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Abstract. It is known that a beneficial cancer treatment approach for a sin-

gle patient often involves the administration of more than one type of therapy.
The question of how best to combine multiple cancer therapies, however, is still

open. In this study, we investigate the theoretical interaction of three treat-

ment types (two biological therapies and one chemotherapy) with a growing
cancer, and present an analysis of an optimal control strategy for administering

all three therapies in combination. In the situations with controls introduced

linearly, we find that there are conditions on which the controls exist singularly.
Although bang-bang controls (on-off) reflect the drug treatment approach that

is often implemented clinically, we have demonstrated, in the context of our

mathematical model, that there can exist regions on which this may not be the
best strategy for minimizing a tumor burden. We characterize the controls in

singular regions by taking time derivatives of the switching functions. We will

examine these representations and the conditions necessary for the controls to
be minimizing in the singular region. We begin by assuming only one of the

controls is singular on a given interval. Then we analyze the conditions on

which a pair and then all three controls are singular.

1. Introduction

The goal of applying optimal control theory to mathematical models representing
the interaction between tumor, immune system, and chemotherapy is to determine
the ideal mix of treatments that minimizes both tumor mass and negative effects
upon the health of the patient. Recent research into the mixture of chemo- and
immunotherapy regimens shows a great deal of potential for the success of such
treatment schedules, c.f. [13], [32], [34], [22], [25], [26], [35], [15].

The logic behind the development of a combination chemo-immunotherapy strat-
egy is intuitive - use as little chemotherapy drug as possible to effectively kill tumor
cells while utilizing immunotherapy to bolster the patient’s immune system, thus
strengthening the body’s natural defenses against both the tumor cells and the
dangerous side effects of the chemotherapy.
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The application of optimal control theory to mathematical models incorporating
the interaction between tumors and treatments has provided valuable information
in the past. Works by Kim et al. [18], Swan and Vincent [37], and Murray [30] have
successfully utilized control theory to maximize the effectiveness of chemotherapy
against tumor cells and minimize the toxic effects of such treatments. Optimal
control has also been effectively applied to immunotherapy models; for example,
Swan [36], Kuznetsov and Knott [24], and Kirschner et al. [20] have contributed
research on applications to immunotherapy strategies for cancer and HIV. The
more recent approach of combining chemo- and immunotherapy is being explored
by several researchers; Kirschner and Panetta [21] present a model detailing tumor-
immune interaction with chemotherapy, while Burden et al. [2] apply quadratic
control to that model. In addition, in the works by de Pillis and Radunskaya [5],
[6], and de Pillis et al. [7], [4] the authors explore various approaches to combining
chemo- and immunotherapies through numerical simulation and the implementation
of numerical linear controls.

The model presented in this paper is an expansion of the model presented by
de Pillis et al. [4]. The modifications are introduced in response to newer research
on the kinetics of IL-2 and immune cell populations. Another alteration to this
model is the inclusion of constraints to limit both the tumor mass after treatment
and the total concentration of lymphocytes during treatment. These additional
constraints introduce a slight variation on the typical optimal control problem and
must be dealt with by other means than the standard application of Pontryagin’s
Maximum/Minimum Principle [31]. We turn to works by Kirk [19], Hartl et al.
[14], and Kamien and Schwartz [17] for the methods necessary to incorporate these
constraints.

The interest in applying control in a linear fashion to this model is somewhat
pragmatic, given standard chemotherapy treatments. A widely used approach to
cancer treatment is to give a maximum dosage of chemotherapy drug for some
period of time, followed by a period of recuperation in which no drug is given.
This type of treatment correlates theoretically with bang-bang control. However,
when dealing with linear controls, we investigate the possibility of singular arcs and
which conditions are necessary for those arcs to be optimal. In this paper, we use
the Generalized Legendre-Clebsch conditions - as given by Krener [23] - to generate
the higher order necessary conditions for the optimality of the singular arcs. A
more detailed discussion of this is given in Section 3.

The outline of the paper is as follows. In Section 2, we present the model and
discuss the model’s components. Section 3 deals with the application of optimal
control to the model, beginning with the description of the objective functional.
The section continues with the proof of existence of an optimal control in this con-
text and concludes with the conditions under which singular controls are optimal.
Section 4 summarizes the conclusions reached from analysis of the data. In the
appendices we provide full statements of certain theorems and detailed equations
used to develop the work in this paper.

2. Three-Cell Three-Chemical Model

2.1. Model Development and Cellular Dynamics. Medical advances have
given doctors more options in cancer treatment. Traditional chemotherapy sched-
ules may now be supplemented with various forms of immunotherapy. The existence
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of more options, however, can make it more challenging to find the best treatment.
A mathematical model of all the processes involved can help to reveal improved
treatment strategies. In this paper we analyze a model exploring the possible dy-
namics that can occur in different regions of parameter space. The hope is that
the analysis will provide intuition into the interactions of the tumor, chemotherapy,
and immunotherapy.

The model tracks 6 quantities
• Tumor Cells, T (t) (Units: Number of Cells)
• Natural Killer Cells, N(t) (Units: Number of Cells per Liter)
• Circulating Lymphocytes, C(t) (Units: Number of Cells per Liter)
• Tumor Specific CD8+ T -Lymphocytes, L(t) (Units: Number of Cells per

Liter)
• Interleukin 2, I(t) (Units: International Units (IUs) per Liter)
• Medicine, M(t) (Units: Milligrams per Liter)

The circulating lymphocyte population represents all B and T lymphocytes in
the bloodstream. Natural killer cells, which are also lymphocytes, are tracked as
a separate population. The quantity L represents the concentration of cells that
have been activated by a tumor related antigen.

2.2. Tumor Equation (T ). Simple logistic growth of the tumor cell population,
in the absence of medicine and immune interactions, is used. Death of tumor cells
due to natural killer cells is given by a mass action term cNT , whereas death
due to CTLs is given by a ratio dependent term, D. Note that unlike other cell
populations, T is measured as an absolute number and not a concentration.

2.3. Natural Killer Cell Equation (N). A constant source term of Natural
Killer cells differentiating from Circulating Lymphocytes and a linear death term
are both assumed. We also assume that natural killer cells die when they have
interacted with a tumor cell; so we include a mass action death term identical to
that in the T equation. For N , L, and C the quantity given is cells per liter of
blood.

2.4. Circulating Lymphocyte Equation. This population has the simplest dy-
namics: a constant source term and a linear death rate.

2.5. Tumor Specific T Cell (CD8+T CTL) Equation. We assume that these
cells have a linear death rate, −mL, as well as a quadratic death rate, −uL2C.
The latter term represents the activity of regulatory T-cells, which are a subset
of circulating lymphocytes. The CTLs may also die through interaction with the
tumor and this is represented by a mass action term,−qLT . Interactions of the tu-
mor with the larger lymphocyte populations, N and C, stimulate CTL production.
These stimulatory terms are represented by the two positive mass action terms.
Additionally, tumor-related antigens stimulate the proliferation of CTLs through
j TL

k+T .

