
Electronic Journal of Differential Equations, Vol. 2007(2007), No. 176, pp. 1–14.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

INTEGRAL INEQUALITIES SIMILAR TO GRONWALL
INEQUALITY

MOHAMED DENCHE, HASSANE KHELLAF

Abstract. In the present paper, we establish some nonlinear integral inequal-

ities for functions of one variable, with a further generalization functions with

n independent variables. We apply our results to a system of nonlinear differ-
ential equations for functions of one variable and to the nonlinear hyperbolic

partial integrodifferential equation in n-independent variables. These results

extend the Gronwall type inequalities obtained by Pachpatte [6] and Oguntu-
ase [5].

1. Introduction

Integral inequalities play a big role in the study of differential integral equation
and partial differential equations. They were introduced for by Gronwall in 1919
[2], who gave their applications in the study of some problems concerning ordi-
nary differential equation. One of the most useful inequalities with one variable of
Gronwall type is stated as follows.

Lemma 1.1. Let u, Ψ and g be real continuous functions defined in [a, b], g(t) ≥ 0
for t ∈ [a, b]. Suppose that on [a, b] we have the inequality

u(t) ≤ Ψ(t) +
∫ t

a

g(s)u(s)ds. (1.1)

Then

u(t) ≤ Ψ(t) +
∫ t

a

g(s)Ψ(s) exp
[ ∫ s

a

g(σ)dσ
]
ds. (1.2)

Since that time, the theory of these inequalities knew a fast growth and a great
number of monographs were devoted to this subject [1, 3, 4, 7]. The applications
of the integral inequalities were developed in a remarkable way in the study of the
existence, the uniqueness, the comparison, the stability and continuous dependence
of the solution in respect to data. In the last few years, a series of generalizations of
those inequalities appeared. Among these generalization, we can quote Pachpatte’s
work [6].
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In the present paper we establish some new nonlinear integral inequalities for
functions of one variable, with a further generalization of these inequalities to func-
tion with n independent variables. These results extend the Gronwall type inequal-
ities obtained by Pachpatte [6] and Oguntuase [5].

2. Mains Results

Our main results are given in the following theorems:

Theorem 2.1. Let u(t), f(t) be nonnegative continuous functions in a real in-
terval I = [a, b]. Suppose that k(t, s) and its partial derivatives kt(t, s) exist and
are nonnegative continuous functions for almost every t, s ∈ I. Let Φ(u(t)) be
real-valued, positive, continuous, strictly non-decreasing, subadditive, and submulti-
plicative function for u(t) ≥ 0 and let W (u(t)) be real-valued, positive, continuous,
and non-decreasing function defined for t ∈ I. Assume that a(t) is a positive con-
tinuous function and nondecreasing for t ∈ I. If

u(t) ≤ a(t) +
∫ t

a

f(s)u(s)ds +
∫ t

a

f(s)W (
∫ s

a

k(s, τ)Φ(u(τ))dτ)ds, (2.1)

for a ≤ τ ≤ s ≤ t ≤ b, then for a ≤ t ≤ t1,

u(t) ≤ p(t)
{

a(t) +
∫ t

a

f(s)Ψ−1
(
Ψ(ζ)

+
∫ s

a

k(s, τ)Φ(p(τ))Φ(
∫ τ

a

f(σ)dσ)dτ
)
ds

}
,

(2.2)

where

p(t) = 1 +
∫ t

a

f(s) exp(
∫ s

a

f(σ)dσ)ds, (2.3)

ζ =
∫ b

a

k(b, s)Φ(p(s)a(s))ds, (2.4)

Ψ(x) =
∫ x

x0

ds

Φ(W (s))
, x ≥ x0 > 0. (2.5)

Here Ψ−1 is the inverse of Ψ and t1is chosen so that

Ψ(ζ) +
∫ s

a

k(s, τ)Φ(p(τ))Φ(
∫ τ

a

f(σ)dσ)dτ ∈ Dom(Ψ−1).

