WEIGHTED FUNCTION SPACES OF FRACTIONAL DERIVATIVES FOR VECTOR FIELDS

ANDRÁS DOMOKOS

Abstract

We introduce and study weighted function spaces for vector fields from the point of view of the regularity theory for quasilinear subelliptic PDEs.

section

1. Results

We consider a bounded domain $\Omega \subset \mathbb{R}^{n}$ and a system of smooth vector fields $X=\left(X_{1}, \ldots, X_{m}\right), m \leq n$, defined on Ω. Denote by $X f=\left(X_{1} f, \ldots, X_{m} f\right)$ the X-gradient of a function f and use the notation $|X f|^{2}=\sum_{i=1}^{m}\left(X_{i} f\right)^{2}$.

In terms of the vector fields X_{1}, \ldots, X_{m}, in the theory of second order PDE, usually we have one of the following two cases:
(1) $X_{i}=\frac{\partial}{\partial x_{i}}, 1 \leq i \leq n$ and we refer to it as the (classical) elliptic case.
(2) There are points in Ω where the linear subspace of the tangent space spanned by the vector fields X_{1}, \ldots, X_{m} has dimension strictly less then n, but at the same time Hörmander's condition is satisfied, which means that there exists a positive integer $\nu \geq 2$ such that the vector fields X_{i} and their commutators

$$
\left[X_{i_{1}},\left[X_{i_{2}}, \ldots, X_{i_{k}}\right] \ldots\right], \quad 2 \leq k \leq \nu
$$

of length at most $\nu \in \mathbb{N}$ span the tangent space at every point of Ω. We refer to this case as the subelliptic case and the vector fields X_{i} are called horizontal vector fields.
Let $2 \leq p<\infty$ and $K \subset \Omega$ be a compact subset of Ω. Consider the Sobolev space

$$
X W^{1, p}(\Omega)=\left\{f \in L^{p}(\Omega): X_{i} f \in L^{p}(\Omega) \text { for all } i \in\{1, \ldots, m\}\right\}
$$

In the elliptic case we use the usual $W^{1, p}(\Omega)$ notation.

2000 Mathematics Subject Classification. 26A33, 35H20.
Key words and phrases. Fractional derivatives; weak solutions; subelliptic PDE.
(C)2007 Texas State University - San Marcos.

Submitted May 26, 2006. Published January 25, 2007.

If Z is a smooth vector field then we define its flow as the mapping $F(x, s)=e^{s Z} x$ which solves the initial value problem

$$
\begin{align*}
\frac{\partial F}{\partial s}(x, s) & =Z F(x, s) \tag{1.1}\\
F(x, 0) & =x .
\end{align*}
$$

For $f \in X W^{1, p}(\Omega)$, we define the weight

$$
w(X f, s, x)=\left(1+|X f(x)|^{2}+\left|X f\left(e^{s Z} x\right)\right|^{2}\right)^{1 / 2}
$$

and the following first and second order differences:

$$
\begin{gathered}
\Delta_{Z, s} f(x)=f\left(e^{s Z} x\right)-f(x) \\
\Delta_{Z,-s} f(x)=f(x)-f\left(e^{-s Z} x\right) \\
\Delta_{Z, s}^{2} f(x)=f\left(e^{s Z} x\right)+f\left(e^{-s Z} x\right)-2 f(x)
\end{gathered}
$$

Notice that

$$
\Delta_{Z, s}^{2} f(x)=\Delta_{Z,-s} \Delta_{Z, s} f(x)=\Delta_{Z, s} \Delta_{Z,-s} f(x)
$$

Let $0<\theta<2,0 \leq \alpha \leq p-2$ and $2 \leq q \leq p-\alpha$. Consider $s_{K}>0$ sufficiently small such that

$$
e^{s Z} x \in \Omega, \quad \text { for all } 0<|s|<s_{K} \text { and } x \in K
$$

and the Jacobian of the transformation $x \mapsto e^{s Z} x$ to be bounded in the following way:

$$
0<a^{q} \leq\left|J\left(e^{s Z} x\right)\right| \leq b^{q}, \quad \text { for all } 0<|s|<s_{K} \text { and } x \in K
$$

where $0<a \leq 1 \leq b$.
Consider the following two pseudo-norms:

$$
\begin{aligned}
& \|f\|_{Z, \alpha, p, q}^{\theta, 1}=\|f\|_{L^{P}(\Omega)}+\sup _{0<|s|<s_{K}}\left(\int_{\Omega} w^{\alpha}(X f, s, x) \frac{\left|\Delta_{Z, s} f(x)\right|^{q}}{|s|^{\theta q}} d x\right)^{1 / q}, \\
& \|f\|_{Z, \alpha, p, q}^{\theta, 2}=\|f\|_{L^{P}(\Omega)}+\sup _{0<|s|<s_{K}}\left(\int_{\Omega} w^{\alpha}(X f, s, x) \frac{\left|\Delta_{Z, s}^{2} f(x)\right|^{q}}{|s|^{\theta q}} d x\right)^{1 / q} .
\end{aligned}
$$

Define the following function spaces which help us to handle the fractional derivatives in the Z direction:

$$
B_{Z, \alpha, p, q}^{\theta, 1}(K, \Omega)=\left\{f \in X W^{1, p}(\Omega): \operatorname{supp} f \subset K \text { and }\|f\|_{Z, \alpha, p, q}^{\theta, 1}<\infty\right\}
$$

and

$$
B_{Z, \alpha, p, q}^{\theta, 2}(K, \Omega)=\left\{f \in X W^{1, p}(\Omega): \operatorname{supp} f \subset K \text { and }\|f\|_{Z, \alpha, p, q}^{\theta, 2}<\infty\right\}
$$

If $\alpha=0$ then these are linear normed spaces. Also, in the elliptic case, for $\alpha=0$, $q=p$ we get similar spaces to the fractional order Besov spaces [5, 6]

$$
B_{p, \infty}^{\theta}(\Omega)=\left\{f \in L^{p}(\Omega):\|f\|_{L^{p}(\Omega)}+\sup _{0 \neq\|z\| \leq \delta, z \in \mathbb{R}^{n}} \frac{\left\|\triangle_{z}^{2} f\right\|_{L^{p}\left(\Omega_{z}\right)}}{|z|^{\theta}}<\infty\right\}
$$

where $\triangle_{z}^{2} f(x)=f(x+z)+f(x-z)-2 f(x)$, and $\Omega_{z}=\{x \in \Omega: x+z \in \Omega\}$. In the elliptic case the vector fields $\frac{\partial}{\partial x_{i}}$ generate a commuting family of strongly continuous semigroup of operators and by their isotropic nature, we can have a uniform treatment of the difference quotients in every direction. In the subelliptic case, using the Carnot-Carathéodory metric, a generalization of the elliptic setting is
possible [2]. However, this approach does not allow us to study fractional derivatives in the direction of one vector field at a time.

Let us list a few evident properties of our function spaces:
(i) By [4, Theorem 4.3], if Z is a commutator of length k of the horizontal vector fields X_{i}, then

$$
X W^{1, p}(\Omega) \subset B_{Z, 0, p, p}^{\frac{1}{k}, 1}(K, \Omega)
$$

(ii) By [1, Lemma 2.3], if $f \in B_{Z, 0, p, p}^{1,1}(K, \Omega)$ then $Z f \in L^{p}(K)$.
(iii) Using the fact that $\Delta_{Z, s}^{2} f(x)=\Delta_{Z, s} f(x)-\Delta_{Z,-s} f(x)$ we easily get that

$$
B_{Z, \alpha, p, q}^{\theta, 1}(K, \Omega) \subset B_{Z, \alpha, p, q}^{\theta, 2}(K, \Omega)
$$

The reversed inclusion is not elementary, and for the proof we use a method of Zygmund [7] which already proved to be useful in the Heisenberg group [3].

Theorem 1.

(a) For $0<\theta<1$ we have $B_{Z, \alpha, p, q}^{\theta, 2}(K, \Omega) \subset B_{Z, \alpha, p, q}^{\theta, 1}(K, \Omega)$.
(b) For every $0<\gamma<1$ we have $B_{Z, \alpha, p, q}^{1,2}(K, \Omega) \subset B_{Z, \alpha, p, q}^{\gamma, 1}(K, \Omega)$.
(c) For $1<\theta<2$ we have $B_{Z, \alpha, p, q}^{\theta, 2}(K, \Omega) \subset B_{Z, \alpha, p, q}^{1,1}(K, \Omega)$.