2.6. Dynamics and Effects of Medicine. Once injected, medicine (chemother-
apy) is assumed to have a linear decay rate. The medicine interacts with each of the
four cell populations, T , N , L and C through a term of the form KX(1−e(−δXM))X,
[12]. For each cell population, this term represents cell death due to the medicine.
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2.7. Dynamics and Effects of IL-2. Although naturally produced, the cytokine
IL-2 is often used to treat cancer. This model assumes a linear decay rate and
a constant source from circulating lymphocytes. Additionally, when a T-cell is
stimulated by IL-2, the T-cell will secrete more IL-2 as represented by ω LI

gI+L .
IL-2 also stimulates the proliferation of Natural Killer cells and CTLs. This

stimulation is represented by the Michaelis-Menten terms, p XI
g+X , in each equation.

Also, IL-2 inhibits the linear death term but stimulates the quadratic death term
in the CTL equation.

2.8. The Equations. The system of differential equations describing the growth,
death, and interactions of these populations with a chemotherapy treatment is given
by

dT

dt
= aT (1− bT )− cNT −DT −KT (1− e−δT M )T (2.1)

dN

dt
= f

( e

f
C −N

)
− pNT +

pNNI

gN + I
−KN (1− e−δN M )N (2.2)

dL

dt
= − θmL

θ + I
− qLT + r1NT + r2CT +

pILI

gI + I
− u0L

2CI

κ + I

+
jTL

k + T
−KL(1− e−δLM )L + η1vL(t) (2.3)

dC

dt
= β

(α
β
− C

)
−KC(1− e−δCM )C (2.4)

dM

dt
= −γM + η2vM (t) (2.5)

dI

dt
= −µII + φC +

ωLI

ζ + I
+ η3vI(t) (2.6)

where D = d (L/T )`

s/n`+(L/T )` , T (0) = T0, N(0) = N0, L(0) = L0, I(0) = I0, C(0) = C0,
and M(0) = M0.

In Table 1, we have provided a summary of equation term descriptions, and in
Table 2 we have a list of parameters with their units and biological interpretation.

Table 1: Equation Descriptions

Eq. Term Description
aT (1− bT ) Logistic tumor growth

dT
dt −cNT NK-induced tumor death

−DT CD8+ T cell-induced tumor death
−KT (1− e−δT M )T Chemotherapy-induced tumor death

eC Production of NK cells from circulating lympho-
cytes

−fN Natural killer breakdown
dN
dt −pNT Natural killer death by exhaustion of tumor-killing

resources
pN NI
gN+I Stimulatory effect of IL-2 on NK cells

−KN (1− eδN M )N Death of NK cells due to medicine toxicity
−mθL

θ+I CD8+T cell breakdown
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−qLT CD8+T cell death by exhaustion of tumor-killing
resources

dL
dt r1NT CD8+ T cell stimulation by NK-lysed tumor cell

debris
r2CT Activation of naive CD8+T cells in the general

lymphocyte population
pILI
gI+I Stimulatory effect of IL-2 on CD8+T cells

−u0L2CI
κ+I Breakdown of surplus CD8+T cells in the presence

of IL-2
jTL
k+T CD8+ T cell stimulation by CD8+ T cell-lysed

tumor cell debris
−KL(1− e−δLM )L Death of CD8+ T cells due to medicine toxicity

η1vL(t) External TIL therapy, controllable
α Lymphocyte synthesis in bone marrow

dC
dt −βC Lymphocyte breakdown

−KC(1− e−δCM )C Death of lymphocytes due to medicine toxicity
−γM Excretion and breakdown of medicine

dM
dt η2vM (t) External chemotherapy, controllable

−µII IL-2 breakdown
dI
dt φC Production of IL-2 due to naive CD8+T cells and

CD4+T cells
ωLI
ζ+I Production of IL-2 from activated CD8+T cells

η3vI(t) External IL-2, controllable

Table 2: Parameter Descriptions

Eq. Param. Description Units
a Growth rate of tumor 1/day
b Inverse of carrying capacity 1/cells

dT
dt c Rate of NK-induced tumor death liter/(cells·day)

KT Rate of chemotherapy-induced tumor death 1/day
δT Medicine efficacy coefficient liter/mg
e/f Ratio of rate of NK cell creation with rate of

cell death
unitless

f Rate of NK cell death 1/day
p Rate of NK cell death due to tumor interac-

tion
1/(cells·day)

dN
dt pN Rate of IL-2 induced NK cell genesis 1/day

gN Concentration of IL-2 for half-maximal NK
cell genesis

IU/liter

KN Rate of NK depletion from medicine toxicity 1/day
δN Medicine toxicity coefficient liter/mg
m Natural decay rate of CD8+T cells 1/day
θ Concentration of IL-2 to halve effectiveness

of CD8+T self-regulation
IU/liter
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q Rate of CD8+T cell death due to tumor in-
teraction

1/(cells·day)

r1 Rate of NK-lysed tumor cell debris activation
of CD8+T cells

1/(cells·day)

r2 Rate of CD8+T cell production from circu-
lating lymphocytes

1/(cells·day)

dL
dt pI Rate of IL-2 induced CD8+T cell activation 1/day

gI Concentration of IL-2 for half-maximal
CD8+T cell activation

IU/liter

u0 CD8 self-limitation feedback coefficient liter2/(cells2·day)
κ Concentration of IL-2 for half-maximal IL-2-

dependent CD8+T self-regulation
IU/liter

j Rate of CD8+T-lysed tumor cell debris acti-
vation of CD8+T cells

1/day

k Tumor size for half-maximal CD8+T-lysed
debris CD8+T activation

cells

KL Rate of CD8+T depletion from medicine tox-
icity

1/day

δL Medicine toxicity coefficient liter/mg
η1 TIL therapy administration rate 1/day

vL(t) Externally administered TIL CD8+T ther-
apy concentration

cells/liter

α/β Ratio of rate of circulating lymphocyte pro-
duction to death rate

cells/liter

dC
dt β Rate of decay of circulating lymphocytes 1/day

KC Circulating lymphocyte-toxicity of medicine 1/day
δC Medicine toxicity coefficient liter/mg
γ Rate of decay of medicine 1/day

dM
dt η2 Chemotherapy administration rate 1/day

vM (t) Externally administered chemotherapy con-
centration

mg/liter

µI Rate of decay of IL-2 1/day
φ Rate of IL-2 production from circulating

lymphocytes
IU/(cells·day)

ω Rate of IL-2 production from CD8+T cells IU/(cells·day)
dI
dt ζ Concentration of IL-2 for half-maximal

CD8+T IL-2 production
IU/liter

η3 Exogenous IL-2 administration rate 1/day
vI Externally administered IL-2 conentration IU/liter
d Immune system strength coefficient liter/day
l Immune strength scaling coefficient unitless

D s Concentration of CD8+T cells in tumor for
half-maximal tumor death

cells/liter

n Number of CD8+T cells that infiltrate tumor cells

In addition to the system of differential equations, there are two constraints
associated with this model. The first is a terminal condition in which the tumor
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population is required to be limited by an upper bound,

T (tf ) ≤ ΩT , (2.7)

where ΩT is constant.
The second constraint is a condition on the control vM in which the total drug

administered is limited by a constant. The constant is divided by 2 for mathematical
convenience.

