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FRICTIONLESS CONTACT PROBLEM WITH ADHESION FOR
NONLINEAR ELASTIC MATERIALS

AREZKI TOUZALINE

Abstract. We consider a quasistatic frictionless contact problem for a non-
linear elastic body. The contact is modelled with Signorini’s conditions. In
this problem we take into account of the adhesion which is modelled with a
surface variable, the bonding field, whose evolution is described by a first order
differential equation. We derive a variational formulation of the mechanical
problem and we establish an existence and uniqueness result by using argu-
ments of time-dependent variational inequalities, differential equations and
Banach fixed point. Moreover, we prove that the solution of the Signorini
contact problem can be obtained as the limit of the solution of a penalized
problem as the penalization parameter converges to 0.

1. Introduction

Contact problems involving deformable bodies are quite frequent in the indus-
try as well as in daily life and play an important role in structural and mechanical
systems. Contact processes involve a complicated surface phenomena, and are mod-
elled with highly nonlinear initial boundary value problems. Taking into account
various frictional contact conditions associated with behavior laws becoming more
and more complex leads to the introduction of new and non standard models, ex-
pressed by the aid of evolution variational inequalities. A first tentative to study
frictional contact problems within the framework of variational inequalities was
made in [6]. The mathematical, mechanical and numerical state of the art can be
found in [13]. In this paper, we study a mathematical model which describes a
quasistatic frictionless adhesive contact problem between a deformable body and
a rigid foundation. Models for dynamic or quasistatic process of frictionless ad-
hesive contact between a deformable body and a foundation have been studied in
[3, 4, 7, 17]. As in [8, 9], we use the bonding field as an additional state variable
β, defined on the contact surface of the boundary. The variable is restricted to
values 0 ≤ β ≤ 1, when β = 0 all the bonds are severed and there are no active
bonds; when β = 1 all the bonds are active; when 0 < β < 1 it measures the
fraction of active bonds and partial adhesion takes place. We refer the reader to
the extensive bibliography on the subject in [10, 12, 14, 15, 16]. In this work, we
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extend the result established in [17] for linear elastic bodies to the nonlinear elastic
bodies where the adhesion is taken into account and the contact is modelled with
Signorini’s conditions. We derive a variational formulation of the mechanical prob-
lem which we prove the existence of a unique weak solution, and obtain a partial
regularity result for the solutions. Moreover, we study the behavior of the solution
of a penalized problem as the penalization parameter converges to 0. We also wish
to make it clear that from [11] it follows that the model does not allow for complete
debonding field in finite time.

This paper is structured as follows. In section 2 we present some notations and
give the variational formulation. In section 3 we state and prove our main existence
and uniqueness result, Theorem 2.2. Finally, in section 4, we prove a convergence
result of a penalized problem, Theorem 4.2.

2. Variational Formulation

Let Ω ⊂ Rd; (d = 2, 3), be the domain initially occupied by an elastic body.
Ω is supposed to be open, bounded, with a sufficiently regular boundary Γ. Γ is
partitioned into three parts Γ = Γ̄1 ∪ Γ̄2 ∪ Γ̄3 where Γ1,Γ2,Γ3 are disjoint open
sets and meas Γ1 > 0. The body is acted upon by a volume force of density ϕ1

on Ω and a surface traction of density ϕ2 on Γ2. On Γ3 the body is in adhesive
frictionless contact with a rigid foundation. We use a nonlinear elastic constitutive
law to the material behavior and an ordinary differential equation to describe the
evolution of the bonding field.

Thus, the classical formulation of the mechanical problem is written as follows.

Problem P1. Find u : Ω× [0, T ] → Rd, β : Γ3 × [0, T ] → [0, 1] such that

div σ + ϕ1 = 0 in Ω× (0, T ), (2.1)

σ = Fε(u) in Ω× (0, T ), (2.2)

u = 0 on Γ1 × (0, T ), (2.3)

σν = ϕ2 on Γ2 × (0, T ), (2.4)

uν ≤ 0, σν + cνR(uν)β2 ≤ 0

(σν + cνR(uν)β2)uν = 0

}
on Γ3 × (0, T ), (2.5)

−στ = pτ (β)R∗(uτ ) on Γ3 × (0, T ), (2.6)

β̇ = −cνβ+(R(uν))2 on Γ3 × (0, T ), (2.7)

β(0) = β0 on Γ3. (2.8)

