

fdV
)(1/q)−(1/α)]

,

C2 = sup
q6β6p̃

[
2β−1q−1pCβ‖g‖∞[V ol(∂T )]1−(β/p̃)

]
,

C3 = sup
q6α6p

[
21/αC1(C2 + 1)1/α

]
.

We recall, for reals x, y ≥ 0, the elementary inequalities

(x+ y)β 6 2β−1(xβ + yβ), (3.12)

(x+ y)1/α 6 21/α(x1/α + y1/α). (3.13)

Let u ∈ Σc with ‖u‖q,T > 1. Since u ∈ Σc we have∫
T

f |u|αdV +
α

β

∫
∂T

g|u|βdS = 1

and then ∫
T

f |u|αdV =1− α

β

∫
∂T

g|u|βdS

By (3.12), (3.13) and since q 6 α 6 p, q 6 β 6 p̃ we obtain

‖u‖q,T 6 m−1/q
(∫

T

f |u|qdV
)1/q

≤ m−1/q
(∫

T

fdV
)(1/q)−(1/α)(∫

T

f |u|αdV
)1/α

6 C1(1−
α

β

∫
∂T

g|u|βdS)1/α
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6 C1(1 +
p

q
‖g‖∞[V ol(∂T )]1−(β/p̃)‖u‖β

p̃,∂T )1/α

6 C1[1 +
p

q
‖g‖∞[V ol(∂T )]1−(β/p̃)Cβ(‖∇u‖q,T + ‖u‖q,∂T )β ]1/α

6 C1[1 + 2β−1q−1p‖g‖∞[V ol(∂T )]1−(β/p̃)Cβ(‖∇u‖β
q,T + ‖u‖β

q,T )]1/α

6 C1[C2‖∇u‖β
q,T + (C2 + 1)‖u‖β

q,T ]1/α

6 21/αC1[C
1/α
2 ‖∇u‖β/α

q,T + (C2 + 1)1/α‖u‖β/α
q,T ]

6 C3(‖∇u‖β/α
q,T + ‖u‖β/α

q,T ).

Since
β

α
6 1− δ

α
6 1− δ

p
,

if ε ∈ (0, 1) and C4 = C4(ε, p, δ, C3) is a constant such that

t1−(δ/p) 6
ε

C3
t+ C4,

for any t > 0, the latter inequality implies

‖u‖q,T 6 C3(1 + ‖∇u‖1−(δ/p)
q,T + ‖u‖1−(δ/p)

q,T )

6 ε(‖∇u‖q,T + ‖u‖q,T ) + C3(1 + 2C4)

Hence if ε1 = ε/(1− ε) and C = C3(1 + 2C4)/(1− ε) is a constant depending on
ε1, but not on c ∈ Λ, by the last inequality we obtain

‖u‖q,T 6 ε1‖∇u‖q,T + C (3.14)

Since we can take C > 1, (3.14) holds for c ∈ Λ and for all u ∈ Σc.
If b 6≡ 0, since Hq

1,G(T ) ↪→ Lq
G(∂T ) and Hq

1,G(T ) ↪→ Lq
G(T ) are compact, for any

ε′ ∈ (0, 1) we can find a constant C ′ = C ′(ε′, b) such that

‖ψ‖q
q,∂T 6 ‖b‖−1

∞ (ε′‖∇ψ‖q
q,T + C ′‖ψ‖q

q,T )

for all ψ ∈ Hq
1,G(T ), and then we obtain

I(ψ) =
∫

T

(|∇ψ|q + a|ψ|q)dV +
∫

∂T

b|ψ|qdS

≥ ‖∇ψ‖q
q,T − ‖a‖∞,T ‖ψ‖q

q,T − ‖b‖∞,T ‖ψ‖q
q,∂T

≥ (1− ε′)‖∇ψ‖q
q,T − ‖a‖∞,T ‖ψ‖q

q,T − C ′‖ψ‖q
q,T

= (1− ε′)‖∇ψ‖q
q,T −A(ε′)‖ψ‖q

q,T

(3.15)

where A(ε′) = ‖a‖∞,T +C ′. An inequality of the type (3.15) is always true if b ≡ 0,
because of inequality

I(ψ) > ‖∇ψ‖q
q,T − ‖a‖∞,T ‖ψ‖q

q,T .