Proof. Define a function z(t) by

z(t) = a(t) +
∫ t

a

f(s)W
( ∫ s

a

k(s, τ)Φ(u(τ))dτ
)
ds, (2.6)

then (2.6) can be restated as

u(t) ≤ z(t) +
∫ t

a

f(s)u(s)ds. (2.7)

Clearly z(t) is nonnegative and continuous in t ∈ I, using lemma 1.1 to (2.7), we
get

u(t) ≤ z(t) +
∫ t

a

f(s)z(s) exp
( ∫ s

a

f(σ)dσ
)
ds; (2.8)
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moreover if z(t) is nondecreasing in t ∈ I, we obtain

u(t) ≤ z(t)p(t), (2.9)

where p(t) is defined by 2.3. From (2.6), we have

z(t) ≤ a(t) +
∫ t

a

f(s)W (v(s))ds, (2.10)

where

v(t) =
∫ t

a

k(t, s)Φ(u(s))ds. (2.11)

From (2.9) we observe that

v(t) ≤
∫ t

a

k(t, s)Φ
[
p(s)

(
a(s) +

∫ s

a

f(τ)W (v(τ))dτ
)]

ds

≤
∫ t

a

k(t, s)Φ(p(s)a(s))ds +
∫ t

a

k(t, s)Φ
(
p(s)

∫ s

a

f(τ)W (v(τ))dτ
)
ds

≤
∫ b

a

k(b, s)Φ(p(s)a(s))ds +
∫ t

a

k(t, s)Φ
(
p(s)

∫ s

a

f(τ)dτ
)
Φ(W (v(s)))ds

≤ ζ +
∫ t

a

k(t, s)Φ
(
p(s)

∫ s

a

f(τ)dτ
)
Φ(W (v(s)))ds.

(2.12)
Where ζ is defined by (2.4).

Since Φ is a subadditive and a submultiplicative function, W and v(t) are non-
decreasing. Define r(t) as the right side of (2.12), then r(a) = ζ and v(t) ≤ r(t),
r(t) is positive nondecreasing in t ∈ I and

r′(t) = k(t, t)Φ
(
p(t)

∫ t

a

f(τ)dτ
)
Φ(W (v(t)))

+
∫ t

a

kt(t, s)Φ(p(s)
∫ s

a

f(τ)dτ)Φ(W (v(s)))ds,

≤ Φ(W (r(t)))
[
k(t, t)Φ

(
p(t)

∫ t

a

f(τ)dτ
)

+
∫ t

a

kt(t, s)Φ
(
p(s)

∫ s

a

f(τ)dτ
)
ds

]
,

(2.13)

dividing both sides of (2.13) by Φ(W (r(t))) we obtain

r′(t)
Φ(W (r(t)))

≤
[ ∫ t

a

k(t, s)Φ(p(s)
∫ s

a

f(τ)dτ)ds
]′

. (2.14)

Note that for

Ψ(x) =
∫ x

x0

ds

Φ(W (s))
, x ≥ x0 > 0,

it follows that

[Ψ(r(t))]′ =
r′(t)

Φ(W (r(t)))
. (2.15)

From (2.15) and (2.14), we have

[Ψ(r(t))]′ ≤
[ ∫ t

a

k(t, s)Φ(p(s)
∫ s

a

f(τ)dτ)ds
]′

, (2.16)
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integrate (2.16) from a to t, leads to

Ψ(r(t)) ≤ Ψ(ζ) +
∫ t

a

k(t, s)Φ(p(s)
∫ s

a

f(τ)dτ)ds,

then

r(t) ≤ Ψ−1
(
Ψ(ζ) +

∫ t

a

k(t, s)Φ(p(s))Φ(
∫ s

a

f(τ)dτ)ds
)
. (2.17)

By (2.17), (2.12), (2.10) and (2.9) we have the desired result �

The preceding theorem is a generalization of the result obtained by Pachpatte
in [6, Theorem 2.1].

Theorem 2.2. Let u(t), f(t), b(t), h(t) be nonnegative continuous functions in
a real interval I = [a, b]. Suppose that h(t) ∈ C1(I, R+) is nondecreasing. Let
Φ(u(t)),W (u(t)) and a(t) be as defined in Theorem 2.1. If

u(t) ≤ a(t) +
∫ t

a

f(s)u(s)ds +
∫ t

a

f(s)h(s)W
( ∫ s

a

b(τ)Φ(u(τ))dτ
)
ds,

for a ≤ τ ≤ s ≤ t ≤ b, then for a ≤ t ≤ t2,

u(t) ≤ p(t)
{

a(t) +
∫ t

a

f(s)h(s)Ψ−1
(
Ψ(ϑ)

+
∫ s

a

b(τ)Φ
(
p(τ)

∫ τ

a

f(σ)h(σ)dσ
)
dτ

)
ds

}
.