Equation (2.1) represents the equilibrium equation. Equation (2.2) represents the
elastic constitutive law of the material in which F is a given function and ε(u)
denotes the small strain tensor; (2.3) and (2.4) are the displacement and traction
boundary conditions, respectively, in which ν denotes the unit outward normal
vector on Γ and σν represents the Cauchy stress vector. Conditions (2.5) represent
the Signorini conditions with adhesion in which cν is a given adhesion coefficient
which may dependent on x ∈ Γ3 and R : R → R is a truncation operator defined as

R(s) =


−L if s ≤ −L,

s if |s| < L,

L if s ≥ L.
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Here L > 0 is the characteristic lengh of the bond, beyond which it does not offer
any additional traction (see [14]). By choosing L very large, we can assume that
R(uν) = uν and therefore we recover the contact condition

uν ≤ 0, σν + cνR(uν)β2,

(σν + cνR(uν)β2)uν = 0 on Γ3 × (0, T ).

These conditions were already used in [2, 5, 12]. Next, equation (2.6) represents
the adhesive contact. We assume that the resistance to tangential motion is gener-
ated by the glue, in comparison to which the frictional traction can be neglected.
Therefore, the tangential contact traction depends only on the bonding field and
the tangential displacement, thus,

−στ = pτ (β)R∗(uτ ).

Where the truncation operator R∗ is defined by

R∗(v) =

{
v if ‖v‖ ≤ L,

Lv/‖v‖ if ‖v‖ > L,

and pτ is a prescribed, nonnegative tangential stiffness function. Equation (2.7)
represents the ordinary differential equation which describes the evolution of the
bonding field, in which r+ = max{r, 0}, and it was already used in [4]. Since β̇ ≤ 0
on Γ3×(0, T ), once debonding occurs bonding cannot be reestablished and, indeed,
the adhesive process is irreversible. Finally, (2.8) is the initial condition, in which
β0 denotes the initial bonding field. In (2.7) a dot above a variable represents
its derivative with respect to time. We denote by Sd the space of second order
symmetric tensors on Rd (d = 2, 3); and ‖ · ‖ represents the Euclidian norm on
Rd and Sd. Thus, for every u, v ∈ Rd, u.v = uivi, ‖v‖ = (v.v)1/2, and for every
σ, τ ∈ Sd, σ.τ = σijτij , ‖τ‖ = (τ.τ)1/2. Here and below, the indices i and j run
between 1 and d and the summation convention over repeated indices is adopted.
Now, to proceed with the variational formulation, we need the following function
spaces:

H = L2(Ω)d, H1 = H1(Ω)d,

Q = {τ = (τij); τij = τji ∈ L2(Ω)},
H(div; Ω) = {σ ∈ Q; div σ ∈ H}.

Note that H and Q are real Hilbert spaces endowed with the respective canonical
inner products

(u, v)H =
∫

Ω

uividx, (σ, τ)Q =
∫

Ω

σijτijdx.

The small strain tensor is

ε(u) = (εij(u)) =
1
2
(ui,j + uj,i), i, j = {1, . . . , d};

where div σ = (σij,j) is the divergence of σ. For every v ∈ H1 we denote by vν

and vτ the normal and tangential components of v on the boundary Γ given by
vν = v.ν, vτ = v − vνν. Similary, for a regular tensor field σ : Ω → Sd, we define
the normal and tangential components of σ by

σν = (σν).ν, στ = σν − σνν
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and we recall that the following Green’s formula holds:

(σ, ε(v))Q + (div σ, v)H =
∫

Γ

σν.vda ∀v ∈ H1,

where da is the surface measure element. Let V be the closed subspace of H1

defined by
V = {v ∈ H1 : v = 0 on Γ1},

and let the convex subset of admissible displacements given by

K = {v ∈ V : vν ≤ 0 on Γ3}.

Since measΓ1 > 0, the following Korn’s inequality holds [6],

‖ε(v)‖Q ≥ cΩ‖v‖H1 ∀v ∈ V, (2.9)

where the constant cΩ depends only on Ω and Γ1. We equip V with the inner
product

(u, v)V = (ε(u), ε(v))Q

and ‖ · ‖V is the associated norm. It follows from Korn’s inequality (2.9) that the
norms ‖ ·‖H1 and ‖ ·‖V are equivalent on V . Then (V, ‖ ·‖V ) is a real Hilbert space.
Moreover by Sobolev’s trace theorem, there exists dΩ > 0 which only depends on
the domain Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ dΩ‖v‖V ∀v ∈ V. (2.10)

For p ∈ [1,∞] , we use the standard norm of Lp(0, T ;V ). We also use the Sobolev
space W 1,∞(0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ).

