Electronic Journal of Differential Equations, Vol. 2007(2007), No. 178, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

# EXISTENCE OF SOLUTIONS FOR SOME HAMMERSTEIN TYPE INTEGRO-DIFFERENTIAL INCLUSIONS 

NGUYEN THI HOAI, NGUYEN VAN LOI


#### Abstract

In the present work we obtain existence results for Hammerstein type integro-differential inclusions in a finite dimensional space for the cases when the integral multifunction satisfies upper Caratheodory conditions and when it is almost lower semicontinuous.


## 1. Introduction

Integral inclusions of the Hammerstein type have been studied in the articles [1, 2, 4, 5, 6, 2, 11, 14, 15, 16, 17, 18] and others. In a finite-dimentional space the inclusion was been studied in [1, 4, 1, 14, 16, 17]. O'Regan [17] investigated solvability of the inclusions in $\mathbb{R}$; Glashoff and Sprekels 9 considered the integral inclusions, arising in the theory of thermostats; Bulgakov and Lyapin [4] studied the properties of the set of solutions of the inclusions of Vollterra-Hammerstein type. The existence of solutions of the Hammerstein's integral inclusions in $\mathbb{R}^{n}$ was established in [1, 14]. For the inclusions in Banach space the problem of existence of solutions was considered in [5, 11, 15].

In the present work, applying the fixed point principle of Bohnenblust - Karlin we give existence results for the Hammerstein type integro-differential inclusion

$$
\begin{equation*}
u(t) \in \int_{a}^{b} K(t, s) F\left(s, u(s), u^{\prime}(s)\right) d s \tag{1.1}
\end{equation*}
$$

in $\mathbb{R}^{n}$.
Let $X, Y$ be normed spaces; $P(Y)[C(Y), K(Y), C v(Y), K v(Y)]$ denote the collections of all nonempty [respectively, nonempty: closed, compact, closed convex and compact convex] subsets of $Y$. Recall (see, e.g. [3, 10, 12]) that, a multimap $F: X \rightarrow P(Y)$ is said to be upper semicontinuous (u.s.c.) [lower semicontinuous (l.s.c.)] if the set $F_{+}^{-1}(V)=\{x \in X \mid F(x) \subset V\}$ is open [closed] for every open [respectively, closed] subset $V \subset Y$. A multimap $F$ is said to be compact if the set $F(X)$ is relatively compact in $Y$.

Let $C\left([a, b], \mathbb{R}^{n}\right)\left[C^{1}\left([a, b], \mathbb{R}^{n}\right), L^{1}\left([a, b], \mathbb{R}^{n}\right)\right]$ denote the collections of all continuous [respectively, continuously differentiable, integrable] functions on $[a, b]$ with values in $\mathbb{R}^{n}$.

[^0]Let $F:[a, b] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow K v\left(\mathbb{R}^{n}\right)$ be a multimap, satisfying the following assumptions:
(F1) For every $x \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ the multifunction $F(\cdot, x):[a, b] \rightarrow K v\left(\mathbb{R}^{n}\right)$ has a measurable selection; i.e., there exists a measurable function $f(\cdot) \in$ $L^{1}\left([a, b], \mathbb{R}^{n}\right)$ such that $f(t) \in F(t, x)$ for a.e. $t \in[a, b] ;$
(F2) For a.e. $t \in[a, b]$ the multimap $F(t, \cdot): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow K v\left(\mathbb{R}^{n}\right)$ is u.s.c.;
(F3) For every bounded subset $\Omega \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ there exists a positive function $\vartheta_{\Omega}(\cdot) \in L^{1}([a, b], \mathbb{R})$ such that

$$
\|F(t, x)\|_{\mathbb{R}^{n}} \leq \vartheta_{\Omega}(t)
$$

for all $x \in \Omega$ and a.e. $t \in[a, b]$, where $\|F(t, x)\|_{\mathbb{R}^{n}}=\max \left\{\|y\|_{\mathbb{R}^{n}}: y \in\right.$ $F(t, x)\}$.
It is known (see, e.g. [3) that under these conditions the superposition multioperator

$$
\begin{aligned}
& \wp_{F}: C\left([a, b], \mathbb{R}^{n} \times \mathbb{R}^{n}\right) \rightarrow C v\left(L^{1}\left([a, b], \mathbb{R}^{n}\right)\right), \\
& \wp_{F}(u)=\left\{f \in L^{1}\left([a, b], \mathbb{R}^{n}\right): f(s) \in F(s, u(s)), \text { for a.e. } s \in[a, b]\right\},
\end{aligned}
$$