Where p(t) is defined by (2.3), Ψ is defined by (2.5) and

ϑ =
∫ b

a

b(s)Φ(p(s)a(s))ds,

the t2 is chosen so that Ψ(ϑ) +
∫ s

a
b(τ)Φ(p(τ)

∫ τ

a
f(σ)h(σ)dσ)dτ is in Dom(Ψ−1).

The proof of the above theorem follows similar arguments as the proof of Theo-
rem 2.1; So we omit it.

The preceding theorem is a generalization of the result obtained by Oguntuase
in [5, Theorem 2.3, 2.9].

In this section we use the following class of function. A function g : R+ → R+

is said to belong to the class S if it satisfies the following conditions,
(1) g(u) is positive, nondecreasing and continuous for u ≥ 0 and
(2) (1/v)g(u) ≤ g(u/v), u > 0, v ≥ 1.

Theorem 2.3. Let u(t), f(t), a(t), k(t, s),Φ and W be as defined in Theorem 2.1,
let g ∈ S. If

u(t) ≤ a(t) +
∫ t

a

f(s)g(u(s))ds +
∫ t

a

f(s)W
( ∫ s

a

k(s, τ)Φ(u(τ))dτ
)
ds, (2.18)

for a ≤ τ ≤ s ≤ t ≤ b, then for a ≤ t ≤ t3,

u(t) ≤ p(t)
{

a(t) +
∫ t

a

f(s)Ψ−1
(
Ψ(ζ)

+
∫ s

a

k(s, τ)Φ(p(τ))Φ(
∫ τ

a

f(σ)dσ)dτ
)
ds

}
,

(2.19)
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where

p(t) = Ω−1
(
Ω(1) +

∫ t

a

f(s)ds
)
, (2.20)

ζ =
∫ b

a

k(b, s)Φ(p(s)a(s))ds, (2.21)

Ω(δ) =
∫ δ

ε

ds

g(s)
, δ ≥ ε > 0. (2.22)

Here Ω−1 is the inverse function of Ω, and Ψ,Ψ−1 are defined in theorem 2.1, t3
is chosen so that Ω(1) +

∫ t

a
f(s)ds is in the domain of Ω−1, and

Ψ(ζ) +
∫ s

a

k(s, τ)Φ(p(τ))Φ
( ∫ τ

a

f(σ)dσ
)
dτ,

is in the domain of Ψ−1.

Proof. Define the function

z(t) = a(t) +
∫ t

a

f(s)W
( ∫ s

a

k(s, τ)Φ(u(τ))dτ
)
ds. (2.23)

Then (2.18) can be restated as

u(t) ≤ z(t) +
∫ t

a

f(s)g(u(s))ds. (2.24)

When z(x) is a positive, continuous, nondecreasing in x ∈ I and g ∈ S, then it can
be restated as

u(t)
z(t)

≤ 1 +
∫ t

a

f(s)g(
u(s)
z(s)

)ds. (2.25)

The inequality (2.25) may be treated as one-dimensional Bihari-La Salle inequality
(see [1]), which implies

u(t) ≤ p(t)z(t), (2.26)

where p(t) is defined by (2.20). By (2.23) and (2.26) we get

u(t) ≤ p(t)
[
a(t) +

∫ t

a

f(s)W (v(s))ds
]
,

where

v(s) =
∫ s

a

k(s, τ)Φ(u(τ))dτ.

Now, by following the argument as in the proof of Theorem 2.1, we obtain the
desired inequality in (2.19). �

Theorem 2.4. Let u(t), f(t), b(t), h(t), Φ(u(t)), W (u(t)) and a(t) be as defined
in Theorem 2.2, let g ∈ S. If

u(t) ≤ a(t) +
∫ t

a

f(s)g(u(s))ds +
∫ t

a

f(s)h(s)W (
∫ s

a

b(τ)Φ(u(τ))dτ)ds,
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for a ≤ τ ≤ s ≤ t ≤ b, then for a ≤ t ≤ t4,

u(t) ≤ p(t)
{

a(t) +
∫ t

a

f(s)h(s)Ψ−1
(
Ψ(ϑ)

+
∫ s

a

b(τ)Φ(p(τ)
∫ τ

a

f(σ)h(σ)dσ)dτ
)
ds

}
.

Here p(t) is defined by (2.20), Ψ is defined by (2.5) and

ϑ =
∫ b

a

b(s)Φ(p(s)a(s))ds,

the value t4 is chosen so that Ψ(ϑ)+
∫ s

a
b(τ)Φ(p(τ)

∫ τ

a
f(σ)h(σ)dσ)dτ ∈ Dom(Ψ−1).