For every real Banach space (X, ‖.‖X) and T > 0 we use the notation C([0, T ];X)
for the space of continuous functions from [0, T ] to X; recall that C([0, T ];X) is a
real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

We suppose that the body forces and surface tractions have the regularity

ϕ1 ∈ W 1,∞(0, T ;H), ϕ2 ∈ W 1,∞(0, T ;L2(Γ2)d) (2.11)

and we denote by f(t) the element of V defined by

(f(t), v)V =
∫

Ω

ϕ1(t).vdx +
∫

Γ2

ϕ2(t).vda ∀v ∈ V, t ∈ [0, T ]. (2.12)

Using (2.11) and (2.12) yield f ∈ W 1,∞(0, T ;V ).
In the study of the mechanical problem P1 we assume that F : Ω × Sd → Sd,

satisfies

(a) there exists M > 0 such that ‖F (x, ε1) − F (x, ε2)‖ ≤
M‖ε1 − ε2‖ for all ε1, ε2 in Sd a.e. x in Ω

(b) there exists m > 0 such that (F (x, ε1) − F (x, ε2)).(ε1 −
ε2) ≥ m‖ε1 − ε2‖2, for all ε1, ε2 in Sd, a.e. x in Ω;

(c) the mapping x → F (x, ε) is Lebesgue measurable on Ω
for any ε in Sd

(d) F (x, 0) = 0 for all x in Ω.

(2.13)
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Remark 2.1. F (x, τ(x)) ∈ Q, for all τ ∈ Q and thus it is possible to consider F
as an operator defined from Q into Q.

The adhesion coefficient satisfies

cν ∈ L∞(Γ3) and cν ≥ 0 a.e. on Γ3. (2.14)

Also we assume that the initial bonding field satisfies

β0 ∈ L2(Γ3); 0 ≤ β0 ≤ 1 a.e. on Γ3. (2.15)

As in [4] we assume that the tangential contact function satisfies

(a) pτ : Γ3 × R → R+;
(b) there exists Lτ > 0 such that |pτ (x, β1) − pτ (x, β2)| ≤

Lτ |β1 − β2| for all β1, β2 ∈ R, a.e. x ∈ Γ3;
(c) there exists Mr > 0 such that |pτ (x, β)| ≤ Mτ for all

β ∈ R, a.e. x ∈ Γ3;
(d) for any β ∈ R, x → pτ (x, β) is measurable on Γ3;
(e) the mapping x → pτ (x, 0) belongs to L2(Γ3).

(2.16)

Next, we define the adhesion functional jT : L∞(Γ3)× V × V → R by

jT (β, u, v) =
∫

Γ3

pτ (β)R∗(uτ ).vτda ∀β ∈ L∞(Γ3),∀u, v ∈ V.

We note that jT satisfies the property.

jT (β, u,−v) = −jT (β, u, v).

On the other hand we have

jT (β1, u1, u2 − u1) + jT (β2, u2, u1 − u2)

=
∫

Γ3

pτ (β1)(R∗(u1τ )−R∗(u2τ )).(u2τ − u1τ )da

+
∫

Γ3

(pτ (β1)− pτ (β2))R∗(u2τ ).(u2τ − u1τ )da,

and since (R∗(u1τ )−R∗(u2τ )).(u2τ − u1τ ) ≤ 0 a.e. on Γ3, we obtain

jT (β1, u1, u2 − u1) + jT (β2, u2, u1 − u2)

≤
∫

Γ3

(pτ (β1)− pτ (β2))R∗(u2τ ).(u2τ − u1τ )da.

Using now the inequality |R∗(u2τ )| ≤ L valid a.e. on Γ3 and the property (2.16)
(b) of the function pτ we deduce that

jT (β1, u1, u2 − u1) + jT (β2, u2, u1 − u2) ≤ C

∫
Γ3

|β1 − β2||u1 − u2|da,

where C > 0. Next, we combine the previous inequality with (2.10) to obtain

jT (β1, u1, u2 − u1) + jT (β2, u2, u1 − u2) ≤ C‖β1 − β2‖L2(Γ3)‖u1 − u2‖V .