is well defined and closed; i.e., it has a closed graph.
For every function $u \in C^{1}\left([a, b], \mathbb{R}^{n}\right)$ the function

$$
\begin{gathered}
v:[a, b] \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}, \\
v(s)=\left(u(s), u^{\prime}(s)\right),
\end{gathered}
$$

is continuous. And hence the multioperator

$$
\begin{aligned}
\wp_{F}^{1}: C^{1}\left([a, b], \mathbb{R}^{n}\right) & \rightarrow C v\left(L^{1}\left([a, b], \mathbb{R}^{n}\right)\right), \\
\wp_{F}^{1}(u) & =\wp_{F}(v),
\end{aligned}
$$

is defined and closed. Consider the linear operator

$$
\begin{gathered}
A: L^{1}\left([a, b], \mathbb{R}^{n}\right) \rightarrow C^{1}\left([a, b], \mathbb{R}^{n}\right), \\
A(f)(t)=\int_{a}^{b} K(t, s) f(s) d s
\end{gathered}
$$

where $K: \quad[a, b] \times[a, b] \rightarrow L\left(\mathbb{R}^{n}\right)$ and $L\left(\mathbb{R}^{n}\right)$ denotes the collection of all linear operators in $\mathbb{R}^{n}$. The following statement can be easily verified.

Theorem 1.1. Let the kernel $K:[a, b] \times[a, b] \rightarrow L\left(\mathbb{R}^{n}\right)$ satisfy the following assumptions:
(K1) the function $K(\cdot, s) x: \quad[a, b] \rightarrow \mathbb{R}^{n}$ is differentiable on $[a, b]$ for all $x \in \mathbb{R}^{n}$ and a.e. $s \in[a, b]$; i.e., there exists $K_{t}^{\prime}(t, s) \in L\left(\mathbb{R}^{n}\right)$ such that:

$$
\lim _{\Delta t \rightarrow 0} \frac{K(t+\Delta t, s) x-K(t, s) x}{\Delta t}=K_{t}^{\prime}(t, s) x
$$

for all $t \in[a, b], x \in \mathbb{R}^{n}$ and a.e. $s \in[a, b] ;$
(K2) there exists $K>0$ such that
$\|K(t, s)\|_{L} \leq K, \quad\left\|K_{t}^{\prime}(t, s)\right\|_{L} \leq K, \quad\left\|\frac{K(t+\Delta t, s)-K(t, s)}{\Delta t}\right\| \leq K$,
for all $t, t+\Delta t \in[a, b]$ and a.e. $s \in[a, b]$;
(K3) for every $t \in[a, b]$ the functions $s \mapsto K(t, s) x$ and $s \mapsto K_{t}^{\prime}(t, s) x$ are integrable for all $x \in \mathbb{R}^{n}$;
(K4) there exist a positive function $\omega(\cdot) \in L^{1}([a, b], \mathbb{R})$ and a function $\eta(\cdot) \in$ $C([a, b], \mathbb{R})$ such that

$$
\left\|K_{t}^{\prime}\left(t_{2}, s\right)-K_{t}^{\prime}\left(t_{1}, s\right)\right\|_{L} \leq \omega(s)\left|\eta\left(t_{2}\right)-\eta\left(t_{1}\right)\right|
$$

for all $t_{1}, t_{2} \in[a, b]$ and a.e. $s \in[a, b]$.
Then the operator $A$ is completely continuous.
Following [3, Theorem 1.5.30] we obtain the following result.
Theorem 1.2. Let multimap $F:[a, b] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow K v\left(\mathbb{R}^{n}\right)$ satisfy the assumptions (F1)-(F3) and the operator A satisfy conditions (K1)-(K4). Then the multioperator $A \circ \wp_{F}^{1}$ is closed.

Consider the integral multioperator

$$
\begin{gathered}
\Gamma=A \circ \wp_{F}^{1}: C^{1}\left([a, b], \mathbb{R}^{n}\right) \rightarrow K v\left(C^{1}\left([a, b], \mathbb{R}^{n}\right)\right), \\
\Gamma(u)(t)=\int_{a}^{b} K(t, s) F\left(s, u(s), u^{\prime}(s)\right) d s
\end{gathered}
$$

Applying [3, Theorem 1.2.48], Theorem 1.1 and Theorem 1.2 we obtain the following theorem.