The proof of the above theorem follows similar arguments as in the proof of
Theorem 2.3, we omit it.

3. Integral Inequalities in several variables

In what follows we denote by R the set of real numbers, and R+ = [0,∞). All
the functions which appear in the inequalities are assumed to be real valued of n
variables which are nonnegative and continuous. All integrals are assumed to exist
on their domains of definitions.

Throughout this paper, we assume that I = [a; b] in any bounded open set in
the dimensional Euclidean space Rn and that our integrals are on Rn(n ≥ 1),
where a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn

+. For x = (x1, x2, . . . xn),
t = (t1, t2, . . . tn) ∈ I, we shall denote∫ x

a

=
∫ x1

a1

∫ x2

a2

. . .

∫ xn

an

. . . dtn . . . dt1 .

Furthermore, for x, t ∈ Rn, we shall write t ≤ x whenever ti ≤ xi, i = 1, 2, . . . , n and
0 ≤ a ≤ x ≤ b, for x ∈ I, and D = D1D2 . . . Dn, where Di = ∂

∂xi
for i = 1, 2, . . . , n.

Let C(I, R+) denote the class of continuous functions from I to R+.
The following theorem deals with n-independent variables versions of the in-

equalities established in Pachpatte [6, Theorem 2.3].

Theorem 3.1. Let u(x), f(x), a(x) be in C(I, R+) and let K(x, t), Dik(x, t) be in
C(I× I, R+) for all i = 1, 2, . . . , n, and let c be a nonnegative constant. (1) If

u(x) ≤ c +
∫ x

a

f(s)
[
u(s) +

∫ s

a

k(s, τ)u(τ)dτ
]
ds, (3.1)

for x ∈ I and a ≤ τ ≤ s ≤ b, then

u(x) ≤ c
[
1 +

∫ x

a

f(t) exp
( ∫ t

a

(f(s) + k(b, s))ds
)
dt

]
(3.2)

(2) If

u(x) ≤ a(x) +
∫ x

a

f(s)
[
u(s) +

∫ s

a

k(s, τ)u(τ)dτ
]
ds, (3.3)

for x ∈ I and a ≤ τ ≤ s ≤ b, then

u(x) ≤ a(x) + e(x)
[
1 +

∫ x

a

f(t) exp
( ∫ t

a

(f(s) + k(b, s))ds
)
dt

]
, (3.4)
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where

e(x) =
∫ x

a

f(s)
[
a(s) +

∫ s

a

k(s, τ)a(τ)dτ
]
ds. (3.5)

Proof. (1) The inequality (3.1) implies the estimate

u(x) ≤ c +
∫ x

a

f(s)
[
[u(s) +

∫ s

a

k(b, τ)u(τ)dτ
]
ds.

We define the function

z(x) = c +
∫ x

a

f(s)
[
u(s) +

∫ s

a

k(b, τ)u(τ)dτ
]
ds.

Then z(a1, x2, . . . , xn) = c, u(x) ≤ z(x) and

Dz(x) = f(x)
[
u(x) +

∫ x

a

k(b, s)u(s)ds
]
,

≤ f(x)
[
z(x) +

∫ x

x0
k(b, s)z(s)ds

]
.

Define the function

v(x) = z(x) +
∫ x

a

k(b, s)z(s)ds,

then z(a1, x2, . . . , xn) = v(a1, x2, . . . , xn) = c, Dz(x) ≤ f(x)v(x) and z(x) ≤ v(x),
and we have

Dv(x) = Dz(x) + k(b, x)z(x) ≤ (f(x) + k(b, x))v(x). (3.6)

Clearly v(x) is positive for all x ∈ I, hence the inequality (3.6) implies the estimate

v(x)Dv(x)
v2(x)

≤ f(x) + k(b, x);

that is
v(x)Dv(x)

v2(x)
≤ f(x) + k(b, x) +

(Dnv(x))(D1D2 . . . Dn−1v(x))
v2(x)

;

hence

Dn

(D1D2 . . . Dn−1v(x)
v(x)

)
≤ f(x) + k(b, x).

