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EXISTENCE OF SOLUTIONS FOR SOME HAMMERSTEIN
TYPE INTEGRO-DIFFERENTIAL INCLUSIONS

NGUYEN THI HOAI, NGUYEN VAN LOI

Abstract. In the present work we obtain existence results for Hammerstein
type integro-differential inclusions in a finite dimensional space for the cases

when the integral multifunction satisfies upper Caratheodory conditions and

when it is almost lower semicontinuous.

1. Introduction

Integral inclusions of the Hammerstein type have been studied in the articles
[1, 2, 4, 5, 6, 9, 11, 14, 15, 16, 17, 18] and others. In a finite-dimentional space
the inclusion was been studied in [1, 4, 9, 14, 16, 17]. O’Regan [17] investigated
solvability of the inclusions in R; Glashoff and Sprekels [9] considered the integral
inclusions, arising in the theory of thermostats; Bulgakov and Lyapin [4] studied
the properties of the set of solutions of the inclusions of Vollterra-Hammerstein
type. The existence of solutions of the Hammerstein’s integral inclusions in Rn was
established in [1, 14]. For the inclusions in Banach space the problem of existence
of solutions was considered in [5, 11, 15].

In the present work, applying the fixed point principle of Bohnenblust - Karlin
we give existence results for the Hammerstein type integro-differential inclusion

u(t) ∈
∫ b

a

K(t, s)F (s, u(s), u′(s))ds. (1.1)

in Rn.
Let X, Y be normed spaces; P (Y ) [C(Y ),K(Y ), Cv(Y ),Kv(Y )] denote the col-

lections of all nonempty [respectively, nonempty: closed, compact, closed convex
and compact convex] subsets of Y . Recall (see, e.g. [3, 10, 12]) that, a multimap
F : X → P (Y ) is said to be upper semicontinuous (u.s.c.) [lower semicontinuous
(l.s.c.)] if the set F−1

+ (V ) = {x ∈ X | F (x) ⊂ V } is open [closed] for every open
[respectively, closed] subset V ⊂ Y . A multimap F is said to be compact if the set
F (X) is relatively compact in Y .

Let C([a, b], Rn) [C1([a, b], Rn), L1([a, b], Rn)] denote the collections of all con-
tinuous [respectively, continuously differentiable, integrable] functions on [a, b] with
values in Rn.
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Let F : [a, b] × Rn × Rn → Kv(Rn) be a multimap, satisfying the following
assumptions:

(F1) For every x ∈ Rn × Rn the multifunction F (·, x) : [a, b] → Kv(Rn) has
a measurable selection; i.e., there exists a measurable function f(·) ∈
L1([a, b], Rn) such that f(t) ∈ F (t, x) for a.e. t ∈ [a, b];

(F2) For a.e. t ∈ [a, b] the multimap F (t, ·) : Rn × Rn → Kv(Rn) is u.s.c.;
(F3) For every bounded subset Ω ⊂ Rn × Rn there exists a positive function

ϑΩ(·) ∈ L1([a, b], R) such that

‖F (t, x)‖Rn ≤ ϑΩ(t),

for all x ∈ Ω and a.e. t ∈ [a, b], where ‖F (t, x)‖Rn = max{‖y‖Rn : y ∈
F (t, x)}.

It is known (see, e.g. [3]) that under these conditions the superposition multioper-
ator

℘F : C([a, b], Rn × Rn) → Cv(L1([a, b], Rn)),

℘F (u) = {f ∈ L1([a, b], Rn) : f(s) ∈ F (s, u(s)), for a.e. s ∈ [a, b]},
is well defined and closed; i.e., it has a closed graph.

For every function u ∈ C1([a, b], Rn) the function

v : [a, b] → Rn × Rn,

v(s) = (u(s), u′(s)),

is continuous. And hence the multioperator

℘1
F : C1([a, b], Rn) → Cv(L1([a, b], Rn)),

℘1
F (u) = ℘F (v),

is defined and closed. Consider the linear operator

A : L1([a, b], Rn) → C1([a, b], Rn),

A(f)(t) =
∫ b

a

K(t, s)f(s)ds,

where K : [a, b] × [a, b] → L(Rn) and L(Rn) denotes the collection of all linear
operators in Rn. The following statement can be easily verified.