Proof. (a) Let $f \in B_{Z, \alpha, p, q}^{\theta, 2}(K, \Omega)$. Then

$$
\int_{\Omega}\left(1+|X f(x)|^{2}+\left|X f\left(e^{s Z} x\right)\right|^{2}\right)^{\alpha / 2}\left|f\left(e^{s Z} x\right)+f\left(e^{-s Z} x\right)-2 f(x)\right|^{q} d x \leq M^{q}|s|^{\theta q}
$$

for all $0<|s|<s_{K}$. Therefore,

$$
\int_{\Omega}\left(1+\left|X f\left(e^{s Z} x\right)\right|^{2}\right)^{\alpha / 2}\left|f\left(e^{s Z} x\right)+f\left(e^{-s Z} x\right)-2 f(x)\right|^{q} d x \leq M^{q}|s|^{\theta q}
$$

and then changing s to $-s / 2$ we get

$$
\int_{\Omega}\left(1+\left|X f\left(e^{-\frac{s}{2} Z} x\right)\right|^{2}\right)^{\alpha / 2}\left|f\left(e^{\frac{s}{2} Z} x\right)+f\left(e^{-\frac{s}{2} Z} x\right)-2 f(x)\right|^{q} d x \leq \frac{M^{q}}{2^{\theta q}}|s|^{\theta q}
$$

We use now the change of variables $x \mapsto e^{\frac{s}{2} Z} x$ to get

$$
\int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2}\left|f\left(e^{s Z} x\right)+f(x)-2 f\left(e^{\frac{s}{2} Z} x\right)\right|^{q} d x \leq \frac{M^{q}}{a^{q} 2^{\theta q}}|s|^{\theta q}
$$

In this way we have obtained the inequality

$$
\int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2}\left|\triangle_{Z, s}(f)(x)-2 \triangle_{Z, \frac{s}{2}}(f)(x)\right|^{q} d x \leq \frac{M^{q}}{a^{q} 2^{\theta q}}|s|^{\theta q}
$$

and repeating n-times the process of changing s to $s / 2$ and multiplying the inequality by 2^{q} we get

$$
\begin{aligned}
& \int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2}\left|2^{n-1} \triangle_{Z, \frac{s}{2^{n-1}}} f(x)-2^{n} \triangle_{Z, \frac{s}{2^{n}}} f(x)\right|^{q} d x \\
& \leq \frac{M^{q}}{a^{q} 2^{\theta q}}|s|^{\theta q} 2^{(1-\theta) q(n-1)}
\end{aligned}
$$

These inequalities give

$$
\begin{equation*}
\left(\int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2}\left|\triangle_{Z, s} f(x)-2^{n} \triangle_{Z, \frac{s}{2^{n}}} f(x)\right|^{q} d x\right)^{1 / q} \leq \frac{M}{a 2^{\theta}}|s|^{\theta} \sum_{k=0}^{n-1} 2^{(1-\theta) k} \tag{1.2}
\end{equation*}
$$

and hence by our assumptions on q, p and α it follows that, for a constant $C>0$ depending on the $X W^{1, p}$ norm of f, we have

$$
\begin{align*}
& \left(\int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2}\left|\triangle_{Z, \frac{s}{2^{n}}} f(x)\right|^{q} d x\right)^{1 / q} \\
& \leq \frac{1}{2^{n}}\left(\int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2}\left|\triangle_{Z, s} f(x)\right|^{q} d x\right)^{1 / q}+c \frac{M}{a 2^{\theta}}|s|^{\theta} 2^{-\theta n} \tag{1.3}\\
& \leq C\left(\frac{1}{2^{n}}+|s|^{\theta} 2^{-\theta n}\right)
\end{align*}
$$

For all h with $0<|h|<s_{K} / 2$ there exist $n \in \mathbb{N}$ and $s \in \mathbb{R}$ such that $|s| \in\left[s_{K} / 2, s_{K}\right]$ and $h=s / 2^{n}$. In this way we get

$$
\frac{1}{|h|^{\theta}}\left(\int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2}\left|\triangle_{Z, h} f(x)\right|^{q} d x\right)^{1 / q} \leq C\left(\frac{|h|^{1-\theta}}{s_{K}}+1\right)
$$

Also, for $s_{K} / 2 \leq|h| \leq s_{K}$ we have

$$
\frac{1}{|h|^{\theta}}\left(\int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2}\left|\triangle_{Z, h} f(x)\right|^{q} d x\right)^{1 / q} \leq C
$$

and therefore,

$$
\sup _{0<|h|<s_{K}}\left(\int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2} \frac{\left|\triangle_{Z, h} f(x)\right|^{q}}{|h|^{\theta q}} d x\right)^{1 / q} \leq C .
$$