By (3.14) because of (3.12) we obtain

‖u‖q
q,T ≤ 2q−1εq

1‖∇u‖
q
q,T + 2q−1Cq (3.16)

Thus if we choose ε1, small enough, such that 1 − ε′ − 2q−1A(ε′)εq
1 > 0, for all

u ∈ Σc, by (3.15) and (3.16) we obtain

I(u) >
(
1− ε′ − 2q−1A(ε′)εq

1

)
‖∇u‖q

q,T − 2q−1A(ε′)Cq

> −2q−1A(ε′)Cq
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Hence for all c ∈ Λ, µ ≥ −2q−1A(ε′)Cq.
We observe that if Γ is a subset of ∪c∈ΛΣc, such that sup{I(u) : u ∈ Γ} = L <

+∞, Γ is bounded in Hq
1,G(T ). Indeed, according to the former, for any u ∈ Γ we

have

‖∇u‖q
q,T 6

I(u) + 2q−1A(ε′)Cq

1− ε′ − 2q−1A(ε′)εq
1

6
L+ 2q−1A(ε′)Cq

1− ε′ − 2q−1A(ε′)εq
1

= c

and
‖u‖q,T 6 ε1‖∇u‖q,T + C 6 c′,

thus
sup
u∈Γ

(‖∇u‖q,T + ‖u‖q,T ) < +∞ .

Step 4. µc = inf{ I(u) : u ∈ Σc } is attained. Suppose that c = (α, β) ∈ Λ, α <
p , β < p̃. Let a sequence (uj) ∈ Σc such that limj→∞ I(uj) = µc. Since
|γuj | = γ(|uj |), (γuj is the trace of uj on ∂T ), a.e. on ∂T and I(|uj |) = I(uj),
Ic(|uj |) = Ic(uj) a.e. in T , we conclude that |uj | ∈ Σc; in a way similar to the
one that employs (|uj |) in place of (uj), (γ(|uj |) in place of γuj respectively) or we
can consider uj ’s nonnegative a.e. (the same for γuj ’s). The sequence (I(uj)) is
bounded in Hq

1,G(T ) implies that supj∈N(‖uj‖Hq
1 (T )) < +∞. Since the imbeddings

of Hq
1,G(T ) in Lq

G(T ), Lq
G(∂T ), Lα

G(T ) and Lβ
G(∂T ) are compacts, there is a func-

tion uc ∈ Hq
1,G(T ) and a subsequence (uj) of (uj) such that (uj) ⇀ uc in Hq

1,G(T ),
(uj) → uc in everyone of the previous Lr spaces, (uj) → uc a.e. in T . (The same
holds and for traces on ∂T ). Hence uc and γuc are nonnegative. We also have
Ic(uc) = limj→∞ Ic(uj) = 1 and then uc ∈ Σc and Ic(uc) > µc. Moreover since

‖∇uc‖q 6 lim
j→+∞

‖∇uj‖q

and ∫
T

auq
cdV +

∫
∂T

buq
cdS = lim

j→∞

( ∫
T

auq
jdV +

∫
∂T

buq
jdS

)
holds, we conclude that I(uc) 6 limj→∞ I(uj) = µc and I(uc) = µc.
Step 5. There exists a week solution uc0 ≥ 0. We observe that the deferential
DIc(u) of Ic is 6= 0 for all u ∈ Σc. (Because if DIc(u) = 0 for all ψ ∈ C∞0 (T )
then