Integrating with respect to xn from an to xn, we have

D1D2 . . . Dn−1v(x)
v(x)

≤
∫ xn

an

[f(x1, . . . , xn−1, tn) + k(b, x1, . . . , xn−1, tn)]dtn;

thus
v(x)D1D2 . . . Dn−1v(x)

v2(x)
≤

∫ xn

an

[f(x1, . . . , xn−1, tn) + k(b, x1, . . . , xn−1, tn)]dtn

+
(Dn−1v(x))(D1D2 . . . Dn−2v(x))

v2(x)
.

That is,

Dn−1

(D1D2 . . . Dn−2v(x)
v(x)

)
≤

∫ xn

an

[f(x1, . . . , xn−1, tn) + k(b, x1, . . . , xn−1, tn)]dtn,
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integrating with respect to xn−1 from an−1 to xn−1, we have

D1D2 . . . Dn−2v(x)
v(x)

≤
∫ xn−1

an−1

∫ xn

an

[
f(x1, . . . , xn−2, tn−1, tn)

+ k(b, x1, . . . , xn−2, tn−1, tn)
]
dtndtn−1.

Continuing this process, we obtain

D1v(x)
v(x)

≤
∫ x2

a2

. . .

∫ xn

an

[f(x1, t2, t3, . . . , tn) + k(b, x1, t2, t3, . . . , tn)]dtn . . . dt2 .

Integrating with respect to x1 from a1 to x1, we have

log
v(x)

v(a1, x2, . . . , xn)
≤

∫ x

a

[f(t) + k(b, t)]dt;

that is,

v(x) ≤ c exp
( ∫ x

a

[f(t) + k(b, t)]dt
)
. (3.7)

Substituting (3.7) into Dz(x) ≤ f(x)v(x), we have

Dz(x) ≤ cf(x) exp
( ∫ x

a

[f(t) + k(b, t)]dt
)
, (3.8)

integrating (3.8) with respect to the xn component from an to xn, then with re-
spect to the an−1 to xn−1, and continuing until finally a1 to x1, and noting that
z(a1, x2, . . . , xn) = c, we have

z(x) ≤ c
[
1 +

∫ x

a

f(t) exp
( ∫ t

a

[f(s) + k(b, s)]ds
)
dt

]
.

This completes the proof of the first part.
(2) Define a function z(x) by

z(x) =
∫ x

a

f(s)
[
u(s) +

∫ s

a

k(s, τ)u(τ)dτ
]
ds. (3.9)

Then from (3.3), u(x) ≤ a(x) + z(x) and using this in (3.9), we get

z(x) ≤
∫ x

a

f(s)
[
a(s) + z(s) +

∫ s

a

k(s, τ)[a(τ) + z(τ)]dτ
]
ds,

≤ e(x) +
∫ x

a

f(s)
[
z(s) +

∫ s

a

k(s, τ)z(τ)dτ
]
ds,

(3.10)

where e(x) is defined by (3.5). Clearly e(x) is positive, continuous an nondecreasing
for all x ∈ I. From (3.10) it is easy to observe that

z(x)
e(x)

≤ 1 +
∫ x

a

f(s)
[z(s)
e(s)

+
∫ s

a

k(s, τ)
z(τ)
e(τ)

dτ
]
ds.

Now, by applying the inequality in part 1, we have

z(x) ≤ e(x)
[
1 +

∫ x

a

f(t) exp
( ∫ t

a

(f(s) + k(b, s))ds
)
dt

]
. (3.11)

The desired inequality in (3.4) follows from (3.11) and the fact that u(x) ≤ a(x) +
z(x). �
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The following theorem deals with n-independent variables versions of the in-
equalities established in Theorem 2.3. We need the inequalities in the following
lemma (see [4]).

Lemma 3.2. Let u(x) and b(x) be nonnegative continuous functions, defined for
x ∈ I, and let g ∈ S. Assume that a(x) is positive, continuous function, nonde-
creasing in each of the variables x ∈ I. Suppose that

u(x) ≤ c +
∫ x

a

b(t)g(u(t))dt, (3.12)

holds for all x ∈ I with x ≥ a, then

u(x) ≤ G−1
[
G(c) +

∫ x

a

b(t)dt
]
, (3.13)

for all x ∈ I such that G(c) +
∫ x

a
b(t)dt ∈ Dom(G−1), where G(u) =

∫ u

u0
dz/g(z),

u > 0(u0 > 0).