By choosing β1 = β2 = β in the previous inequality we find

jT (β, u1, u2 − u1) + jT (β, u2, u1 − u2) ≤ 0.
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Using the Lipschitz continuity of the truncation operators R and R∗ and the bound-
ness of the function pτ , we find

jT (β, u1, v)− jT (β, u2, v) ≤ C‖u1 − u2‖V ‖v‖V ,

and also we have jT (β, v, v) ≥ 0.
As in [17] we define the adhesion functional jN : L∞(Γ3)× V × V → R by

jN (β, u, v) = −
∫

Γ3

cνβ2(−R(uν))+vνda ∀β ∈ L∞(Γ3) ∀u, v ∈ V,

and we recall that the functional jN satisfies the same properties satisfied by the
functional jT . Next, we define the adhesion functional j : L∞(Γ3)×V ×V → R by

j = jN + jT ,

where

j(β, u, v) = jN (β, u, v) + jT (β, u, v)

= −
∫

Γ3

cνβ2(−R(uν))+vνda +
∫

Γ3

pτ (β)R∗(uτ ).vτda

for all β ∈ L∞(Γ3), for all u, v ∈ V . Then from the properties satisfied by the func-
tionals jN and jT we deduce that the adhesion functional j satisfies the following
properties

j(β1, u1, u2 − u1) + j(β2, u2, u1 − u2) ≤ C‖β1 − β2‖L2(Γ2)‖u1 − u2‖V , (2.17)

j(β, u1, u2 − u1) + j(β, u2, u1 − u2) ≤ 0, (2.18)

j(β, u1, v)− j(β, u2, v) ≤ C‖u1 − u2‖V ‖v‖V , (2.19)

j(β, v, v) ≥ 0. (2.20)

Now by assuming the solution to be sufficiently regular, we obtain by using Green’s
formula and techniques similar to those exposed in [6] that the problem P1 has the
following variational formulation.

Problem P2. Find (u, β) ∈ W 1,∞(0, T ;V )×W 1,∞(0, T ;L∞(Γ3)) such that u(t) ∈
K for all t ∈ [0, T ], and

(Fε(u(t)), ε(v)− ε(u(t)))Q + j(β(t), u(t), v − u(t))

≥ (f(t), v − u(t))V ∀v ∈ K, t ∈ [0, T ],
(2.21)

β̇(t) = −cν(β(t))+(R(uν(t)))2 a.e. t ∈ (0, T ), (2.22)

β(0) = β0 on Γ3. (2.23)

Our main result of this section is stated as theorem and will be established in the
next section.

Theorem 2.2. Let (2.11), (2.13), (2.14), (2.15), (2.16) hold. Then problem P2 has
a unique solution.

3. Existence and Uniqueness Result

The proof of Theorem 2.2 is carried out in several steps. In the first step, for
a given β ∈ L∞(Γ3) such that 0 ≤ β ≤ 1 a.e. on Γ3, we consider the following
variational problem.
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Problem P1β. Find uβ ∈ C([0, T ];V ) such that for all t ∈ [0, T ], uβ(t) ∈ K and

(Fε(uβ(t)), ε(v − uβ(t)))Q + j(β(t), uβ(t), v − uβ(t))

≥ (f(t), v − uβ(t))V , ∀v ∈ K.
(3.1)

We obtain the following result.

Lemma 3.1. Problem P1β has a unique solution.

Proof. For all t ∈ [0, T ], we consider the operator Tt : V → V defined by

(Ttu, v)V = (Fε(u(t)), ε(v))Q + j(β(t), u(t), v).

It suffices to see from the assumptions (2.13)(a)-(b) are satisfied by F and the prop-
erties satisfied by j, that Tt is strongly monotone and Lipschitz continuous; since
K is a closed convex subset of V , it follows from the theory of elliptic variational
inequalities [1] that there exists a unique element uβ(t) which solves (3.1). Thus, Tt

is invertible and its inverse T−1
t : V → V has the same properties as Tt. Therefore,

using the regularity of f , uβ = T−1
t f satisfies uβ ∈ C([0, T ];V ). �

In the second step we consider the following problem.

Problem P2β. Find βa ∈ W 1,∞(0, T ;L2(Γ3)) such that

β̇a(t) = −cν(βa(t))+(R(uβaν(t)))2 a.e. t ∈ (0, T ), (3.2)

βa(0) = β0. (3.3)

We can prove the following lemma.

Lemma 3.2. Problem P2β has a unique solution.

Proof. For k > 0 we introduce the space

X =
{
β ∈ C([0, T ];L2(Γ3)); sup

t∈[0,T ]

[exp(−kt)‖β(t)‖L2(Γ3)] < +∞
}
.

which is a Banach space for the norm

‖β‖X = sup
t∈[0,T ]

[exp(−kt)‖β(t)‖L2(Γ3)].