∫
T
fu|u|α−2ψdV = 0. This implies that fu|u|α−2ψ = 0 in (C∞0 (T ))′ and since

f > 0, u = 0. Then u = 0 in Hq
1,G(T ), which is impossible since Ic(u) = 1). After

this a Lagrange multiplicand λc exists such that, for all ψ ∈ Hq
1,G(T ), it satisfies

the next Euler equation∫
T

(|∇uc|q−2∇uc∇ψ + auq−1
c ψ)dV +

∫
∂T

buq−1
c ψdS

= λc

(∫
T

fuα−1
c ψdV +

∫
∂T

guβ−1
c ψdS

) (3.17)

In the following we suppose that c = (α, β) → c0 = (p, p̃) and we will prove that
there are a real λc0 and a function uc0 such that∫

T

(|∇uc0 |q−2∇uc0∇ψ + auq−1
c0

ψ)dV +
∫

∂T

buq−1
c0

ψdS

= λc0(
∫

T

fup−1
c0

ψdV +
∫

∂T

gup̃−1
c0

ψdS)
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that is uc0 is a week solution of (1.1). Substituting ψ = uc in (3.17) we obtain∫
T

(|∇uc|q + auq
c)dV +

∫
∂T

buq
cdS = λc

(∫
T

fuα
c dV +

∫
∂T

guβ
c dS

)
or

λc

(∫
T

fuα
c dV +

∫
∂T

guβ
c dS

)
= I(uc) = µc

Moreover, we have

1 = Ic(uc) =
∫

T

fuα
c dV +

α

β

∫
∂T

guβ
c dS

=
α

β
(
∫

T

fuα
c dV +

∫
∂T

guβ
c dS) + (1− α

β
)
∫

T

fuα
c dV

and since

(1− α

β
)
∫

T

fuα
c dV < 0,

we obtain ∫
T

fuα
c dV +

∫
∂T

guβ
c dS >

β

α
>
q

p
> 0

Hence λc and µc have the same sign and since the set {µc}c∈Λ is bounded a constant
C exists, such that

|λc| 6
p

q
|µc| 6 C

Since sup{I(uc) : c ∈ Λ} <∞, we have (step 2)

sup{‖uc‖Hq
1

: c ∈ Λ} <∞.

Moreover, because the embeddings of Hq
1,G(T ) in Lp

G(T ) and Lp̃
G(∂T ) are continu-

ous, we have

sup{‖uc‖p,T : c ∈ Λ} <∞,

sup{‖uc‖p̃,∂T : c ∈ Λ} <∞

We observe that β−1
p̃−1 < 1 and then

‖uβ−1
c ‖p̃/(p̃−1),∂T 6 [V ol(∂T )]1−(β/p̃)‖uc‖β−1

p̃,∂T

6 [max(1, [V ol(∂T )]1−(β/p̃))][max(1, ‖uc‖p̃−1
p̃,∂T )] 6 ct

that is, the sets {uα−1
c }, (respectively {uβ−1

c }) are bounded in the Banach reflexive
spaces Lp/(p−1)(T ), (respectively Lp̃/(p̃−1)(∂T )), of which the dual Lp(T ) (respec-
tively Lp̃(∂T )) contain Hq

1,G(T ).
The above implies the existence of a sequence cj = (αj , βj) ∈ Λ, which converges

to c0, of a real λc0 which is the limit of (λcj
) and of a function uc0 with the following

properties:
(a) ucj ⇀ uc0 on Hq

1 (T ), (by Banach’s theorem),
(b) ucj

→ uc0 on Lq(T ) (resp. Lq(∂T ), (by Kondrakov’s theorem),
(c) ucj

→ uc0 a.e. in T , (resp. ∂T ) (by proposition 3.43 of [1]) and
(d) uαj−1

cj ⇀ up−1
c0

in Lp/(p−1)(T ) (resp. u
βj−1
cj ⇀ up̃−1

c0
in Lp̃/(p̃−1)(∂T )) (by

Banach theorem).
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From (a) arises that∫
T

|∇ucj |q−2∇ucj∇ψdV →
∫

T

|∇uc0 |q−2∇uc0∇ψdV

for all ψ ∈ Hq
1 (T ).