Theorem 1.1. Let the kernel K : [a, b] × [a, b] → L(Rn) satisfy the following
assumptions:

(K1) the function K(·, s)x : [a, b] → Rn is differentiable on [a, b] for all x ∈ Rn

and a.e. s ∈ [a, b]; i.e., there exists K ′
t(t, s) ∈ L(Rn) such that:

lim
∆t→0

K(t + ∆t, s)x−K(t, s)x
∆t

= K ′
t(t, s)x,

for all t ∈ [a, b], x ∈ Rn and a.e. s ∈ [a, b];
(K2) there exists K > 0 such that

‖K(t, s)‖L ≤ K, ‖K ′
t(t, s)‖L ≤ K,

∥∥K(t + ∆t, s)−K(t, s)
∆t

∥∥ ≤ K,

for all t, t + ∆t ∈ [a, b] and a.e. s ∈ [a, b];
(K3) for every t ∈ [a, b] the functions s 7→ K(t, s)x and s 7→ K ′

t(t, s)x are inte-
grable for all x ∈ Rn;
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(K4) there exist a positive function ω(·) ∈ L1([a, b], R) and a function η(·) ∈
C([a, b], R) such that

‖K ′
t(t2, s)−K ′

t(t1, s)‖L ≤ ω(s)|η(t2)− η(t1)|,

for all t1, t2 ∈ [a, b] and a.e. s ∈ [a, b].
Then the operator A is completely continuous.

Following [3, Theorem 1.5.30] we obtain the following result.

Theorem 1.2. Let multimap F : [a, b]×Rn×Rn → Kv(Rn) satisfy the assumptions
(F1)–(F3) and the operator A satisfy conditions (K1)–(K4). Then the multioperator
A ◦ ℘1

F is closed.

Consider the integral multioperator

Γ = A ◦ ℘1
F : C1([a, b], Rn) → Kv(C1([a, b], Rn)),

Γ(u)(t) =
∫ b

a

K(t, s)F (s, u(s), u′(s))ds.

Applying [3, Theorem 1.2.48], Theorem 1.1 and Theorem 1.2 we obtain the following
theorem.

Theorem 1.3. Let the conditions (K1)–(K4) and (F1)–(F3) hold. Then multiop-
erator Γ is u.s.c. and the restriction of Γ to any bounded subset Ω ⊂ C1([a, b], Rn)
is compact; i.e., the set Γ(Ω) is relatively compact.

Consider now the multioperator Γ when the multimap F : [a, b] × Rn × Rn →
K(Rn) is almost lower semicontinuous (a.l.s.c.). Recall (see, e.g. [3, 12]) that F is
said to be an a.l.s.c. multimap if there exists a sequence of disjoint compact sets
{Im}, Im ⊂ [a, b] such that:

(i) meas([a, b] \
⋃

m Im) = 0;
(ii) the restriction of F on each set Jm = Im × Rn × Rn is l.s.c.

We also assume that F satisfies the condition of boundedness (F3). Then the
superposition multioperator

℘1
F : C1([a, b]; Rn) → C(L1([a, b]; Rn))

is l.s.c. (see [3, 7, 12]). Consider again the multioperator

A ◦ ℘1
F : C1([a, b]; Rn) → P (C1([a, b]; Rn)),

where the operator A is given by the above conditions (K1)–(K4). From [3, Theorem
1.3.11] it follows easily that the multioperator Γ = A ◦ ℘1

F is l.s.c. The following
statement can be easily verified.

Theorem 1.4. Let (F1), (F3) and (K1)–(K4) hold. Then for any bounded subset
Ω ⊂ C1([a, b]; Rn) the set Γ(Ω) is relatively compact.

Let E be a Banach space. A nonempty subset M ⊂ L1([a, b];E) is said to be
decomposable provided for every f, g ∈ M and each Lebesgue measurable subset
m ⊂ [a, b],

f · km + h · k([a,b]\m) ∈ M,

where km is the characteristic function of the set m (see, e.g. [3, 8, 12] for further
details).
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Theorem 1.5 ([8]). Let X be a separable metric space and E a Banach space. Then
every l.s.c. multimap G : X → P (L1([a, b];E)) with closed decomposable values has
a continuous selection; i.e., there exists a continuous map g : X → L1([a, b];E)
such that g(x) ∈ G(x) for all x ∈ X.

It is clear that for every u ∈ C1([a, b]; Rn), the set ℘1
F (u) is closed and decom-

posable. Then the multioperator ℘1
F has a continuous selection

` : C1([a, b]; Rn) → L1([a, b]; Rn), `(u) ∈ ℘1
F (u).