Theorem 3.3. Let u(x), f(x), a(x) and k(x, t) be as defined in Theorem 3.1. Let
Φ(u(x)) be real-valued, positive, continuous, strictly non-decreasing, subadditive and
submultiplicative function for u(x) ≥ 0 and let W (u(x)) be real-valued, positive,
continuous and non-decreasing function defined for x ∈ I. Assume that a(x) is
positive continuous function and nondecreasing for x ∈ I. If

u(x) ≤ a(x) +
∫ x

a

f(t)g(u(t))dt +
∫ x

a

f(t)W
( ∫ t

a

k(t, s)Φ(u(s))ds
)
dt, (3.14)

for a ≤ s ≤ t ≤ x ≤ b, then for a ≤ x ≤ x∗,

u(x) ≤ β(x)
{

a(x) +
∫ x

a

f(t)W
[
Ψ−1

(
Ψ(η)

+
∫ t

a

k(b, s)Φ[β(s)
∫ s

a

f(τ)dτ ]ds
)]

dt
}

,

(3.15)

where

β(x) = G−1(G(1) +
∫ x

a

f(s)ds), (3.16)

η =
∫ b

a

k(b, s)Φ(β(s)a(s))ds, (3.17)

G(u) =
∫ u

u0

1/g(z) dz, u > 0(u0 > 0), (3.18)

Ψ(x) =
∫ x

x0

ds

Φ(W (s))
, x ≥ x0 > 0. (3.19)

Here G−1 is the inverse function of G, and Ψ is the inverse function of Ψ−1, x∗is
chosen so that G(1) +

∫ x

a
f(s)ds is in the domain of G−1, and

Ψ(η) +
∫ t

a

k(b, s)Φ
[
β(s)

∫ s

a

f(τ)dτ
]
ds,

is in the domain of Ψ−1.



10 M. DENCHE, H. KHELLAF EJDE-2007/176

Proof. Define the function

z(x) = a(x) +
∫ x

a

f(t)W
( ∫ t

a

k(t, s)Φ(u(s))ds
)
dt. (3.20)

Then 3.14 can be restated as

u(x) ≤ z(x) +
∫ x

a

f(t)g(u(t))dt.

We have z(x) is a positive, continuous, nondecreasing in x ∈ I and g ∈ S. Then
the above inequality can be restated as

u(x)
z(x)

≤ 1 +
∫ x

a

f(t)g
(u(t)
z(t)

)
dt. (3.21)

By Lemma 3.2 we have
u(x) ≤ z(x)β(x), (3.22)

where β(x) is defined by (3.16). By (3.20), we have

z(x) = a(x) +
∫ x

a

f(t)W (v(t))dt, (3.23)

where

v(x) =
∫ x

a

k(x, t)Φ(u(t))dt. (3.24)

By (3.24) and (3.22) , we observe that

v(x) ≤
∫ x

a

k(b, t)Φ
[
β(t)

(
a(t) +

∫ t

a

f(s)W (v(s))ds
)]

dt

≤
∫ x

a

k(b, s)Φ(β(s)a(s))ds

+
∫ t

a

k(b, s)Φ(β(s)
∫ s

a

f(τ)W (v(τ))dτ)ds,

≤ η +
∫ x

a

k(b, s)Φ[β(s)
∫ s

a

f(τ)dτ ]Φ(W (v(s)))ds.

(3.25)

Where η is defined by (3.17). Since Φ is subadditive and submultiplicative function,
W and v(x) are nondecreasing for all x ∈ I. Define r(x) as the right side of (3.25),
then r(a1, x2, . . . , xn) = η and v(x) ≤ r(x), r(x) is positive and nondecreasing in
each of the variables x1, x2, x3, . . . xn . Hence

Dr(x)
Φ(W (r(x)))

≤ k(b, x)Φ[β(x)
∫ x

a

f(s)ds].

Since

Dn

(D1 . . . Dn−1r(x)
Φ(W (r(x)))

)
=

Dr(x)
Φ(W (r(x)))

− DnΦ(W (r(x)))D1 . . . Dn−1r(x)
Φ2(W (r(x)))

,

the above inequality implies

Dn

(D1 . . . Dn−1r(x)
Φ(W (r(x)))

)
≤ Dr(x)

Φ(W (r(x)))
,

and

Dn

(D1 . . . Dn−1r(x)
Φ(W (r(x)))

)
≤ k(b, x)Φ[θ(x)],
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where θ(x) = β(x)
∫ x

a
f(s)ds. Integrating with respect to xn from an to xn, we

have
D1 . . . Dn−1r(x)

Φ(W (r(x)))
≤

∫ xn

an

k(b, x1, x2, . . . , xn−1, sn)Φ[θ(x1, x2, . . . , xn−1, sn)]dsn.