τ

2
−
∫ tf

0

vM (t) ≥ 0, (2.8)

where τ is constant.

3. Linear Control

The goal of implementing linear control on the model described in Section 2 is
to determine theoretically the optimal treatment schedule for a cancer patient. We
prove the existence of such a control using the Filippov-Cesari Theorem, as stated
in Hartl, Sethi, and Vickson [14]. Constraints (2.7) and (2.8) prevent the direct
application of Pontryagin’s Minimum Principle to find the first order necessary
conditions for the control to be optimal. We therefore use conditions given by
Kamien and Schwartz [17] and Hartl et al. [14] to deal with the terminal inequality
conditions generated by constraint (2.7). Constraint (2.8) is incorporated into the
state system using a method detailed by Kirk [19].

When implementing linear control, we must investigate the possibility of singular
arcs. A singular arc is one for which one or more of the control variables vα satisfies

∂H

∂vα
= 0,

where H is the Hamiltonian. In this situation, first order necessary conditions
are inadequate; therefore, we use the generalized Legendre-Clebsch conditions (see
Appendix A, (4.3)) as given by Krener [23] to generate these higher order necessary
conditions for optimality.

3.1. Objective Functional. Now, seeking a bang-bang solution, we wish to min-
imize the objective functional

J(vL, vM , vI) =
∫ tf

0

(T (t) + εLvL(t) + εMvM (t) + εIvI(t)) dt, (3.1)

which is linear in the three controls and where εL, εM and εI are weight factors.

3.2. Existence. We first establish the existence of an optimal control building on
the existence theorem of Filippov-Cesari, the full statement of which is provided in
Appendix A, Theorem (4.1).

Theorem 3.1 (Existence of a Linear Optimal Control). Given the objective func-
tional (3.1), subject to system (2.1)-(2.6) with T (0) = T0, N(0) = N0, L(0) = L0,
C(0) = C0, M(0) = M0, I(0) = I0, T (tf ) ≤ ΩT , and τ

2 −
∫ tf

0
vMdt ≥ 0, and the

control set

U = {vL(t), vM (t), vI(t) piecewise cont. : 0 ≤ vL(t), vM (t), vI(t) ≤ 1,∀t ∈ [0, tf ]},
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the conditions (1) − (4) of Theorem (4.1) are met, and therefore there exists an
optimal control ~V ∗(t) = (v∗L(t), v∗M (t), v∗I (t)) such that

min
~V ∈[0,1]

J(V ) = J(V ∗).

Applying the notation of Theorem 4.1 to the optimal control problem (2.1)-(2.6),
(3.1), we have

x =


T
N
L
C
M
I


N(x, t)

=



T (t) + εLvL(t) + εMvM (t) + εIvI(t)

aT (1− bT )− cNT −DT −KT (1− e−δT M )T

f
“

e
f

C −N
”
− pNT + pN NI

gN +I
−KN (1− e−δN M )N

− θmL
θ+I

− qLT + r1NT + r2CT + pILI
gI+I

− u0L2CI
κ+I

+ jTL
k+T

−KL(1− e−δLM )L + η1vL(t)

β
“

α
β
− C

”
−KC(1− e−δCM )C

−γM + η2vM (t)

−µII + φC + ωLI
ζ+I

+ η3vI(t)


where γ̃ ≤ 0, and vL, vM , vI ∈ Ω(x, t).

Proof. We know there exists an admissible solution pair for the state and controls
as seen in previous work, [8]. For the second condition, we define w1 =

T (t) + εLvL1 (t) + εMvM1 (t) + εIvI1 (t)
aT (1− bT )− cNT −DT −KT (1− e−δT M )T

f
“

e
f

C −N
”
− pNT + pN NI

gN +I
−KN (1− e−δN M )N

− θmL
θ+I

− qLT + r1NT + r2CT + pILI
gI+I

− u0L2CI
κ+I

+ jTL
k+T

−KL(1− e−δLM )L + η1vL1 (t)

β
“

α
β
− C

”
−KC(1− e−δCM )C

−γM + η2vM1 (t)

−µII + φC + ωLI
ζ+I

+ η3vI1 (t)


,

and w2 =

T (t) + εLvL2 (t) + εMvM2 (t) + εIvI2 (t)
aT (1− bT )− cNT −DT −KT (1− e−δT M )T

f
“

e
f

C −N
”
− pNT + pN NI

gN +I
−KN (1− e−δN M )N

− θmL
θ+I

− qLT + r1NT + r2CT + pILI
gI+I

− u0L2CI
κ+I

+ jTL
k+T

−KL(1− e−δLM )L + η1vL2 (t)

β
“

α
β
− C

”
−KC(1− e−δCM )C

−γM + η2vM2 (t)

−µII + φC + ωLI
ζ+I

+ η3vI2 (t)


for some γ̃1, γ̃2 ≤ 0, and vLj

, vMj
, vIj

∈ Ω(x, t), with j = 1, 2.
We then let w3 = λw1 + (1−λ)w2 for λ ∈ [0, 1]. To prove that N(x, t)is convex,

we need to show that w3 ∈ N(x, t) However, since the controls appear linearly, we
note that this occurs naturally.

For the third condition we need to show that there exists a number δ such that
‖x‖ ≤ δ, ∀t ∈ [0, tf ] and all admissible pairs (~x, ~V). We need to determine an upper
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bound on the right hand sides of the differential equations (2.1)-(2.6). To do this,
we first consider the right hand side of (2.1), the tumor cell population. With Tmax

as an upper bound solution associated with T and T (t) ≥ 0, then Tmax = T0e
atf .