Theorem 1.3. Let the conditions (K1)-(K4) and (F1)-(F3) hold. Then multioperator $\Gamma$ is u.s.c. and the restriction of $\Gamma$ to any bounded subset $\Omega \subset C^{1}\left([a, b], \mathbb{R}^{n}\right)$ is compact; i.e., the set $\Gamma(\Omega)$ is relatively compact.

Consider now the multioperator $\Gamma$ when the multimap $F:[a, b] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow$ $K\left(\mathbb{R}^{n}\right)$ is almost lower semicontinuous (a.l.s.c.). Recall (see, e.g. 3, 12]) that $F$ is said to be an a.l.s.c. multimap if there exists a sequence of disjoint compact sets $\left\{I_{m}\right\}, I_{m} \subset[a, b]$ such that:
(i) $\operatorname{meas}\left([a, b] \backslash \bigcup_{m} I_{m}\right)=0$;
(ii) the restriction of $F$ on each set $J_{m}=I_{m} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ is l.s.c.

We also assume that $F$ satisfies the condition of boundedness (F3). Then the superposition multioperator

$$
\wp_{F}^{1}: C^{1}\left([a, b] ; \mathbb{R}^{n}\right) \rightarrow C\left(L^{1}\left([a, b] ; \mathbb{R}^{n}\right)\right)
$$

is l.s.c. (see [3, 7, 12]). Consider again the multioperator

$$
A \circ \wp_{F}^{1}: C^{1}\left([a, b] ; \mathbb{R}^{n}\right) \rightarrow P\left(C^{1}\left([a, b] ; \mathbb{R}^{n}\right)\right)
$$

where the operator $A$ is given by the above conditions (K1)-(K4). From 3, Theorem 1.3.11] it follows easily that the multioperator $\Gamma=A \circ \wp_{F}^{1}$ is l.s.c. The following statement can be easily verified.

Theorem 1.4. Let (F1), (F3) and (K1)-(K4) hold. Then for any bounded subset $\Omega \subset C^{1}\left([a, b] ; \mathbb{R}^{n}\right)$ the set $\Gamma(\Omega)$ is relatively compact.

Let $E$ be a Banach space. A nonempty subset $M \subset L^{1}([a, b] ; E)$ is said to be decomposable provided for every $f, g \in M$ and each Lebesgue measurable subset $m \subset[a, b]$,

$$
f \cdot k_{m}+h \cdot k_{([a, b] \backslash m)} \in M,
$$

where $k_{m}$ is the characteristic function of the set $m$ (see, e.g. [3, 8, 12] for further details).

Theorem 1.5 ([8). Let $X$ be a separable metric space and $E$ a Banach space. Then every l.s.c. multimap $G: X \rightarrow P\left(L^{1}([a, b] ; E)\right)$ with closed decomposable values has a continuous selection; i.e., there exists a continuous map $g: X \rightarrow L^{1}([a, b] ; E)$ such that $g(x) \in G(x)$ for all $x \in X$.

It is clear that for every $u \in C^{1}\left([a, b] ; \mathbb{R}^{n}\right)$, the set $\wp_{F}^{1}(u)$ is closed and decomposable. Then the multioperator $\wp_{F}^{1}$ has a continuous selection

$$
\ell: C^{1}\left([a, b] ; \mathbb{R}^{n}\right) \rightarrow L^{1}\left([a, b] ; \mathbb{R}^{n}\right), \quad \ell(u) \in \wp_{F}^{1}(u)
$$

Therefore, the continuous operator $\gamma: C^{1}\left([a, b] ; \mathbb{R}^{n}\right) \rightarrow C^{1}\left([a, b] ; \mathbb{R}^{n}\right)$,

$$
\gamma(u)(t)=\int_{a}^{b} K(t, s) \ell(u)(s) d s
$$

is a continuous selection for the multioperator $\Gamma$. By virtue of Theorem 1.4 , the operator $\gamma$ is completely continuous and its fixed points are also fixed points of the multioperator $\Gamma$.