From (c) arises that uc0 is G-invariant and uc0 > 0 on T (resp. γuc0 > 0 in ∂T ).
We may also assume that the sequence (µcj ) converges, with limit µ0 6 µc0 .

Indeed, let u ∈ Σc0 be a non-negative function such that µc0 6 I(u) 6 µc0 +ε, with
ε > 0. Then for all j, there exists a unique real number tj > 0 such that Icj

(tju) = 1
and limj→∞ tj = 1. If this is not the case, there will exist a subsequence tjk

with
limj→∞ tjk

= l 6= 1. But in T the following holds,

0 6 fuαjk 6 f(1 + up) ∈ L1(T )

and on ∂T the following also holds,

0 6 |g|uαjk 6 |g|(1 + up̃) ∈ L1(∂T ).

According to the dominated convergence theorem we have

Icjk
(tjk

u) → lp
∫

T

fupdV +
p

p̃
lp̃

∫
∂T

gup̃dS

namely, Ic0(lu) = 1. This is contradiction since l 6= 1 and Ic0(u) = 1, whereas
we know that there exists unique real number r > 0 such that Ic0(ru) = 1. Since
µcj

6 I(tju) = tqjI(u) we conclude that lim supj→+∞ µcj
6 µc0 .

Now we can write equation (3.14) for ucj
, and as j → +∞ by Lebesgue’s theorem,

we find that for all ψ ∈ Hq
1,G(T ) the following holds∫

T

(|∇uc0 |q−2∇uc0∇ψ + auq−1
c0

ψ)dV +
∫

∂T

buq−1
c0

ψdS

= λc0

(∫
T

fup−1
c0

ψdV +
∫

∂T

gup̃−1
c0

ψdS
)

which implies that (λc0 , uc0) is a week solution of the problem (1.1).
Step 6. uc0 > 0 everywhere. We proved in step 5 that uc0 ≥ 0. By the maximum
principle [40], the function uc0 is identically equal to 0 or uc0 > 0 everywhere in
T , and finally in T̄ : since every point P , where uc0 attains it’s minimum in T̄ ,
belongs to ∂T , assume that uc0 is regular and that there exists P0 ∈ ∂T such that
uc0(P0) = 0. By Hopf’s lemma [40], we have that the normal derivative has strict
sign,

(
∂uc0/∂ν

)
(P0) < 0, but the boundary condition imposes

|∇uc0 |q−2 ∂uc0

∂ν
(P0) = (−buq−1

c0
+ λc0gu

p̃−1
c0

)(P0) = 0,

a contradiction which proves that uc0(P ) > 0 in T̄ .
For the solution uc0 to be strictly positive it suffices uc0 6≡ 0, which implies that

‖uc0‖q,T = limj→∞ ‖ucj
‖q,T > 0. By [18, theorem 3.1] and theorem 2.1 of this

paper, we conclude that for any K > K/
√
L/2 and for any K̃ > K̃/L(q−1)/q there

exists a constant C(K, K̃) such that for all ψ ∈ Hq
1,G(T ) the following inequalities

hold

‖ψ‖q
p,T 6 Kq‖∇ψ‖q

q,T + C‖ψ‖q
q,T , (3.18)

‖ψ‖q
p̃,∂T 6 K̃q‖∇ψ‖q

q,T + C‖ψ‖q
q,T (3.19)
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By (3.15) we have

‖∇uc‖q
q,T 6 (1 + ε)I(uc) +A(ε)‖uc‖q

q,T (3.20)

where 1 + ε = 1/(1− ε′), A(ε) = A(ε′)/(1− ε′).
Let ε > 0 and D(ε, p) be a constant such that for any x, y > 0 and ρ ∈ [0, p] the

following holds
(x+ y)ρ/q 6 (1 + ε)xρ/q +Dyρ/q (3.21)

By (3.18) because of (3.20), (3.21) and since I(uc) = µc for α < p, β < p̃ we can
write