By using the bound Tmax, we can form a set of supersolutions for system (2.1)-
(2.6). This set of supersolutions T̄ , N̄ , L̄, C̄, M̄ , Ī of

dT

dt
= aT

dN

dt
= pNN + eC

dL

dt
= r1NTmax + (pI + j)L + r2CTmax + η1vL

dC

dt
= α

dM

dt
= η2vM

dI

dt
= ωL + φC + η3vI

is bounded on a finite time interval. We see that system (2.1)-(2.6) can be written
as 

T̄
N̄
L̄
C̄
M̄
Ī



′

=


a 0 0 0 0 0
0 pN 0 e 0 0
0 r1Tmax pI + j r2Tmax 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 ω φ 0 0




T̄
N̄
L̄
C̄
M̄
Ī

+


0
0

η1vL

α
η2vM

η3vI


Since this supersolution system involves only constants then it has a finite upper
bound. Letting this upper bound be δ satisfies the third condition.

The fourth condition is satisfied by definition, since 0 < vα < 1, for all controls
vα. �

3.3. Characterization of the Optimal Control. We now develop the represen-
tations of the optimal control, using Pontraygin’s Maximum/Minimum Principle
(see Appendix A, (4.2)), conditions from Kamien and Schwarz[17], and the gener-
alized Legendre-Clebsch conditions (see Appendix A, (4.3)).

Before proceeding with the characterization of the optimal control, we must
consider the constraints that accompany the model. The terminal constraint (2.7)
generates additional transversality conditions which are included in the following
theorem. However, the treatment of the integral control constraint (2.8) requires
some explanation, so we will show the method used to deal with it before stating
the representation of the optimal control.

By introducing a state variable A, we can express constraint (2.8) equivalently
as

dA

dt
= vM (t), (3.2)

with boundary conditions A(0) = 0 and A(tf ) ≤ τ
2 . Note that this modification

produces a second terminal inequality condition, which will be dealt with in the
same manner as (2.7).
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We will now treat equation (3.2) as an additional state equation, adding it to
system (2.1)-(2.6) along with the conditions T (tf ) ≤ ΩT , A(0) = 0, and A(tf ) ≤ τ

2 .
With these modifications, we state the representation of the optimal control.

Theorem 3.2 (Characterization of the Optimal Control). Given an optimal control
triple, ~V = (vL

∗(t), vM
∗(t), vI

∗(t)), and solutions of the corresponding state system,
there exist adjoint variables λi for i = 1, 2, . . . , 7 satisfying the following:

dλ1

dt
= −1− λ1

(
a− 2abT − cN −D +

s
n` d`

(
L
T

)`[
s
n` +

(
L
T

)`]2 −KT (1− e−δT M )
)

+ λ2pN − λ3

(
−qL + r1N + r2C +

jkL

(k + T )2

)
(3.3)

dλ2

dt
= λ1cT + λ2

(
f + pT − pNI

gN + I
+ KN (1− e−δN M )

)
− λ3r1T (3.4)

dλ3

dt
= λ1

( s
n` d`

(
L
T

)`−1[
s
n` +

(
L
T

)`]2)− λ6

(
ωI

ζ + I

)
(3.5)

+ λ3

(
θm

θ + I
+ qT − pII

gI + I
+

2u0LCI

κ + I
− jT

k + T
+ KL(1− e−δLM )

)
dλ4

dt
= −λ2e− λ3

(
r2T − u0L

2I

κ + I

)
+ λ4(β + KC(1− e−δCM ))− λ6φ (3.6)

dλ5

dt
= λ1δT KT Te−δT M + λ2δNKNNe−δN M + λ3δLKLLe−δLM

+ λ4δCKCCe−δCM + γλ5 (3.7)

dλ6

dt
= −λ2

(
pNgNN

(gN + I)2

)
− λ3

(
θmL

(θ + I)2
+

pIgIL

(gI + I)2
− u0κL2C

(κ + I)2

)
+ λ6

(
µI −

ωζL

(ζ + I)2

)
(3.8)

dλ7

dt
= 0 (3.9)

where λi(tf ) = 0 for i = 2, 3, . . . , 6. In addition, there are transversality conditions
imposed from the constraints:

λ1(tf ) = −ρ1

λ7(tf ) = −ρ2,

where ρ1, ρ2 ≤ 0, and

ρ1K1 = 0
ρ2K2 = 0,

where K1 = ΩT − T (tf ), K2 = τ
2 −A(tf ), and Ki ≥ 0 for i = 1, 2.

Furthermore, the representations of the controls are determined by the switching
functions

ΦL = εL + λ3η1,

ΦM = εM + λ5η2 + λ7, and
ΦI = εI + λ6η3.
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The representations of the optimal controls are then given by

vL(t) =


0 if ΦL > 0
1 if ΦL < 0
singular if ΦL = 0,

(3.10)

vM (t) =


0 if ΦM > 0
1 if ΦM < 0
singular if ΦM = 0,

(3.11)

vI(t) =


0 if ΦI > 0
1 if ΦI < 0
singular if ΦI = 0.

(3.12)

Proof. The Lagrangian associated with this problem is

L = H −W1(t)vL(t)−W2(t)(1− vL(t))−W3(t)vM (t)−W4(t)(1− vM (t))

−W5(t)vI(t)−W6(t)(1− vI(t)),

where H is the Hamiltonian given by

H = T (t) + εLvL(t) + εMvM (t) + εIvI(t)

+ λ1(aT (1− bT )− cNT −DT −KT (1− e−δT M )T )

+ λ2(f
( e

f
C −N

)
− pNT +

pNNI

gN + I
−KN (1− e−δN M )N)

+ λ3(−
θmL

θ + I
− qLT + r1NT + r2CT +

pILI

gI + I
− u0L

2CI

κ + I
+

jT

k + T
L

−KL(1− e−δLM )L + η1vL(t))

+ λ4(β
(α
β
− C

)
−KC(1− e−δCM )C) + λ5(−γM + η2vM (t))

+ λ6(−µII + φC +
ωLI

ζ + I
+ η3vI(t)) + λ7vM (t)

The adjoint equations are formed from differentiating the Hamiltonian with re-
spect to the corresponding state variables as dλ1

dt = −∂H
∂T .

Since system (3.3)-(3.9) has bounded coefficients and the solutions are bounded
on the finite time interval, we know that adjoint variables satisfying (3.3)-(3.9) exist
from Lukes [29], p.182. Also, the final conditions are free for all variables with the
exception of T (t) and A(t); thus we have that λi(tf ) = 0, for i = 2, . . . , 6. The
additional conditions imposed by the terminal inequality constraints are taken from
Kamien and Schwarz [17].

We find the representations of (3.10)-(3.12) of the optimal controls by looking
at the coefficients of the controls in H; i.e. we consider the sign of ΦL = ∂H

∂vL
to

determine the values of vL. �

The characterization of the controls in singular regions is determined by taking
time derivatives of the switching functions. We will examine these representations
and the conditions necessary for the controls to be minimizing in the singular region
provided that the representations of the singular controls satisfy the control bounds.
Note that each interval of singularity is a subinterval of [0, tf ]. We will begin by
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assuming only one of the controls is singular on a given interval in each of Theorems
3.3-3.5.