The change of variables $x \mapsto e^{-h Z} x$ shows that, for a possible different C and sufficiently small h, we have

$$
\left(\int_{\Omega}\left(1+\left|X f\left(e^{-h Z} x\right)\right|^{2}\right)^{\alpha / 2} \frac{\left|\triangle_{Z,-h} f(x)\right|^{q}}{|h|^{q \theta}} d x\right)^{1 / q} \leq C .
$$

Changing h to $-h$ gives

$$
\begin{equation*}
\left(\int_{\Omega}\left(1+\left|X f\left(e^{h Z} x\right)\right|^{2}\right)^{\alpha / 2} \frac{\left|\triangle_{Z, h} f(x)\right|^{q}}{|h|^{q \theta}} d x\right)^{1 / q} \leq C . \tag{1.4}
\end{equation*}
$$

and therefore,

$$
\sup _{0<|h|<s_{K}}\left(\int_{\Omega}\left(1+|X f(x)|^{2}+\left|X f\left(e^{h Z} x\right)\right|^{2}\right)^{\alpha / 2} \frac{\left|\triangle_{Z, h} f(x)\right|^{q}}{|h|^{q \theta}} d x\right)^{1 / q} \leq C .
$$

(b) Let $f \in B_{Z, \alpha, p, q}^{1,2}(K, \Omega)$ and start in a similar way to the proof of the part (a). Inequality 1.2 for $\theta=1$ gives

$$
\begin{equation*}
\left(\int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2}\left|\triangle_{Z, s} f(x)-2^{n} \triangle_{Z, \frac{s}{2^{n}}} f(x)\right|^{q} d x\right)^{1 / q} \leq \frac{M}{a 2^{\theta}}|s| n \tag{1.5}
\end{equation*}
$$

Again, for $0<|h|<s_{K} / 2$ consider $n \in \mathbb{N}$ and $s \in \mathbb{R}$ such that $|s| \in\left[s_{K} / 2, s_{K}\right]$ and $h=s / 2^{n}$ and get

$$
\frac{1}{|h|^{\gamma}}\left(\int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2}\left|\triangle_{Z, h} f(x)\right|^{q} d x\right)^{1 / q} \leq C\left(\frac{|h|^{1-\gamma}}{s_{K}}+|h|^{1-\gamma}|\ln h|\right) .
$$

This leads to $f \in B_{Z, \alpha, p, q}^{\gamma, 1}(K, \Omega)$.
(c) Let $f \in B_{Z, \alpha, p, q}^{\theta, 2}(K, \Omega)$. Taking into consideration that we suppose now $1<\theta<2$, inequality 1.2 has the form

$$
\begin{equation*}
\left(\int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2}\left|\triangle_{Z, s} f(x)-2^{n} \triangle_{Z, \frac{s}{2^{n}}} f(x)\right|^{q} d x\right)^{1 / q} \leq \frac{M}{a 2^{\theta}}|s| \tag{1.6}
\end{equation*}
$$

and this leads to

$$
\frac{1}{|h|}\left(\int_{\Omega}\left(1+|X f(x)|^{2}\right)^{\alpha / 2}\left|\triangle_{Z, h} f(x)\right|^{q} d x\right)^{1 / q} \leq C \frac{1}{s_{K}}\left(1+s_{K}^{\theta-1}\right)
$$

It easily follows now that $f \in B_{Z, \alpha, p, q}^{1,1}(K, \Omega)$.
Remark 2. As will be shown in the Examples 3 and 5 below, slight variations of these weighted function spaces might also appear. To define them consider the pseudo-norms:

$$
\begin{aligned}
& \|f\|_{X Z, \alpha, p, q}^{\theta, 1}=\|f\|_{L^{P}(\Omega)}+\sup _{0<|s|<s_{K}}\left(\int_{\Omega} w^{\alpha}(X f, s, x) \frac{\left|\Delta_{Z, s} X f(x)\right|^{q}}{|s|^{\theta q}} d x\right)^{1 / q}, \\
& \|f\|_{X Z, \alpha, p, q}^{\theta, 2}=\|f\|_{L^{P}(\Omega)}+\sup _{0<|s|<s_{K}}\left(\int_{\Omega} w^{\alpha}(X f, s, x) \frac{\left|\Delta_{Z, s}^{2} X f(x)\right|^{q}}{|s|^{\theta q}} d x\right)^{1 / q},
\end{aligned}
$$