Consider the mapping Φ : X → X given by

Φβ(t) = β0 −
∫ t

0

cν(β(s))+(R(uβν(s)))2ds.

Then we get

‖Φβ1(t)− Φβ2(t)‖L2(Γ3)

≤ C

∫ t

0

‖(β1(s))+(R(uβ1ν(s)))2 − (β2(s))+(R(uβ2ν(s)))2‖L2(Γ3)ds.

Using the definition of R, and writing

(β1(s))+ = (β1(s))+ − (β2(s))+ + (β2(s))+,

since
|(β1(s))+ − (β2(s))+| ≤ |β1(s)− β2(s)|,



8 A. TOUZALINE EJDE-2007/174

we obtain

‖Φβ1(t)− Φβ2(t)‖L2(Γ3)

≤ C

∫ t

0

‖β1(s)− β2(s)‖L2(Γ3)ds + C

∫ t

0

‖uβ1ν(s)− uβ2ν(s)‖L2(Γ3)ds.

Now using (2.10), we have

‖Φβ1(t)− Φβ2(t)‖L2(Γ3)

≤ C

∫ t

0

‖β1(s)− β2(s)‖L2(Γ3)ds + C

∫ t

0

‖uβ1(s)− uβ2(s)‖V ds.

On the other hand using the inequality (3.1), the assumption (2.13)(b) on F and
the property (2.19) of j, we get

‖uβ1(t)− uβ2(t)‖V ≤ C‖β1(t)− β2(t)‖L2(Γ3). (3.4)

Whence, we obtain

‖Φβ1(t)− Φβ2(t)‖L2(Γ3) ≤ C

∫ t

0

‖β1(s)− β2(s)‖L2(Γ3)ds,

and ∫ t

0

‖β1(s)− β2(s)‖L2(Γ3) =
∫ t

0

exp(ks)[exp(−ks)‖β1(s)− β2(s)‖L2(Γ3)]ds.

Since∫ t

0

exp(ks)[exp(−ks)‖β1(s)− β2(s)‖L2(Γ3)]ds ≤ ‖β1 − β2‖X

∫ t

0

exp(ks)ds,

and

‖β1 − β2‖X

∫ t

0

exp(ks)ds = ‖β1 − β2‖X
exp(kt)− 1

k
≤ ‖β1 − β2‖X

exp(kt)
k

,

we deduce

‖Φβ1(t)− Φβ2(t)‖L2(Γ3) ≤ C‖β1 − β2‖X
exp(kt)

k
,

which implies

exp(−kt)‖Φβ1(t)− Φβ2(t)‖L2(Γ3) ≤
C

k
‖β1 − β2‖X .

So we obtain

‖Φβ1 − Φβ2‖X ≤ C

k
‖β1 − β2‖X . (3.5)

This inequality shows that for k sufficiently large Φ is a contraction. Then we
deduce, by using the fixed point theorem that Φ has a unique fixed point βa which
satisfies (3.2) and (3.3). Moreover from (2.15) and (3.2), see [17] for details, we
deduce that

0 ≤ β(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3.

�
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Now, to prove the existence and uniqueness of the solution for Theorem 2.2, let
βa be the fixed point of T and let ua be the solution of problem P1β for β = βa,
i.e., ua = uβa . Using the same arguments used in the proof of (3.4), we get

‖ua(t1)− ua(t2)‖V ≤ c‖βa(t1)− βa(t2)‖L2(Γ3) ∀t1, t2 ∈ [0, T ]. (3.6)

Since Tβa = βa we deduce from lemma 3.2 that βa ∈ W 1,∞(0, T ;L2(Γ3)) and then
(3.6) implies that ua ∈ W 1,∞(0, T ;V ). Moreover, we conclude by (3.1), (3.2) and
(3.3) that (ua, βa) is a solution to problem P2. To prove the uniqueness of the
solution, suppose that (u, β) is a solution of problem P2 which satisfies (2.21) and
(2.22). It follows from (2.21) that u is a solution to problem P1β , and from lemma
3.1 that u = uβ . Take u = uβ in (2.21) and use the initial condition (2.23), we
deduce that β is a solution to problem P2β . Therefore, we get from lemma 3.2,
β = βa and we conclude that (ua, βa) is a unique solution to problem P2.

4. The Penalized Problem

Let us consider the following strong formulation of the penalized problem with
frictionless contact and adhesion, for δ > 0, which can be seen as a frictionless
contact and adhesion with a normal compliance.