Repeating this argument, we find that

D1r(x)
Φ(W (r(x)))

≤
∫ x2

a2

. . .

∫ xn−1

an−1

∫ xn

an

k(b, x1, s2, . . . , sn)Φ[θ(x1, s2, . . . , sn)]dsndsn−1 . . . ds2.

Integrating both sides of the above inequality with respect to x1 from a1 to x1, we
have

Ψ(r(x))−Ψ(η) ≤
∫ x

a

k(b, s)Φ[θ(s)]ds,

and

r(x) ≤ Ψ−1
(
Ψ(η) +

∫ x

a

k(b, s)Φ
[
β(s)

∫ s

a

f(τ)dτ
]
ds

)
.

From this we obtain

v(x) ≤ r(x) ≤ Ψ−1
(
Ψ(η) +

∫ x

a

k(b, s)Φ[β(s)
∫ s

a

f(τ)dτ ]ds
)
. (3.26)

By (3.22), (3.23) and (3.26) we obtain the desired inequality in (3.15). �

4. Some applications

In this section, our results are applied to the qualitative analysis of two appli-
cation. The first is the system of nonlinear differential equations for one variable
functions. The second is a nonlinear hyperbolic partial integrodifferential equation
of n-independent variables.

First we consider the system of nonlinear differential equations

du

dt
= F1

(
t, u(t),

∫ t

x0

K1(t, u(s))ds
)
, (4.1)

for t ∈ I = [t0, t∞] ⊂ R+, where u ∈ C(I, Rn), F1 ∈ C(I × Rn × Rn, Rn) and
K1 ∈ C(I × Rn, Rn).

In what follows, we shall assume that the Cauchy problem

du

dt
= F1(t, u(t),

∫ t

t0

K1(t, u(s))ds), x ∈ I,

u(t0) = u0 ∈ Rn,

(4.2)

has a unique solution, for every t0 ∈ I and u0 ∈ Rn. We shall denote this solution
by u(., t0, u0). The following theorem deals the estimate on the solution of the
nonlinear Cauchy problem (4.2).

Theorem 4.1. Assume that the functions F1 and K1 in (4.2) satisfy the conditions

‖K1(t, u)‖ ≤ h(t)Φ(‖u‖), t ∈ I, (4.3)

‖F1(t, u, v)‖ ≤ ‖u‖+ ‖v‖, u, v ∈ Rn, (4.4)
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where h and Φ are as defined in Theorem 2.2. Then we have the estimate, for
t0 ≤ t ≤ t2,

‖u(t, t0, u0)‖ ≤ et−t0
(
‖u0‖+

∫ t

t0

h(s)E1(s, ‖u0‖)ds
)
, (4.5)

where

E1(t, ‖u0‖) = Ψ−1
(
Ψ(ϑ) +

∫ t

t0

Φ
(
eτ−x0

∫ τ

t0

h(σ)dσ
)
dτ

)
, (4.6)

Ψ(t) =
∫ t

a

ds

Φ(s)
, t ≥ a > 0, (4.7)

ϑ =
∫ t∞

t0

‖u0‖Φ(es−t0)ds, (4.8)

and t2 is chosen so that Ψ(ϑ) +
∫ s

x0
Φ(eτ−t0

∫ τ

t0
h(σ)dσ)dτ is in Dom(Ψ−1)

Proof. Let t0 ∈ I, u0 ∈ Rn and u(., t0, u0) be the solution of the Cauchy problem
(4.2). Then we have

u(t, t0, u0) = u0 +
∫ t

t0

F1

(
s, u(s, t0, u0),

∫ s

t0

K1(s, u(τ, t0, u0))dτ
)
ds. (4.9)

Using (4.3) and (4.4) in (4.9), we have

‖u(t, t0, u0)‖ ≤ ‖u0‖+
∫ t

t0

f(s)
[
‖u(s, t0, u0)‖+

∫ s

t0

‖K1(s, u(τ, t0, u0))‖dτ
]
ds,

≤ ‖u0‖+
∫ t

t0

f(s)
(
‖u(s, t0, u0)‖+ h(s)

∫ s

t0

Φ(‖u(τ, t0, u0)‖)dτ
)
ds.