and the function spaces

$$
X B_{Z, \alpha, p, q}^{\theta, 1}(K, \Omega)=\left\{f \in X W^{1, p}(\Omega): \operatorname{supp} f \subset K \text { and }\|f\|_{X Z, \alpha, p, q}^{\theta, 1}<\infty\right\}
$$

and

$$
X B_{Z, \alpha, p, q}^{\theta, 2}(K, \Omega)=\left\{f \in X W^{1, p}(\Omega): \operatorname{supp} f \subset K \text { and }\|f\|_{X Z, \alpha, p, q}^{\theta, 2}<\infty\right\}
$$

If we follow the proof of Theorem 1, we realize that it remains valid in the case of $X B_{Z, \alpha, p, q}^{\theta, 1}(K, \Omega)$ and $X B_{Z, \alpha, p, q}^{\theta, 2}(K, \Omega)$, too. Another inclusion which will be used in Examples 3 and 5 is that if $f \in X B_{Z, p-2, p, 2}^{\theta, 1}(K, \Omega)$ then $f \in X B_{Z, 0, p, p}^{\frac{2 \theta}{p}, 1}(K, \Omega)$ (see also the proof of [3, Lemma 3.1]).

In the following two examples we show that our function spaces naturally appear when we study the regularity of the minimizers to the problem

$$
\begin{equation*}
\min _{u \in X W^{1, p}(\Omega)} \int_{\Omega}\left(1+|X u(x)|^{2}\right)^{p / 2} d x \tag{1.7}
\end{equation*}
$$

subject to a boundary condition of type $u-v \in X W_{0}^{1, p}(\Omega)$, where $v \in X W^{1, p}(\Omega)$ is fixed. A minimizing function u is a weak solutions of the following nondegenerate p-Laplacian equation

$$
\begin{equation*}
\sum_{i=1}^{m} X_{i}\left(\left(1+|X u|^{2}\right)^{\frac{p-2}{2}} X_{i} u\right)=0, \quad \text { in } \Omega \tag{1.8}
\end{equation*}
$$

which means that

$$
\begin{equation*}
\int_{\Omega}\left(1+|X u|^{2}\right)^{\frac{p-2}{2}} X_{1} u X_{1} \varphi+\left(1+|X u|^{2}\right)^{\frac{p-2}{2}} X_{2} u X_{2} \varphi d x=0 \tag{1.9}
\end{equation*}
$$

for all $\varphi \in X W^{1, p}(\Omega)$ with support compactly included in Ω.

Example 3. In this example we refer to the proof of [3, Lemma 3.1]. Consider the the Heisenberg group \mathbb{H} as \mathbb{R}^{3} endowed with the group multiplication

$$
\left(x_{1}, x_{2}, t\right) \cdot\left(y_{1}, y_{2}, s\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, t+s-\frac{1}{2}\left(x_{2} y_{1}-x_{1} y_{2}\right)\right) .
$$

The horizontal vector fields are

$$
X_{1}=\frac{\partial}{\partial x_{1}}-\frac{x_{2}}{2} \frac{\partial}{\partial t}, \quad X_{2}=\frac{\partial}{\partial x_{2}}+\frac{x_{1}}{2} \frac{\partial}{\partial t}
$$

Denote

$$
T=\frac{\partial}{\partial t}
$$

and observe that $\left[X_{1}, X_{2}\right]=T$. To study the regularity of weak solutions first we have to prove the differentiability in the direction of T. The vector fields X_{1}, X_{2} and T span the tangent space at every point and according to [4, Theorem 4.3] we have

$$
\eta^{2} u \in B_{T, 0, p, p}^{\frac{1}{2}, 1}(\Omega)
$$

for every $\eta \in C_{0}^{\infty}(\Omega)$. Use now a test function

$$
\varphi=\frac{\triangle_{T,-s}}{s^{1 / 2}}\left(\frac{\triangle_{T, s}\left(\eta^{2} u\right)}{s^{1 / 2}}\right)
$$

to get

$$
\eta^{2} u \in X B_{T, p-2, p, 2}^{\frac{1}{2}, 1}(\operatorname{supp} \eta, \Omega)
$$