## 2. Main Results

In this section, we give some existence results of solutions of the inclusion 1.1).
Theorem 2.1. Let the conditions (K1)-(K4) and (F1)-(F2) hold. Assume that:
(F3') there exists a positive function $\omega \in L^{1}([a, b], \mathbb{R})$ such that

$$
\|F(t, x, y)\|_{\mathbb{R}^{n}} \leq \omega(t)\left(1+\|x\|_{\mathbb{R}^{n}}+\|y\|_{\mathbb{R}^{n}}\right)
$$

for all $x, y \in \mathbb{R}^{n}$ and a.e. $t \in[a, b]$;
(F4) $2 K \int_{a}^{b} \omega(t) d t<1$, where $K$ is the constant from the condition (K2).
Then the inclusion 1.1 has at least one solution.
Proof. It is easy to see that from (F3') we obtain (F3). Consider the multioperator $\Gamma$ on the ball $T=T\left(\|u\|_{C^{1}} \leq \rho\right)$. We have

$$
\|\Gamma(u)\|_{C^{1}}=\max \left\{\left\|\int_{a}^{b} K(t, s) f(s) d s\right\|_{C^{1}}: f \in \wp_{F}^{1}(u)\right\}
$$

where

$$
\begin{aligned}
\left\|\int_{a}^{b} K(t, s) f(s) d s\right\|_{C^{1}}= & \max \left\{\left\|\int_{a}^{b} K(t, s) f(s) d s\right\|_{\mathbb{R}^{n}}: t \in[a, b]\right\} \\
& +\max \left\{\left\|\int_{a}^{b} K_{t}^{\prime}(t, s) f(s) d s\right\|_{\mathbb{R}^{n}}: t \in[a, b]\right\} .
\end{aligned}
$$

It is clear that

$$
\left\|\int_{a}^{b} K(t, s) f(s) d s\right\|_{\mathbb{R}^{n}} \leq \int_{a}^{b}\|K(t, s)\|_{L}\|f(s)\|_{\mathbb{R}^{n}} d s \leq K \int_{a}^{b}\|f(s)\|_{\mathbb{R}^{n}} d s
$$

and

$$
\left\|\int_{a}^{b} K_{t}^{\prime}(t, s) f(s) d s\right\|_{\mathbb{R}^{n}} \leq \int_{a}^{b}\left\|K_{t}^{\prime}(t, s)\right\|_{L}\|f(s)\|_{\mathbb{R}^{n}} d s \leq K \int_{a}^{b}\|f(s)\|_{\mathbb{R}^{n}} d s
$$

Since $f(s) \in F\left(s, u(s), u^{\prime}(s)\right)$ for a.e. $s \in[a, b]$ we have

$$
\begin{aligned}
\|f(s)\|_{\mathbb{R}^{n}} & \leq\left\|F\left(s, u(s), u^{\prime}(s)\right)\right\|_{\mathbb{R}^{n}} \\
& \leq \omega(s)\left(1+\|u(s)\|_{\mathbb{R}^{n}}+\left\|u^{\prime}(s)\right\|_{\mathbb{R}^{n}}\right) \\
& \leq \omega(s)\left(1+\|u\|_{C^{1}}\right) \\
& \leq \omega(s)(1+\rho)
\end{aligned}
$$

for a.e. $s \in[a, b]$. Consequently,

$$
K \int_{a}^{b}\|f(s)\|_{\mathbb{R}^{n}} d s \leq K(1+\rho) \int_{a}^{b} \omega(s) d s
$$

And hence

$$
\left\|\int_{a}^{b} K(t, s) f(s) d s\right\|_{C^{1}} \leq 2 K(1+\rho) \int_{a}^{b} \omega(s) d s
$$

The last inequality is true for all $f \in \wp_{F}^{1}(u)$, and so we obtain

$$
\|\Gamma(u)\|_{C^{1}} \leq 2 K(1+\rho) \int_{a}^{b} \omega(s) d s
$$

Choose $\rho$ so that

$$
\rho \geq \frac{2 K \int_{a}^{b} \omega(s) d s}{1-2 K \int_{a}^{b} \omega(s) d s}
$$

Then $\|\Gamma(u)\|_{C^{1}} \leq \rho$. Consider the upper semicontinuous multioperator $\Gamma: T \rightarrow$ $K v(T)$. By Theorem 1.3 , the multioperator $\Gamma$ is compact. From the BohnenblustKarlin Theorem (see, e.g. 3]) it follows that the multioperator $\Gamma$ has at least one fixed point $u^{*} \in T: u^{*} \in \Gamma\left(u^{*}\right)$. The function $u^{*}$ is a solution of the inclusion (1.1).