Theorem 3.3. If vL is singular on the interval (sL, tL), the singularity is of degree
two and the representation of the control is given by

vL = − PL

QL
, QL 6= 0,

where QL is given by

QL = η1

[
λ1T

∂2D

∂L2
− 2u0C

εL

η1

( I

κ + I

)]
(3.13)

and PL is given in Appendix B. Furthermore, if vL is minimizing on this interval,
it is necessary that

λ1T
∂2D

∂L2
≤ 2u0C

εL

η1

(
I

κ + I

)
.

Proof. On the interval (sL, tL), we know that time derivatives of ΦL are identically
0; i.e. d

dtΦL = 0, d2

dt2 ΦL = 0, etc. In addition, we have that λ3 = − εL

η1
in this

region. We use this information to find vL. To begin, notice that
d

dt
ΦL = η1

d

dt
λ3 = 0, or

dλ3

dt
= 0.

Then, from the corresponding adjoint equation (3.5), we have that

dλ3

dt
= λ1

(
s
n` d`

(
L
T

)`−1[
s
n` +

(
L
T

)`]2
)
− λ6

( ωI

ζ + I

)
+ λ3

(
θm

θ + I
+ qT − pII

gI + I
+

2u0LCI

κ + I
− jT

k + T
+ KL(1− e−δLM )

)
= 0

Note that
∂D

∂L
T =

s
n` d`

(
L
T

)`−1[
s
n` +

(
L
T

)`]2
This will simplify the notation in the following calculation.

Taking a second time derivative yields

d2λ3

dt2
=

dλ1

dt

(
∂D

∂L
T

)
+ λ1T

[
∂2D

∂L2

dL

dt
+

∂2D

∂T∂L

dT

dt

]
+ λ1

(
∂D

∂L

dT

dt

)
− dλ6

dt

(
ωI

ζ + I

)
− λ6

(
ωζ

(ζ + I)2

)
dI

dt

+ λ3

[
− θm

(θ + I)2
dI

dt
+ q

dT

dt
− pIgI

(gI + I)2
dI

dt
+ 2u0LC

(
κ

(κ + I)2

)
dI

dt

+ 2u0

(
I

κ + I

)[
L

dC

dt
+ C

dL

dt

]
− jk

(k + T )2
dT

dt
+ δLKLe−δLM dM

dt

]
= 0.

Grouping like terms (by state derivative) and substituting equation (2.3) results in

d2λ3

dt2
=

dλ1

dt

∂D

∂L
T − dλ6

dt

(
ωI

ζ + I

)
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+
[
λ1T

∂2D

∂T∂L
+ λ1

∂D

∂L
+ λ3

(
q − jk

(k + T )2

)]
dT

dt

+
[
λ3

(
− θm

(θ + I)2
− pIgI

(gI + I)2
+ 2u0LC

κ

(κ + I)2

)
− λ6

ωζ

(ζ + I)2

]
dI

dt

+ 2u0λ3L

(
I

κ + I

)
dC

dt
+ λ3δLKLe−δLM dM

dt

+
[
λ1T

∂2D

∂L2
+ 2u0λ3C

(
I

κ + I

)]
×
[
− θmL

θ + I
− qLT + r1NT + r2CT +

pILI

gI + I
− u0L

2CI

κ + I

+
jTL

k + T
−KL(1− e−δLM )L + η1vL(t)

]
= 0.

Isolating the vL term and substituting λ3 = − εL

η1
gives

d2λ3

dt2
= η1

[
λ1T

∂2D

∂L2
− 2u0C

εL

η1

(
I

κ + I

)]
vL

+
dλ1

dt

∂D

∂L
T − dλ6

dt

(
ωI

ζ + I

)
+
[
λ1T

∂2D

∂T∂L
+ λ1

∂D

∂L
− εL

η1

(
q − jk

(k + T )2

)]
dT

dt

+
[
εL

η1

(
θm

(θ + I)2
+

pIgI

(gI + I)2
− 2u0LC

κ

(κ + I)2

)
− λ6

ωζ

(ζ + I)2

]
dI

dt

− 2u0L
εL

η1

(
I

κ + I

)
dC

dt
− δLKLe−δLM εL

η1

dM

dt

+
[
λ1T

∂2D

∂L2
− 2u0C

εL

η1

(
I

κ + I

)]
×
[
− θmL

θ + I
− qLT + r1NT + r2CT +

pILI

gI + I
− u0L

2CI

κ + I

+
jTL

k + T
−KL(1− e−δLM )L

]
= 0.

Now, let PL denote the above sum excluding the vL term. Notice that PL depends
on λ1, λ2, λ6, T, N, L, C, M, I, vM , and vI . Next, define QL as

QL = η1

[
λ1T

∂2D

∂L2
− 2u0C

εL

η1

( I

κ + I

)]
.

Using this condensed notation, we see that

vL = − PL

QL
, if QL 6= 0.

Here the degree of the singularity is 2.
Furthermore, if vI and vM are assumed to be bang-bang on the interval (sL, tL),
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then the Legendre-Clebsch condition for the control to be minimizing is

(−1)
∂

∂vL

d2

dt2
∂H

∂vL
≥ 0, or QL ≤ 0;

i.e.

λ1T
∂2D

∂L2
≤ 2u0C

εL

η1

(
I

κ + I

)
.

�

Theorem 3.4. If vM is singular on the interval (sM , tM ), the singularity is of
degree two and the representation of the control is given by

vM = − PM

QM
, QM 6= 0,

where QM is given by

QM = −η2

[
δT KT λ1T (δT e−δT M ) + δNKNλ2N(−δNeδN M )

+ δLKLλ3L(δLe−δLM ) + δCKCλ4C(−δCeδCM )
]

(3.14)

and PM is given in Appendix B.
Furthermore, if vM is minimizing on this interval, it is necessary that[

δT KT λ1T (δT e−δT M ) + δNKNλ2N(δNe−δN M )

+ δLKLλ3L(δLe−δLM ) + δCKCλ4C(δCe−δCM )
]
≥ 0.

Proof. If vM is singular on some interval (sM , tM ), we know that time derivatives
of ΦM are identically zero in this region; in addition, we have that λ5 = −εM/η2.
As before, note that

d

dt
ΦM = η2

d

dt
λ5 +

d

dt
λ7 = 0, or

dλ5

dt
= 0,

since dλ7
dt = 0. Coupling this information with equation (3.7) yields

dλ5

dt
= λ1δT KT Te−δT M + λ2δNKNNe−δN M + λ3δLKLLe−δLM

+ λ4δCKCCe−δCM + γλ5

= 0.