Problem P1δ. Find uδ : Ω× [0, T ] → Rd, βδ : Γ3 × [0, T ] → [0, 1] such that

div σ + ϕ1 = 0 in Ω× (0, T ), (4.1)

σ = Fε(uδ) in Ω× (0, T ), (4.2)

uδ = 0 on Γ1 × (0, T ), (4.3)

σν = ϕ2 on Γ2 × (0, T ), (4.4)

−σν =
(uδν)+

δ
− cνβ2(−R(uδν))+ on Γ3 × (0, T ), (4.5)

−στ = pτ (βδ)R∗(uδτ ) on Γ3 × (0, T ), (4.6)

β̇δ = −cν(βδ)+(R(uδν))2 on Γ3 × (0, T ), (4.7)

βδ(0) = β0 on Γ3. (4.8)

The problem P1δ has the following variational formulation.

Problem P2δ. Find (uδ, βδ) ∈ W 1,∞(0, T ;V )×W 1,∞(0, T ;L∞(Γ3))) such that

(Fε(uδ(t)), ε(v))Q +
1
δ
((uδν(t))+, vν)L2(Γ3) + j(βδ(t), uδ(t), v)

= (f(t), v)V ∀v ∈ V, t ∈ [0, T ],
(4.9)

β̇δ(t) = −cν(βδ(t))+(R(uδν(t)))2 on Γ3 × (0, T ), (4.10)

βδ(0) = β0 on Γ3. (4.11)

We can prove the following result.

Theorem 4.1. Problem P2δ has a unique solution.

The proof of the above theorem is similar to that of Theorem 2.2; however we
omit some of the details. Here are the main steps of the proof.



10 A. TOUZALINE EJDE-2007/174

(i) For any β ∈ L2(Γ3) such that 0 ≤ β(t) ≤ 1 for all t ∈ [0, T ], a.e. on Γ3, we prove
that there exists a unique uδ ∈ C([0, T ];V ) such that

(Fε(uδ(t)), ε(v))Q +
1
δ
((uδν(t))+, vν)L2(Γ3) + j(β(t), uδ(t), v)

= (f(t), v)V ∀v ∈ V, t ∈ [0, T ].
(4.12)

To prove this step, for t ∈ [0, T ] and u, v ∈ V , we define the operator Tt : V → V
by

(Ttu, v)V = (Fε(u(t)), ε(v))Q +
1
δ
((uν(t))+, vν)L2(Γ3) + j(β(t), u(t), v)

In the study of the operator Tt we need to recall that for a, b ∈ R, we have

(a+ − b+)(a− b) ≥ (a+ − b+)2,

|a+ − b+| ≤ |a− b|.
(4.13)

Using (2.13)(a), (2.13)(b), the properties (2.17)–(2.20) are satisfied by the func-
tional j and the property (4.13) to see that the operator Tt is strongly monotone
and Lipschitz continuous, and therefore invertible.
(ii) There exists a unique βδ such that

βδ ∈ W 1,∞(0, T ;L2(Γ3)), (4.14)

β̇δ(t) = −cν(βδ(t))+(R(uδν(t)))2 a.e. t ∈ (0, T ), (4.15)

βδ(0) = β0. (4.16)

(iii) Let βδ defined in ii) and denote again by uδ the function obtained in step i) for
β = βδ. Then, by using (4.13)–(4.16) it is easy to see that (uδ, βδ) is the unique solu-
tion to problem P2δ and it satisfies (uδ, βδ) ∈ W 1,∞(0, T ;V )×W 1,∞(0, T ;L2(Γ3)),
such that

0 ≤ βδ(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3.

Now, in the theorem below we prove the convergence of the solution (uδ, βδ) as
δ → 0 to the solution (u, β) of Problem P2 as follows.

Theorem 4.2. Assume that (2.13), (2.14), (2.15) hold. Then we have the following
convergence:

lim
δ→0

‖uδ − u‖C([0,T ];V = 0, (4.17)

lim
δ→0

‖βδ − β‖C([0,T ];L2(Γ3)) = 0. (4.18)

The proof is carried out in several steps. In the first step, we show the following
lemma.