‖uc‖α
p,T 6 (Kq‖∇uc‖q

q,T + C‖uc‖q
q,T )α/q

6 [(1 + ε)q/pKqµ+
c + (AKq + C)‖uc‖q

q,T ]α/q

6 (1 + ε)qKα(µ+
c )α/q +D(AKq + C)α/q‖uc‖α

q,T

(3.22)

Similarly by (3.19) because of (3.20), (3.21) we can write,

‖uc‖β
p̃,∂T 6 (1 + ε)qK̃β(µ+

c )β/q +D(AK̃q + C)β/q‖uc‖β
q,T (3.23)

So by (3.22), (3.23) and Hölder inequality we have

1 = Ic(uc) =
∫

T

fuα
c dV +

α

β

∫
∂T

guβ
c dS

6 (sup f
T

)[V ol(T )]1−(a/p)‖uc‖α
p,T

+
α

β
(sup g

∂T
)+[V ol(∂T )]1−(β/p̃)‖uc‖β

p̃,∂T

6 (1 + ε)q[(sup f
T

)[V ol(T )]1−(a/p)Kα(µ+
c )α/q]

+ (1 + ε)q[
α

β
(sup g

∂T
)+[V ol(∂T )]1−(β/p̃)K̃β(µ+

c )β/q]

+ C1‖uc‖α
q,T + C2‖uc‖β

q,T

(3.24)

where the constants

C1 = D(AKq + C)α/q(sup f
T

)[V ol(T )]1−(a/p),

C2 = (α/β)D(AK̃q + C)β/q(sup g
∂T

)+[V ol(∂T )]1−(β/p̃)

are bounded by a constant C̃(ε,K, K̃) > 0 independent of α and β. By (3.24) for
c = cj , since limj→∞ µcj

6 µc0 for j → +∞, we obtain

1 6 (1 + ε)q
[
(sup f

T
)Kp(µ+

c0
)p/q +

p

p̃
(sup g

∂T
)+K̃p̃(µ+

c0
)p̃/q

]
+ C̃(‖uc0‖

p
q,T + ‖uc0‖

p̃
q,T )

because the sequence (ucj ) → uc0 strongly into Lq(T ). Thus if the condition (2.5)
of the theorem is satisfied and if we choose ε > 0 small enough and K, K̃ close
enough to K/

√
L/2, K̃/L(q−1)/q, respectively, we obtain ‖uc0‖q,T > 0 and hence

we proved the first part of the theorem.
2. If f becomes 0, f > 0, we impose the condition g > 0, namely ν = inf∂T g > 0,
the proof follows along similar lines as in case 1. Thus we have to find two positive
constants A1, A2 > 0 such that if u ∈ ∪c∈ΛΣc the following will hold,

I(u) > A1‖∇u‖q
q −A2
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Since g > 0 we have supu∈∪c∈ΛΣc
‖u‖q,∂T = D < +∞, because for such a u the

following holds

1 = Ic(u) >
∫

∂T

guβdS > ν‖u‖β
β,∂T > ν[V ol(∂T )]1−(β/q)‖u‖β

q,∂T

Let κ be the best constant of the inequality (2.6), namely of

‖ψ‖q
q,T 6 A‖∇ψ‖q

q,T +B‖ψ‖q
q,∂T , ψ ∈ H

q
1,G

If ăκ < 1 where ă = (− inf a)+ we choose A close to κ such that A1 = 1− Aă > 0
and then we have

I(u) ≥
∫

T

(|∇u|q − ăuq)dV +
∫

∂T

buqdS

≥ ‖∇u‖q
q − ă‖u‖q

q,T − ‖b‖∞‖u‖
q
q,∂T

≥ ‖∇u‖q
q − ăA‖∇u‖q

q − ăB‖u‖q
q,∂T − ‖b‖∞‖u‖

q
q,∂T

= (1− ăA)‖∇u‖q
q − (ăB + ‖b‖∞)‖u‖q

q,∂T

≥ A1‖∇u‖q
q −A2

where A1 = 1− ăA, A2 = (ăB + ‖b‖∞)Dq and the theorem is proved. �
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