Theorem 2.2. Let the conditions (K1)-(K4) and $\left(F_{L}\right)$ hold. Assume that there exist two numbers $\lambda, \beta \in \mathbb{R} ; \beta>0$ and a positive function $\omega \in L^{1}([a, b], \mathbb{R})$ such that:
(F3") $\|F(t, x, y)-\lambda(x+y)\|_{\mathbb{R}^{n}} \leq \beta\left(\|x\|_{\mathbb{R}^{n}}+\|y\|_{\mathbb{R}^{n}}\right)+\omega(t)$, for all $x, y \in \mathbb{R}^{n}$ and a.e. $t \in[a, b]$;
(F5) $2 K(b-a)(\beta+|\lambda|)<1$, where $K$ is the constant from (K2).
Then inclusion (1.1) has at least one solution.
For the proof we need the following result (see, e.g. [13]).
Lemma 2.3. Let $A$ be nonlinear and $B$ be linear completely continuous operators in a Banach space $E$. If on the sphere $S=S(\|x\|=\rho)$ the following inequality holds

$$
\|A x-B x\|<\|x-B x\|
$$

Then the equation $x=A x$ in the ball $T(\|x\| \leq \rho)$ has at least one solution.
Proof of Theorem 2.2. It is easy to see that from (F3") we have

$$
\|F(t, x, y)\|_{\mathbb{R}^{n}} \leq(\beta+|\lambda|)\left(\|x\|_{\mathbb{R}^{n}}+\|y\|_{\mathbb{R}^{n}}\right)+\omega(t),
$$

for all $x, y \in \mathbb{R}^{n}$ and a.e. $t \in[a, b]$. And hence we obtain (F3). Consider a linear operator $B: C^{1}\left([a, b] ; \mathbb{R}^{n}\right) \rightarrow C^{1}\left([a, b] ; \mathbb{R}^{n}\right)$,

$$
B u(t)=\lambda \int_{a}^{b} K(t, s)\left(u(s)+u^{\prime}(s)\right) d s
$$

It is clear that $B$ is completely continuous. Consider the multioperator $\Gamma$ and the operator $B$ on $S=S\left(\|u\|_{C^{1}}=\rho\right)$. For each function $u \in S$ we have

$$
\|\Gamma u-B u\|_{C^{1}}=\sup \left\{\left\|\int_{a}^{b} K(t, s)\left[f(s)-\lambda\left(u(s)+u^{\prime}(s)\right)\right] d s\right\|_{C^{1}}: f \in \wp_{F}(u)\right\} .
$$

On the other hand

$$
\begin{aligned}
\| & \int_{a}^{b} K(t, s)\left[f(s)-\lambda\left(u(s)+u^{\prime}(s)\right] d s \|_{C^{1}}\right. \\
= & \max _{t \in[a, b]}\left\|\int_{a}^{b} K(t, s)\left[f(s)-\lambda\left(u(s)+u^{\prime}(s)\right)\right] d s\right\|_{\mathbb{R}^{n}} \\
& +\max _{t \in[a, b]}\left\|\int_{a}^{b} K_{t}^{\prime}(t, s)\left[f(s)-\lambda\left(u(s)+u^{\prime}(s)\right)\right] d s\right\|_{\mathbb{R}^{n}} \\
\leq & \max _{t \in[a, b]]} \int_{a}^{b}\|K(t, s)\|_{L}\left\|f(s)-\lambda\left(u(s)+u^{\prime}(s)\right)\right\|_{\mathbb{R}^{n}} d s \\
& +\max _{t \in[a, b]} \int_{a}^{b}\left\|K_{t}^{\prime}(t, s)\right\|_{L}\left\|f(s)-\lambda\left(u(s)+u^{\prime}(s)\right)\right\|_{\mathbb{R}^{n}} d s \\
\leq & 2 K \int_{a}^{b}\left\|f(s)-\lambda\left(u(s)+u^{\prime}(s)\right)\right\|_{\mathbb{R}^{n}} d s .
\end{aligned}
$$