Taking a time derivative gives the result

d2λ5

dt2
= δT KT

[
λ1T (−δT e−δT M )

dM

dt
+ e−δT M

(
λ1

dT

dt
+ T

dλ1

dt

)]
+ δNKN

[
λ2N(−δNe−δN M )

dM

dt
+ e−δN M

(
λ2

dN

dt
+ N

dλ2

dt

)]
+ δLKL

[
λ3L(−δLe−δLM )

dM

dt
+ e−δLM

(
λ3

dL

dt
+ L

dλ3

dt

)]
+ δCKC

[
λ4C(−δCe−δCM )

dM

dt
+ e−δCM

(
λ4

dC

dt
+ C

dλ4

dt

)]
+ γ

dλ5

dt
= 0.
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Notice that the last term is zero, since dλ5
dt = 0. Grouping the dM

dt terms, substituting
equation (2.5), and isolating the vM term in the above equation gives

d2λ5

dt2
= η2

[
δT KT λ1T (−δT e−δT M ) + δNKNλ2N(−δNe−δN M )

+ δLKLλ3L(−δLe−δLM ) + δCKCλ4C(−δCe−δCM )
]
vM

+ δT KT e−δT M

(
λ1

dT

dt
+ T

dλ1

dt

)
+ δNKNe−δN M

(
λ2

dN

dt
+ N

dλ2

dt

)
+ δLKLe−δLM

(
λ3

dL

dt
+ L

dλ3

dt

)
+ δCKCe−δCM

(
λ4

dC

dt
+ C

dλ4

dt

)
− γM

[
δT KT λ1T (−δT e−δT M ) + δNKNλ2N(−δNe−δN M )

+ δLKLλ3L(−δLe−δLM ) + δCKCλ4C(−δCe−δCM )
]

= 0.

Now, as before, let PM denote the above sum, excluding the vM term. Note that
PM is dependent on all the state and adjoint variables, as well as the control vL.
Define QM as

QM = −η2

[
δT KT λ1T (δT e−δT M ) + δNKNλ2N(−δNeδN M )

+ δLKLλ3L(δLe−δLM ) + δCKCλ4C(−δCeδCM )
]
.

Then we have
vM = − PM

QM
, if QM 6= 0.

Here the degree of the singularity is two.
Furthermore, if vL and vI are assumed to be bang-bang on the interval (sM , tM ),
then the Legendre-Clebsch condition for the control to be minimizing is

(−1)
∂

∂vM

d2

dt2
∂H

∂vM
≥ 0,

or in this situation,
QM ≤ 0.

Thus, if vM is singular on some interval, we have the additional necessary condition[
δT KT λ1T (δT e−δT M ) + δNKNλ2N(δNe−δN M )

+ δLKLλ3L(δLe−δLM ) + δCKCλ4C(δCe−δCM )
]
≥ 0,

since η2 6= 0, in general. �

Theorem 3.5. If vI is singular on the interval (sI , tI), the singularity is of degree
two and the representation of the control is given by

vI = − PI

QI
, QI 6= 0,

where QI is given by

QI = η3

[
2λ2pNgNN

(gN + I)3
+

2λ3θmL

(θ + I)3
+

2λ3pIgIL

(gI + I)3
− 2λ3u0κL2C

(κ + I)3
− 2εIωζL

η3(ζ + I)3

]
(3.15)
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and PI is given in Appendix B. Furthermore, if vI is minimizing on this interval,
it is necessary that

λ2pNgNN

(gN + I)3
+

λ3θmL

(θ + I)3
+

λ3pIgIL

(gI + I)3
≤ λ3u0κL2C

(κ + I)3
+

εIωζL

η3(ζ + I)3
.

Proof. Assume vI is singular on the interval (sI , tI); then all derivatives with respect
to time of ΦI are equal to zero and λ6 = − εI

η3
. Then

d

dt
ΦI = η3

d

dt
λ6 = 0, and so

dλ6

dt
= 0.

Together with equation (3.8), we have

dλ6

dt
= −λ2

(
pNgNN

(gN + I)2

)
− λ3

(
θmL

(θ + I)2
+

pIgIL

(gI + I)2
− u0κL2C

(κ + I)2

)
+ λ6

(
µI −

ωζL

(ζ + I)2

)
= 0.

Differentiate with respect to t for

d2λ6

dt2
= −dλ2

dt

(
pNgNN

(gN + I)2

)
− λ2

[ (gN + I)2pNgN
dN
dt − pNgNN · 2(gN + I)dI

dt

(gN + I)4
]

− dλ3

dt

[
θmL

(θ + I)2
+

pIgIL

(gI + I)2
− u0κL2C

(κ + I)2

]
− λ3

[
(θ + I)2θmdL

dt − θmL · 2(θ + I)dI
dt

(θ + I)4

+
(gI + I)2pIgI

dL
dt − pIgIL · 2(gI + I)dI

dt

(gI + I)4

−
u0κ(κ + I)2

[
L2 dC

dt + 2LC dL
dt

]
− u0κL2C · 2(κ + I)dI

dt

(κ + I)4

]

+
dλ6

dt

[
µI −

ωζL

(ζ + I)2

]
− λ6

[ (ζ + I)2ωζ dL
dt − ωζL · 2(ζ + I)dI

dt

(ζ + I)4
]

= 0. (3.16)

We substitute λ6 = −εI/η3, and note that the dλ6
dt term equals zero. Then we group

terms, substitute equation (2.6), and isolate the vI term to get

0 =
d2λ6

dt2

= η3

[
2λ2pNgNN

(gN + I)3
+

2λ3θmL

(θ + I)3
+

2λ3pIgIL

(gI + I)3
− 2λ3u0κL2C

(κ + I)3
− 2εIωζL

η3(ζ + I)3

]
vI

− dλ2

dt

(
pNgNN

(gN + I)2

)
− dλ3

dt

[
θmL

(θ + I)2
+

pIgIL

(gI + I)2
− u0κL2C

(κ + I)2

]
− dN

dt

(
λ2pNgN

(gN + I)2

)
− dC

dt

(
λ3u0κL2

(κ + I)2

)
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+
dL

dt

[
− λ3θm

(θ + I)2
− λ3pIgI

(gI + I)2
+

2λ3u0κLC

(κ + I)2
+

εIωζ

η3(ζ + I)2

]
+
[
2λ2pNgNN

(gN + I)3
+

2λ3θmL

(θ + I)3
+

2λ3pIgIL

(gI + I)3
− 2λ3u0κL2C

(κ + I)3
− 2εIωζL

η3(ζ + I)3

]
×
(
− µII + φC +

ωLI

ζ + I

)
.