Lemma 4.3. There exists a function ū(t) ∈ V such that after passing to a subse-
quence still denoted (uδ(t)) we have

uδ(t) → ū(t) weakly in V for all t ∈ [0, T ]. (4.19)

Proof. Take in (4.9) v = uδ(t), we get

(Fε(uδ(t)), ε(uδ(t)))Q +
1
δ
((uδν(t))+, (uδ(t)))L2(Γ3) + j(βδ(t), uδ(t), uδ(t))

= (f(t), uδ(t))V .
(4.20)
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Using (4.12), we have

((uδν(t))+, (uδν(t)))L2(Γ3) ≥ ((uδν(t))+, (uδν(t))+)L2(Γ3) ≥ 0

and using (2.20), we have j(βδ(t), uδ(t), uδ(t)) ≥ 0, then from (4.20) we have

(Fε(uδ(t)), ε(uδ(t)))Q ≤ (f(t), uδ(t))V

and keeping, in mind (2.13)(b), we deduce that there exists a constant C > 0 such
that

‖uδ(t)‖V ≤ C‖f(t)‖V .

The sequence (uδ(t)) is bounded in V , then there exists a function ū(t) ∈ V and a
subsequence again denoted (uδ(t)) such that (4.19) holds. �

Now, let us consider the following auxiliary problem.

Problem Pa. Find β ∈ W 1,∞(0, T ;L2(Γ3)), such that

β̇(t) = −cν(β(t))+(R(ūν(t)))2 a.e. t ∈ (0, T ),

β(0) = β0.

Using the same proof as in the lemma 3.2, we have the following result.

Lemma 4.4. Problem Pa has a unique solution β. Moreover

0 ≤ β(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3.

Now, we show the following convergence result.

Lemma 4.5. Let β be the solution to problem Pa, then we have

lim
δ→0

‖βδ − β‖C([0,T ];L2(Γ3)) = 0. (4.21)

Proof. As in the proof of lemma 3.2, we have

‖βδ(t)− β(t)‖L2(Γ3) ≤ C

∫ t

0

‖uδν(s)− ūν(s)‖L2(Γ3)ds. (4.22)

From (4.19) we deduce that uδν(t) → ūν(t) strongly in L2(Γ3), as δ → 0. On the
other hand we have

‖uδν(t)− ūν(t)‖L2(Γ3) ≤ C‖uδ(t)− ū(t)‖V ≤ C(‖f(t)‖V + ‖ū(t)‖V ),

which implies that there exists a constant C > 0 such that

‖uδν(t)− ūν(t)‖L2(Γ3) ≤ C.

Then it follows from Lebesgue convergence theorem that

lim
δ→0

∫ t

0

‖uδν(s)− ūν(s)‖L2(Γ3)ds = 0. (4.23)

So we deduce that

‖βδ(t)− β(t)‖L2(Γ3) → 0 for all t ∈ [0, T ],

and as
W 1,∞(0, T ;L2(Γ3)) ↪→ C([0, T ];L2(Γ3)),

it results that (4.21) is a consequence of (4.22) and (4.23). �

Lemma 4.6. We have ū(t) = u(t) for all t ∈ [0, T ].
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Proof. From (4.19), we deduce that

((uδν(t))+, (uδν(t)))L2(Γ3) ≤ δC,

and then
((uδν(t))+, (uδν(t))+)L2(Γ3) ≤ δC. (4.24)

From (4.12) and (4.19), we deduce that

(uδν(t))+ → (ūν(t))+ strongly in L2(Γ3) as δ → 0. (4.25)

Then we deduce from (4.24) and (4.25) that

‖(ūν(t))+‖L2(Γ3) ≤ lim inf
δ→0

‖(uδν(t))+‖L2(Γ3) = 0. (4.26)

It follows from (4.26) that (ūν(t))+ = 0; i.e., ūν(t) ≤ 0 a.e. on Γ3 which shows that
ū(t) ∈ K. Testing with v − uδ(t) in (4.9) and keeping in mind that for all v ∈ K,

((uδν(t))+, vν − uδν(t))L2(Γ3) = ((uδν(t))+ − vν+, vν − uδν(t))L2(Γ3),

we obtain
(Fε(uδ(t)), ε(v − uδ(t)))Q + j(βδ(t), uδ(t), v − uδ(t))

≥ (f(t), v − uδ(t))V ∀v ∈ K.
(4.27)

Next, using (2.17) and (4.21), we get

|j(βδ(t), uδ(t), v − uδ(t))− j(β(t), uδ(t), v − uδ(t))|
≤ C‖βδ(t)− β(t)‖L2(Γ3)‖v − uδ(t)‖V .