Since $f(s) \in F\left(s, u(s), u^{\prime}(s)\right)$ for a.e. $s \in[a, b]$ we have

$$
\begin{aligned}
\left\|f(s)-\lambda\left(u(s)+u^{\prime}(s)\right)\right\|_{\mathbb{R}^{n}} & \leq\left\|F\left(s, u(s), u^{\prime}(s)\right)-\lambda\left(u(s)+u^{\prime}(s)\right)\right\|_{\mathbb{R}^{n}} \\
& \leq \beta\left(\|u(s)\|_{\mathbb{R}^{n}}+\left\|u^{\prime}(s)\right\|_{\mathbb{R}^{n}}\right)+\omega(s) \\
& \leq \beta\|u\|_{C^{1}}+\omega(s)=\beta \rho+\omega(s)
\end{aligned}
$$

for a.e. $s \in[a, b]$. Therefore,

$$
\begin{aligned}
\left\|\int_{a}^{b} K(t, s)\left[f(s)-\lambda\left(u(s)+u^{\prime}(s)\right)\right] d s\right\|_{C^{1}} & \leq 2 K \int_{a}^{b}(\beta \rho+\omega(s)) d s \\
& \leq 2 K \beta \rho(b-a)+2 K \int_{a}^{b} \omega(s) d s
\end{aligned}
$$

The above inequality holds for all $f \in \wp_{F}^{1}(u)$, and so we obtain

$$
\|\Gamma u-B u\|_{C^{1}} \leq 2 K \beta \rho(b-a)+2 K \int_{a}^{b} \omega(s) d s, \quad \forall u \in S
$$

On the other hand for each $t \in[a, b]$ we have

$$
\begin{aligned}
\|u(t)-B(u)(t)\|_{\mathbb{R}^{n}} & =\left\|u(t)-\lambda \int_{a}^{b} K(t, s)\left(u(s)+u^{\prime}(s)\right) d s\right\|_{\mathbb{R}^{n}} \\
& \geq\|u(t)\|_{\mathbb{R}^{n}}-\left\|\lambda \int_{a}^{b} K(t, s)\left(u(s)+u^{\prime}(s)\right) d s\right\|_{\mathbb{R}^{n}} \\
& \geq\|u(t)\|_{\mathbb{R}^{n}}-|\lambda| \int_{a}^{b}\|K(t, s)\|_{L}\left\|u(s)+u^{\prime}(s)\right\|_{\mathbb{R}^{n}} d s \\
& \geq\|u(t)\|_{\mathbb{R}^{n}}-|\lambda| \int_{a}^{b} K\|u\|_{C^{1}} d s \\
& \geq\|u(t)\|_{\mathbb{R}^{n}}-K \rho|\lambda|(b-a)
\end{aligned}
$$

Analogously,

$$
\left\|u^{\prime}(t)-(B(u))^{\prime}(t)\right\|_{\mathbb{R}^{n}} \geq\left\|u^{\prime}(t)\right\|_{\mathbb{R}^{n}}-K \rho|\lambda|(b-a)
$$

And hence we obtain

$$
\begin{aligned}
\|u-B u\|_{C^{1}} & =\max _{t \in[a, b]}\|u(t)-B u(t)\|_{\mathbb{R}^{n}}+\max _{t \in[a, b]}\left\|u^{\prime}(t)-(B u)^{\prime}(t)\right\|_{\mathbb{R}^{n}} \\
& \geq\|u\|_{C^{1}}-2 K \rho|\lambda|(b-a) \\
& =\rho(1-2 K|\lambda|(b-a)) .
\end{aligned}
$$

Choose $\rho$ so that $\rho>\frac{2 K \int_{a}^{b} \omega(s) d s}{1-2 K(b-a)(\beta+|\rho|)}$. Then $\|\Gamma u-B u\|_{C^{1}}<\|u-B u\|_{C^{1}}$, for all $u \in S$. Let $\gamma$ be an arbitrary continuous selection of the multioperator $\Gamma$. Then on the sphere $S$ we have

$$
\|\gamma u-B u\|_{C^{1}} \leq\|\Gamma u-B u\|_{C^{1}}<\|u-B u\|_{C^{1}}
$$

By Lemma 2.3, the operator $\gamma$ has at least one fixed point in the ball $T\left(\|u\|_{C^{1}}<\rho\right)$ : $u_{*}=\gamma\left(u_{*}\right)$. The function $u_{*}$ is a solution of the inclusion 1.1.
Theorem 2.4. Let the conditions (K1)-(K4), (F1), (F3'), (F4) hold. Then inclusion (1.1) has at least one solution.
Proof. From the proof of Theorem 2.1 it follows that with the conditions (F3') and (F4) we can choose a number $\rho>0$ such that the multioperator $\Gamma$ maps the ball $T\left(\|u\|_{C^{1}} \leq \rho\right)$ into itself. Let $\gamma$ be an arbitrary continuous selection of the multioperator $\Gamma$. Then the operator $\gamma$ maps the ball $T\left(\|u\|_{C^{1}} \leq \rho\right)$ into itself. Consider the completely continuous operator $\gamma: T \rightarrow T$. From the Schauder fixed point theorem, the operator $\gamma$ has at least one fixed point on $T$, i.e. there exists a function $u_{*} \in T$ such that: $u_{*}=\gamma\left(u_{*}\right)$. The function $u_{*}$ is a solution of the inclusion (1.1).