Let PI denote the above sum excluding the vI term. Note that PI depends on all
the state and adjoint variables, as well as the control vL. Let QI be defined by

QI = η3

[
2λ2pNgNN

(gN + I)3
+

2λ3θmL

(θ + I)3
+

2λ3pIgIL

(gI + I)3
− 2λ3u0κL2C

(κ + I)3
− 2εIωζL

η3(ζ + I)3

]
.

Then we have
vI = − PI

QI
, if QI 6= 0.

Here the degree of the singularity is 2. Furthermore, if vL and vM are assumed to
be bang-bang on the interval (sI , tI), then the Legendre-Clebsch condition for the
control to be minimizing is

(−1)
∂

∂vI

d2

dt2
∂H

∂vI
≥ 0,

or in this situation, QI ≤ 0. Thus, if vI is singular on some interval, we have the
additional necessary condition

λ2pNgNN

(gN + I)3
+

λ3θmL

(θ + I)3
+

λ3pIgIL

(gI + I)3
≤ λ3u0κL2C

(κ + I)3
+

εIωζL

η3(ζ + I)3
,

since η3 6= 0. �

Having found the representations for each control on a singular interval, we turn
our attention to the necessary conditions generated when two of the controls are
simultaneously singular on the same interval. Note that the degree of singularity
of each control is two; both this fact and the representations found previously will
be used to generate the necessary Legendre-Clebsch conditions.

Theorem 3.6. If vL and vM are both singular on some interval (s, t), then the
following conditions must hold for vL and vM to be minimizing:

QL ≤ 0,

QLQM ≥ η1η2(λ3δLKLe−δLM )2,

where QL and QM are defined as in (3.13) and (3.14), respectively.

Proof. Assuming that vL and vM are both singular on the interval (s, t), we use
the generalized Legendre-Clebsch conditions to form the 2× 2 matrix

Aij = (−1)
hj+1

2
∂

∂vi

d(
hi+hj

2 +1)

dt(
hi+hj

2 +1)

∂H

∂vj
= (−1)

∂

∂vL

d2

dt2
∂H

∂vM
,

which is given by

AvL,vM
=
(

−η1QL −η1η2λ3δLKLe−δLM

−η1η2λ3δLKLe−δLM −η2QM

)
,

Note that QL and QM are defined as in (3.13) and (3.14), respectively. This matrix
is clearly symmetric. In order for vL and vM to be minimizing on the interval (s, t),
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the matrix AvL,vM
must be positive definite. In other words, all upper left minors

of AvL,vM
must be positive; then the conditions

QL ≤ 0,

QLQM ≥ η1η2(λ3δLKLe−δLM )2.

must hold. �

In a similar fashion, conditions for the pairs vL, vI and vM , vI to be singular on
a given interval are found as noted in the following theorems without proof.

Theorem 3.7. If vL and vI are both singular on some interval (s, t), then the
following conditions must hold for vL and vI to be minimizing:

QL ≤ 0,

QLQI ≥ η1η3(~)2.

where QL and QI are defined as in (3.13) and (3.15), respectively, and

~ =
(

λ3θm

(θ + I)2
+

λ3pIgI

(gI + I)2
− 2λ3u0κLC

(κ + I)2
+

λ6ωζ

(ζ + I)2

)
. (3.17)

Theorem 3.8. If vM and vI are both singular on some interval (s, t), then the
following conditions must hold for vM and vI to be minimizing:

QM ≤ 0,

QMQI ≥ 0.

where QM and QI are defined as in (3.14) and (3.15), respectively.

Finally, we will use the Legendre-Clebsch conditions to find the conditions nec-
essary for all three controls to be minimizing on the same interval.

Theorem 3.9. If vL, vM , and vI are simultaneously singular on some interval
(s, t), then the following conditions must hold for these controls to be minimizing:

QL ≤ 0,

QLQM ≥ η1η2(�)2,
QLQMQI ≤ η1η3QM ~ +η1η2QI�,

where QL, QM , QI and ~ are defined by (3.13), (3.14), (3.15), and (3.17), respec-
tively, and

� = −λ3δLKLe−δLM . (3.18)

Proof. Assuming vL, vM , and vI are all singular on the interval (s, t), we use the
generalized Legendre-Clebsch conditions to form the 3×3 matrix whose entries are
given by

Aij = (−1)
hj+1

2
∂

∂vi

d(
hi+hj

2 +1)

dt(
hi+hj

2 +1)

∂H

∂vj
.

Here we have

AvL,vM ,vI
=

−η1QL η1η2� η1η3~
η1η2� −η2QM 0
η1η3~ 0 −η3QI

 ,

where QL, QM , QI , ~, and � are defined previously in (3.17) and (3.18).
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This matrix is symmetric; in order for AvL,vM ,vI
to be positive semidefinite, we

must have that

QL ≤ 0,

QLQM ≥ η1η2(�)2,
QLQMQI ≤ η1η3QM ~ + η1η2QI � .

�

Conclusion. If the controls are singular either as a unit, in pairs, or as a triple,
conditions are given for those controls to be minimizing. First, existence of the con-
trol triple is established. Within the characterization, the introduction of singular
and/or bang-bang controls is given. It is worth noting that clinicians commonly
give treatments in a bang-bang type scenario, i.e. give the drug combination for a
period and then do not given any drug, c.f. [15], [33]. However, in this work, con-
ditions are given such that a singular control vector would minimize the proposed
objective functional. This could change the dynamic in which the chemotherapy
and immunotherapy treatments are administered. Due to the interdependence on
the conditions, we note that the characterizations of the singular control on the
selected intervals are not explicitly determined. In future work, numerical analy-
ses will be investigated to aid in graphically characterizing these singular control
expressions.

4. Appendix A

In this section, we will give precise statements of the theorems used for proving
the existence and finding the characterizations of optimal quadratic controls.

Theorem 4.1 (Fillipov-Cesari Theorem [14]). Consider the following optimal con-
trol problem:

min J =
∫ T

0

F (x(t), u(t), t)dt + S(x(T ), T )

ẋ(t) = f(x(t), u(t), t), x(0) = x0

g(x(t), u(t), t) ≥ 0

h(x(t), t) ≥ 0

a(x(T ), T ) ≥ 0

b(x(T ), T ) = 0

where T is free on [0, tf ]. Assume that F,f,g,h,S,a, and b are continuous in all their
arguments at all points (x, u, t). Define the (state-dependent) control region

Ω(x, t) = {u ∈ Rm| g(x, u, t) ≥ 0} ⊂ Rm

and the set

N(x, t) = {(F (x, u, t) + γ, f(x, u, t))| γ ≤ 0, u ∈ Ω(x, t)} ⊂ Rn+1

where m and n are the number of control and state variables, respectively. Suppose
that the following conditions hold:

(1) There exits an admissible solution pair.
(2) N(x, t) is convex for all (x, t) ∈ Rn × [0, tf ].
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(3) There exists δ > 0 such that ‖x(t)‖ < δ for all admissible {x(t), u(t)} and
t.