This implies that

$$
\eta^{2} u \in X B_{T, 0, p, p}^{\frac{1}{p}, 1}(\operatorname{supp} \eta, \Omega)
$$

and by the fact that T commutes with the horizontal vector fields X_{1} and X_{2} we can use again [4, Theorem 4.3] to get

$$
\eta^{2} u \in B_{T, 0, p, p}^{\frac{1}{2}+\frac{1}{p}, 2}(\operatorname{supp} \eta, \Omega)
$$

For $p=2$ we have $\eta^{2} u \in B_{T, p-2, p, 2}^{1,2}(\operatorname{supp} \eta, \Omega)$ which implies

$$
\eta^{2} u \in B_{T, p-2, p, 2}^{\gamma, 1}(\operatorname{supp} \eta, \Omega)
$$

for any $\frac{1}{2}<\gamma<1$. Restarting our proof on the bases of the previous line we get

$$
\eta^{2} u \in B_{T, 0, p, p}^{\frac{1}{2}+\gamma, 2}(\operatorname{supp} \eta, \Omega),
$$

and this leads to $T u \in L_{\text {loc }}^{p}(\Omega)$.
For $p>2$, by Theorem 1 the inequality $\frac{1}{2}+\frac{1}{p}<1$ implies that

$$
\eta^{2} u \in B_{T, 0, p, p}^{\frac{1}{2}+\frac{1}{p}, 1}(\operatorname{supp} \eta, \Omega),
$$

and hence we can restart the whole process again with $\frac{1}{2}+\frac{1}{p}$ instead of $\frac{1}{2}$ and a new cut-off function η with a conveniently chosen support to get

$$
\eta^{2} u \in B_{T, 0, p, p}^{\frac{1}{2}+\frac{1}{p}+\frac{2}{p^{2}}, 1}(\operatorname{supp} \eta, \Omega)
$$

In general, after k iterations we get $\eta^{2} u \in B_{T, 0, p, p}^{\gamma_{k}, 2}(\operatorname{supp} \eta, \Omega)$, with

$$
\gamma_{k}=\frac{1}{2}+\frac{1}{p}\left(1+\frac{2}{p}+\cdots+\frac{2^{k-1}}{p^{k-1}}\right)
$$

If $2 \leq p<4$ then for a sufficiently large k we have $\gamma_{k}>1$ and then

$$
\eta^{2} u \in B_{T, 0, p, p}^{1,1}(\operatorname{supp} \eta, \Omega)
$$

which implies that $T u \in L_{\mathrm{loc}}^{p}(\Omega)$. Of course, there is the question of what is happening if, for a $k \in \mathbb{N}$, we get $\gamma_{k}=1$. In this case, we can choose a $\gamma_{k+1}<1$ sufficiently close to 1 such that after repeating the iteration to get $\gamma_{k+2}>1$.

Remark 4. We study the case $p \geq 2$ in order to be able to give a uniform approach to our function spaces in various cases of horizontal vector fields. In 3] it is also proved that $T u \in L_{\mathrm{loc}}^{p}(\Omega)$ for $1<p<2$. The proof of this result is connected to Heisenberg group and does not work for other Carnot groups of step 3 or higher. However, let us give the sequence of spaces in which we include $\eta^{2} u$. So, we start with $B_{T, 0, p, p}^{\frac{1}{2}, 1}(\operatorname{supp} \eta, \Omega)$ and continue with

$$
\begin{gathered}
X B_{T, p-2, p, 2}^{\frac{1}{4}, 1}(\operatorname{supp} \eta, \Omega), \quad X B_{T, 0, p, p}^{\frac{1}{4}, 1}(\operatorname{supp} \eta, \Omega) \\
B_{T, 0, p, p}^{\frac{3}{4}, 2}(\operatorname{supp} \eta, \Omega), \quad B_{T, 0, p, p}^{\frac{3}{4}, 1}(\operatorname{supp} \eta, \Omega), \ldots \\
B_{T, 0, p, p}^{\frac{2^{k+1}-1}{2 k+1}, 1}(\operatorname{supp} \eta, \Omega), \quad B_{T, 0, p, p}^{\frac{1}{2}+\gamma_{k}, 2}(\operatorname{supp} \eta, \Omega)
\end{gathered}
$$