On the other hand, using the properties of R, we get

j(β(t), uδ(t), v − uδ(t)) → j(β(t), ũ(t), v − ũ(t)) as δ → 0,

for all v ∈ V . Therefore, passing to the limit in (4.27) as δ → 0, we obtain that
ū(t) ∈ K and

(Fε(ū(t)), ε(v− ū(t)))Q+j(β(t), ū(t), v− ū(t)) ≥ (f(t), v− ū(t))V ∀v ∈ K. (4.28)

Now, setting v = u(t) in (4.28) and v = ū(t) in (2.21) and add them up, we get by
using the assumption (2.13)(b) on F that

m‖ū(t)− u(t)‖2
V ≤ j(β(t), ū(t), u(t)− ū(t)) + j(β(t), u(t), ū(t)− u(t)).

Using (2.18), we have

j(β(t), ū(t), u(t)− ū(t)) + j(β(t), u(t), ū(t)− u(t)) ≤ 0,

and thus
ū(t) = u(t). (4.29)

Now, we have all the ingredients to prove Theorem 4.2. Indeed, from (4.29), we
deduce immediately (4.18). To prove (4.17), take v = u(t) in (4.27), we get by
using the assumption (2.13)(b) on F that

m‖uδ(t)− u(t)‖2
V ≤ j(βδ(t), uδ(t), u(t)− uδ(t))− j(β(t), uδ(t), u(t)− uδ(t))

+ j(β(t), uδ(t), u(t)− uδ(t))

+ (Fε(u(t)), ε(u(t)− uδ(t)))Q + (f(t), uδ(t)− u(t))V .
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Passing to the limit as δ → 0 in the previous inequality and using the convergence

j(βδ(t), uδ(t), u(t)− uδ(t))− j(β(t), uδ(t), u(t)− uδ(t)) → 0,

j(β(t), uδ(t), u(t)− uδ(t)) → 0,

(Fε(u(t)), ε(u(t)− uδ(t)))Q + (f(t), uδ(t)− u(t))V → 0,

we obtain that ‖uδ(t)− u(t)‖V → 0 for all t ∈ [0, T ], and so as

W 1,∞(0, T ;V ) ↪→ C([0, T ];V ),

we deduce (4.17). �
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Addendum posted on December 22, 2011.

The author wants to make the following corrections:
(1) On page 6, line -2: Replace β ∈ L∞(Γ3), 0 ≤ β ≤ 1 a.e. Γ3

by β ∈ X1 where X1 is the nonempty closed subset of the space C([0, T ];L2(Γ3))
defined as

X1 = {θ ∈ C([0, T ];L2(Γ3)) : θ(0) = β0, 0 ≤ θ(t) ≤ 1∀t ∈ [0, T ], a.e. on Γ3},
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and the Banach space C([0, T ];L2(Γ3)) is endowed with the norm

‖θ‖k = sup
t∈[0,T ]

[exp(−kt)‖θ(t)‖L2(Γ3)] ∀θ ∈ C([0, T ];L2(Γ3)), k > 0 .

(2) In Lemma 3.1: Replace

(Ttu, v)V = (Fε(u(t)), ε(v))Q + j(β(t), u(t), v)

by
(Ttu, v)V = (Fε(u), ε(v))Q + j(β(t), u, v) ∀u, v ∈ V

To prove that uβ ∈ C([0, T ];V ), let t1, t2 ∈ [0, T ]. In inequality (3.1), take t = t1
and v = uβ(t2); then t = t2 and v = uβ(t1), by adding the resulting inequalities we
obtain

‖uβ(t1)− uβ(t2)‖V ≤ c(‖f(t1)− f(t2)‖V + ‖β(t1)− β(t2)‖L2(Γ3)) ∀t1, t2 ∈ [0, T ],

and conclude by using f ∈ C([0, T ];V ) and β ∈ C([0, T ];L2(Γ3)).
(3) In Lemma 3.2: Replace the space X by X1.
(4) Page 7, line -3: Add

We have (β1(s))+ ≤ (β1(s)− β2(s))+ + (β2(s))+.
(5) On page 9: Replace the inequality (3.6) by

‖ua(t1)−ua(t2)‖V ≤ c(‖f(t1)− f(t2)‖V +‖βa(t1)−βa(t2)‖L2(Γ3)) ∀t1, t2 ∈ [0, T ],

and conclude by using f ∈ W 1,∞(0, T ;V ) and βa ∈ W 1,∞(0, T ;L2(Γ3)).
(6) On page 10, line 1, in (i): Replace

β ∈ L2(Γ3), 0 ≤ β(t) ≤ 1 for all t ∈ [0, T ], a.e. Γ3

by β ∈ X1.
End of addendum.
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