(4.10)
Now, a suitable application of Theorem 2.2 with a(t) = ‖u0‖, f(t) = b(t) = 1 and
W (u) = u to (4.10) yields (4.5). �

If, in addition, we assume that the function F1 satisfies the general condition

‖F1(t, u, v)‖ ≤ f(t)(g(‖u‖) + W (‖v‖)), (4.11)

where f , g and W are as defined in Theorem 2.4, we obtain an estimate for
u(., t0, u0), and from any particular conditions of (4.11) and (4.3), we can get some
useful results similar to Theorem 4.1.

Secondly, we shall demonstrate the usefulness of the inequality established in
Theorem 3.3 by obtaining pointwise bounds on the solutions of a certain class of
nonlinear equation in n-independent variables. We consider the nonlinear hyper-
bolic partial integrodifferential equation

∂nu(x)
∂x1∂x2 . . . ∂xn

= F
(
x, u(x),

∫ x

x0
K(x, s, u(s))ds

)
+ G(x, u(x)) (4.12)

for all x ∈ I = [x0;x∞] ⊂ Rn
+, where x = (x1, x2, . . . , xn), x0 = (x0

1, x
0
2, . . . , x

0
n),

x∞ = (x∞1 , x∞2 , . . . , x∞n ) are in Rn
+ and u ∈ C(I, R), F ∈ C(I × R × R, R), K ∈

C(I × I× R, R) and G ∈ C(I × R, R). With suitable boundary conditions, the
solution of (4.12) is of the form

u(x) = l(x) +
∫ x

x0
F

(
s, u(s),

∫ s

x0
K(s, t, u(t))dt

)
ds +

∫ x

x0
G(s, u(s))ds. (4.13)
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The following theorem gives the bound of the solution of (4.12).

Theorem 4.2. Assume that the functions l, F , K and G in (4.12) satisfy the
conditions

|K(s, t, u(t))| ≤ k(s, t)Φ(|u(t)|), t, s ∈ I, u ∈ R, (4.14)

|F (t, u, v)| ≤ 1
2
|u|+ |v|, u, v ∈ R, t ∈ I, (4.15)

|G(s, u)| ≤ 1
2
|u|, s ∈ I, u ∈ R, (4.16)

|l(x)| ≤ a(x), x ∈ I, (4.17)

where a, f, k and Φ are as defined in Theorem 2.2, with f(x) = b(x) + e(x) for all
x ∈ I where b, e ∈ C(I, R+), then we have the estimate, for x0 ≤ x ≤ x∗,

|u(x)| ≤ exp
( n∏

i=1

(xi − x0
i )

)(
a(x) +

∫ x

a

E(t)dt
)
. (4.18)

Here

E(t) = Ψ−1
(
Ψ(η) +

∫ t

a

k(x∞, s)Φ
[
exp

( n∏
i=1

(si − x0
i )

) ∫ s

a

f(τ)dτ
]
ds

)
, (4.19)

η =
∫ x∞

x0
k(x∞, s)Φ

(
a(s) exp

( n∏
i=1

(si − x0
i )

))
ds, (4.20)

Ψ(x) =
∫ x

x0

ds

Φ(s)
, x ≥ x0 > 0, (4.21)

where x∗is chosen so that Ψ(η) +
∫ t

a
k(x∞, s)Φ[exp(

∏n
i=1(si − x0

i ))
∫ s

a
f(τ)dτ ]ds, is

in the domain of Ψ−1.

Proof. Using the conditions (4.14), (4.17) in (4.13), we have

|u(x)| ≤ a(x) +
∫ x

x0
|G(s, u(s))|ds +

∫ x

x0
f(s)

[
|u(s)|+

∫ s

x0
|K(s, t, u(t))|dt

]
ds,

≤ a(x) +
∫ x

x0

(
|u(s)|+

∫ s

x0
k(s, t)Φ(|u(t)|)dt

)
ds.

(4.22)
Now, a suitable application of Theorem 3.3 with f(s) = 1, g(u) = u and W (u) = u
to (4.22) yields (4.18). �

Remarks. If we assume that the functions F and G satisfy the general conditions

|F (t, u, v)| ≤ f(t)(g(|u|) + W (|v|)), (4.23)

|G(t, u)| ≤ f(t)g(|u|), for t ∈ I, u ∈ R, (4.24)

we can obtain an estimation of u(x).
From the particular conditions of (4.14), (4.23) and (4.24), we can obtain some

results similar to Theorem 3.3. To save space, we omit the details here.
Under some suitable conditions, the uniqueness and continuous dependence of

the solutions of (4.1) and (4.12) can also be discussed using our results.
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