where $\gamma_{k}=\frac{2^{k}-1}{2^{k+2}}(p-1)+\frac{2^{k+1}-1}{2^{k+2}}>1 / 2$ for k sufficiently large.
Example 5. We consider now an example involving commutators of length higher than 2. Our preference goes with Grushin type vector fields, but we could use T from the center of any nilpotent Lie Algebra generated by a system of horizontal vector fields. Consider $\Omega \subset \mathbb{R}^{2}$ intersecting the line $x_{1}=0$ and the vector fields $X_{1}=\frac{\partial}{\partial x_{1}}$ and $X_{2}=x_{1}^{3} \frac{\partial}{\partial x_{2}}$. At the points $\left(0, x_{2}\right) \in \Omega$ the vector fields X_{1} and X_{2} span a 1 dimensional subspace, so we need their commutator of length 4

$$
T=\left[X_{1},\left[X_{1},\left[X_{1}, X_{2}\right]\right]\right]=6 \frac{\partial}{\partial x_{2}}
$$

to span the whole tangent space.
According to 4] we have

$$
\eta^{2} u \in B_{T, 0, p, p}^{\frac{1}{4}, 1}(\Omega)
$$

for every $\eta \in C_{0}^{\infty}(\Omega)$ and we can start the iteration process with the test function

$$
\varphi=\frac{\triangle_{T,-s}}{s^{1 / 4}}\left(\frac{\triangle_{T, s}\left(\eta^{2} u\right)}{s^{1 / 4}}\right)
$$

In a similar to way to Example 3 we get the series of inclusions

$$
\begin{gathered}
\eta^{2} u \in X B_{T, p-2, p, 2}^{\frac{1}{4}, 1}(\operatorname{supp} \eta, \Omega) \\
\eta^{2} u \in X B_{T, 0, p, p}^{\frac{1}{2 p}, 1}(\operatorname{supp} \eta, \Omega) \\
\eta^{2} u \in B_{T, 0, p, p}^{\frac{1}{4}+\frac{1}{2 p}, 2}(\operatorname{supp} \eta, \Omega)
\end{gathered}
$$

By Theorem 1. the inequality $\frac{1}{4}+\frac{1}{2 p}<1$ implies that

$$
\eta^{2} u \in B_{T, 0, p, p}^{\frac{1}{4}+\frac{1}{2 p}, 1}(\operatorname{supp} \eta, \Omega)
$$

and hence we can restart the whole process again with $\frac{1}{4}+\frac{1}{2 p}$ instead of $\frac{1}{4}$ and get

$$
\eta^{2} u \in B_{T, 0, p, p}^{\frac{1}{4}+\frac{1}{2 p}+\frac{1}{p^{2}}, 1}(\operatorname{supp} \eta, \Omega)
$$

Therefore, after k iterations we get

$$
\eta^{2} u \in B_{T, 0, p, p}^{\gamma_{k}, 2}(\operatorname{supp} \eta, \Omega)
$$

with

$$
\gamma_{k}=\frac{1}{4}+\frac{1}{2 p}\left(1+\frac{2}{p}+\cdots+\frac{2^{k-1}}{p^{k-1}}\right) .
$$

If $2 \leq p<8 / 3$ then for a sufficiently large k we have $\gamma_{k}>1$ and then

$$
\eta^{2} u \in B_{T, 0, p, p}^{1,1}(\operatorname{supp} \eta, \Omega)
$$

which implies that $T u \in L_{\mathrm{loc}}^{p}(\Omega)$.

References

[1] L. Capogna, Regularity of quasilinear equations in the Heisenberg group, Comm. Pure Appl. Math. 50 (1997) 867-889.
[2] D. Danielli, N. Garofalo and D.-M. Nhieu; Sub-elliptic Besov spaces and the characterization of traces on lower dimensional manifolds, Contemporary Mathematics 277(2001), 19-37.
[3] A. Domokos, Differentiability of solutions for the non-degenerate p-Laplacian in the Heisenberg group, J. Differential Equations, 204 (2004), 439-470.
[4] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119(1967), 147171.
[5] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Series, Durham Univ. 1976.
[6] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Company, Amsterdam-New-York-Oxford, 1978.
[7] A. Zygmund, Trigonometric series, Volume 1, Cambridge University Press, 1977.
András Domokos
Department of Mathematics and Statistics, California State University Sacramento, Sacramento, CA 95819, USA

E-mail address: domokos@csus.edu