## References

[1] J. Appell, E. De Pascale, H.T. Nguyen and P. Zabrejko; Nonlinear integral inclusions of Hammerstein type, Topol. Meth. Nonlin. Anal. 5(1995), pp. 111-124.
[2] J. Appell, E. De Pascale, H. T. Nguyen and P. Zabrejko; Multivalued superposition. Dissertationes Math. (Rozprawy Mat.) 345 (1995), 1-97.
[3] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis and V. V. Obukhovskii; Introduction to the Theory of Multimap and Differential Inclusions, -Moscow: KomKnhiga, 2005, 216p. (Russian)
[4] A. I. Bulgakov and L. N. Lyapin; Some properties of the set of solutions for the VolterraHammerstein integral inclusion, Differential Equations (Transl.) 14 (1978), pp. 1043-1048
[5] T. Cardinali and N. S. Papageorgiou; Hammerstein integral inclusions in reflexive Banach space, Proc AMS 127(1999), pp. 95-103.
[6] C. V. Coffmann, Variational theory of set-valued Hammerstein operators in Banach spaces. The eigenvalue problem, Ann. Scuola Norm. Sup. Pisa. 4(1978), pp. 633-655.
[7] K. Deimling, Multivalued differential equations, Walter de Gruyter, Berlin-New York, 1992.
[8] A. Fryszkowski, Fixed point theory for decomposable sets. Kluwer Academic Publishers, Dordrecht, 2004.
[9] K. Glashoff and J. Sprekels; An application of Glickberg's theorem to set-valued integral equations arising in the theory of thermostats, SIAM J. Math. Anal. Vol13, No. 3 (1981).
[10] S. Hu, N.S. Papageorgiou; Handbook of multivalued analysis. Vol. I. Theory. Kluwer, Dordrecht, 1997.
[11] S. Hu, N. S. Papageorgiou; Handbook of multivalued analysis. Vol. II. Applications. Kluwer, Dordrecht, 2000.
[12] M. Kamenskii, V. Obukhovskii, and P. Zecca; Condensing multivalued maps and semilinear differential inclusions in Banach spaces, Walter de Gruyter, Berlin-New York, 2001.
[13] M. A. Krasnoselskii, Topological Methods in Theory of Nonlinear Integral Equations, Moscow: State Publishing House, 1956 (Russian); English edition: Macmillan, New York, 1964.
[14] N. V. Loi; On the existence of solutions for some classes of Hammerstein type integral inclusions, Vesnik VSU 2/2006, pp. 169-174. (Russian)
[15] N. V. Loi, V. V. Obukhovskii, Integral inclusions of Hammerstein type in Banach space. Trudy Matematicheskogo Fakulteta. Novaya Seriya 11(2007), pp. 138-149.
[16] L. Lyapin, Hammerstein inclusions, Diff. Equations, 10 (1976),pp. 638-642.
[17] D. O'Regan, Integral inclusions of upper semicontinuous or lower semicontinuous type, Proc. AMS 124(1996), pp. 2391-2399.
[18] N. S. Papageorgiou, Convergence theorems for Banach spaces valued integrable multifunctions, Intern. J. Math. and Math. Sci. 10(1987), pp. 433-442.

Nguyen Thi Hoai
Faculty of mathematics, Voronezh State Pedagogical University, Russia
E-mail address: nthoai0682@yahoo.com
Nguyen Van Loi
Faculty of mathematics, Voronezh State Pedagogical University, Russia
E-mail address: loitroc@yahoo.com


[^0]:    2000 Mathematics Subject Classification. 47H04, 34A60, 47H10.
    Key words and phrases. Multivalued map; differential inclusion; fixed point.
    © 2007 Texas State University - San Marcos.
    Submitted December 27, 2006. Published December 17, 2007.