(4) There exists δ1 > 0 such that ‖u‖ < δ1 for all u ∈ Ω(x, t) with ‖x‖ < δ.

Then there exists an optimal triple {T ∗, x∗, u∗} with u∗(·) measurable.

Theorem 4.2 (Pontraygin’s Maximum/Minimum Principle [17]).
Let u(t) = [u1(t), . . . , um(t)] be a piecewise continuous control vector and x(t) =
[x1(t), . . . , xn(t)] be an associated continuous and piecewise differentiable state vec-
tor defined on the fixed time interval [t0, t1] that minimizes∫ t1

t0

f(t,x(t),u(t))dt

subject to the differential equations

xi(t) = gi(t,x(t),u(t)), i = 1, . . . , n,

initial conditions

xi(t0) = xi0, i = 1, . . . , n (xi0 fixed),

terminal conditions

xi(t1) = xi1, i = 1, . . . , p,

xi(t1) ≥ xit, i = p + 1, . . . , q (xi1, i = 1, . . . , q fixed),

xi(t1)free, i = q + 1, . . . , n,

and control variable restriction

u(t) ∈ U, U a given set in Rm.

We assume that f, g, ∂f/∂xj, and ∂gi/∂xj are continuous functions of all their
arguments, for all i = 1, . . . , n and j = 1, . . . , n. Then there exists a constant λ0

and continuous functions λ(t) = (λ1(t), . . . , λn(t)), where for all t0 ≤ t ≤ t1 we
have (λ0, λ(t)) 6= (0, 0) such that for every t0 ≤ t ≤ t1,

H(t,x∗(t),u(t), λ(t)) ≤ H(t,x∗(t),u∗(t), λ(t)),

where the Hamiltonian function H is defined by

H(t,x,u, λ) = λ0f(t,x,u) +
n∑

i=1

λigi(t,x,u).

Except at points of discontinuity of u∗(t),

λ′(t) = −∂H(t,x∗(t),u∗(t), λ(t))/∂xi, i = 1, . . . , n.

Finally, the following transversality conditions are satisfied:

λi(t1) no conditions, i = 1, . . . , p,

λi(t1) ≥ 0 (= 0 if x∗i (t1) > xi1)) i = p + 1, . . . , q,

λi(t1) = 0, i = q + 1, . . . , n.
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In addition, the modifications to (4.2) generated by the terminal inequality are
given in Kamien and Schwartz [17], p. 160: If K(xq(t1), . . . , xn(t1)) ≥ 0 is required,
then the transversality conditions

λi(t1) = p ∂K/∂x1, i = q, . . . , n,

p ≤ 0,

pK = 0

are necessary.

Theorem 4.3 (Generalized Legendre-Clebsch Conditions [23]). Assume that u(t)
and x(t) are defined for (2.1)-(2.6) on [0, tf ]. Suppose u(t) ∈ interior Ω and each
ui is singular of degree hi+1

2 on the subinterval (t0, t1). If u(t) is minimal, then
there exists a λ(t) satisfying the PMP on [0, tf ] such that on the subinterval (t0, t1),

∂

∂ui

dk

dtk
∂

∂uj
H(λ(t),x(t),u(t)) = 0

for k = 0, . . . ,
hi+hj

2 , 1 ≤ i, j ≤ l (where l is the dimension of the control space).
Moreover, if hi < ∞ for i = 1, . . . , k ≤ l, then the k × k matrix whose i, j entry is

(−1)
hj+1

2
∂

∂ui

d(
hi+hj

2 +1)

dt(
hi+hj

2 +1)

∂

∂uj
H(λ(t),x(t),u(t))

where 1 ≤ i, j ≤ k, must be symmetric and nonnegative definite.

Note that a given symmetric real matrix is nonnegative definite (i.e. positive
semidefinite) if and only if all of its upper-left minors are positive; that is, for a
given n× n matrix

An×n =

A11 . . . A1n

...
. . .

...
An1 . . . Ann

 ,

we have that

A11 ≥ 0,

∣∣∣∣A11 A12

A21 A22

∣∣∣∣ ≥ 0,

∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣ ≥ 0,

etc.

5. Appendix B

In this section, we will state the equations PL, PM , and PI used in the charac-
terizations of controls vL, vM , and vI , respectively.

PL =
dλ1

dt

∂D

∂L
T − dλ6

dt

(
ωI

ζ + I

)
+
[
λ1T

∂2D

∂T∂L
+ λ1

∂D

∂L
− εL

η1

(
q − jk

(k + T )2

)]
dT

dt

+
[
εL

η1

(
θm

(θ + I)2
+

pIgI

(gI + I)2
− 2u0LC

κ

(κ + I)2

)
− λ6

ωζ

(ζ + I)2

]
dI

dt

− 2u0L
εL

η1

(
I

κ + I

)
dC

dt
− δLKLe−δLM εL

η1

dM

dt
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+
[
λ1T

∂2D

∂L2
− 2u0C

εL

η1

(
I

κ + I

)]
×
[
− θmL

θ + I
− qLT + r1NT + r2CT +

pILI

gI + I
− u0L

2CI

κ + I

+
jTL

k + T
−KL(1− e−δLM )L

]
,

PM = δT KT e−δT M

(
λ1

dT

dt
+ T

dλ1

dt

)
+ δNKNe−δN M

(
λ2

dN

dt
+ N

dλ2

dt

)
+ δLKLe−δLM

(
λ3

dL

dt
+ L

dλ3

dt

)
+ δCKCe−δCM

(
λ4

dC

dt
+ C

dλ4

dt

)
− γM

[
δT KT λ1T (−δT e−δT M ) + δNKNλ2N(−δNe−δN M )

+ δLKLλ3L(−δLe−δLM ) + δCKCλ4C(−δCe−δCM )
]

,

PI = −dλ2

dt

(
pNgNN

(gN + I)2

)
− dλ3

dt

[
θmL

(θ + I)2
+

pIgIL

(gI + I)2
− u0κL2C

(κ + I)2

]
− dN

dt

(
λ2pNgN

(gN + I)2

)
− dC

dt

(
λ3u0κL2

(κ + I)2

)
+

dL

dt

[
− λ3θm

(θ + I)2
− λ3pIgI

(gI + I)2
+

2λ3u0κLC

(κ + I)2
+

εIωζ

η3(ζ + I)2

]
+
[
2λ2pNgNN

(gN + I)3
+

2λ3θmL

(θ + I)3
+

2λ3pIgIL

(gI + I)3
− 2λ3u0κL2C

(κ + I)3
− 2εIωζL

η3(ζ + I)3

]
×
(
−µII + φC +

ωLI

ζ + I

)
.
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