Therefore, the continuous operator γ : C1([a, b]; Rn) → C1([a, b]; Rn),

γ(u)(t) =
∫ b

a

K(t, s)`(u)(s)ds

is a continuous selection for the multioperator Γ. By virtue of Theorem 1.4, the
operator γ is completely continuous and its fixed points are also fixed points of the
multioperator Γ.

2. Main results

In this section, we give some existence results of solutions of the inclusion (1.1).

Theorem 2.1. Let the conditions (K1)–(K4) and (F1)–(F2) hold. Assume that:

(F3’) there exists a positive function ω ∈ L1([a, b], R) such that

‖F (t, x, y)‖Rn ≤ ω(t)(1 + ‖x‖Rn + ‖y‖Rn),

for all x, y ∈ Rn and a.e. t ∈ [a, b];
(F4) 2K

∫ b

a
ω(t)dt < 1, where K is the constant from the condition (K2).

Then the inclusion (1.1) has at least one solution.

Proof. It is easy to see that from (F3’) we obtain (F3). Consider the multioperator
Γ on the ball T = T (‖u‖C1 ≤ ρ). We have

‖Γ(u)‖C1 = max
{∥∥∫ b

a

K(t, s)f(s)ds
∥∥

C1 : f ∈ ℘1
F (u)

}
,

where ∥∥∫ b

a

K(t, s)f(s)ds
∥∥

C1 = max
{∥∥∫ b

a

K(t, s)f(s)ds
∥∥

Rn : t ∈ [a, b]
}

+ max
{∥∥∫ b

a

K ′
t(t, s)f(s)ds

∥∥
Rn : t ∈ [a, b]

}
.

It is clear that∥∥∫ b

a

K(t, s)f(s)ds
∥∥

Rn ≤
∫ b

a

‖K(t, s)‖L‖f(s)‖Rnds ≤ K

∫ b

a

‖f(s)‖Rnds,

and ∥∥∫ b

a

K ′
t(t, s)f(s)ds

∥∥
Rn ≤

∫ b

a

‖K ′
t(t, s)‖L‖f(s)‖Rnds ≤ K

∫ b

a

‖f(s)‖Rnds.
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Since f(s) ∈ F (s, u(s), u′(s)) for a.e. s ∈ [a, b] we have

‖f(s)‖Rn ≤ ‖F (s, u(s), u′(s))‖Rn

≤ ω(s)(1 + ‖u(s)‖Rn + ‖u′(s)‖Rn)

≤ ω(s)(1 + ‖u‖C1)

≤ ω(s)(1 + ρ),

for a.e. s ∈ [a, b]. Consequently,

K

∫ b

a

‖f(s)‖Rn ds ≤ K(1 + ρ)
∫ b

a

ω(s)ds.

And hence ∥∥∫ b

a

K(t, s)f(s)ds
∥∥

C1 ≤ 2K(1 + ρ)
∫ b

a

ω(s)ds.

The last inequality is true for all f ∈ ℘1
F (u), and so we obtain

‖Γ(u)‖C1 ≤ 2K(1 + ρ)
∫ b

a

ω(s)ds.

Choose ρ so that

ρ ≥
2K

∫ b

a
ω(s)ds

1− 2K
∫ b

a
ω(s)ds

.

Then ‖Γ(u)‖C1 ≤ ρ. Consider the upper semicontinuous multioperator Γ : T →
Kv(T ). By Theorem 1.3, the multioperator Γ is compact. From the Bohnenblust-
Karlin Theorem (see, e.g. [3]) it follows that the multioperator Γ has at least one
fixed point u∗ ∈ T : u∗ ∈ Γ(u∗). The function u∗ is a solution of the inclusion
(1.1). �

Theorem 2.2. Let the conditions (K1)–(K4) and (FL) hold. Assume that there
exist two numbers λ, β ∈ R;β > 0 and a positive function ω ∈ L1([a, b], R) such
that:
(F3”) ‖F (t, x, y)− λ(x + y)‖Rn ≤ β(‖x‖Rn + ‖y‖Rn) + ω(t), for all x, y ∈ Rn and

a.e. t ∈ [a, b];
(F5) 2K(b− a)(β + |λ|) < 1, where K is the constant from (K2).

Then inclusion (1.1) has at least one solution.

For the proof we need the following result (see, e.g. [13]).

Lemma 2.3. Let A be nonlinear and B be linear completely continuous operators
in a Banach space E. If on the sphere S = S(‖x‖ = ρ) the following inequality
holds

‖Ax−Bx‖ < ‖x−Bx‖.
Then the equation x = Ax in the ball T (‖x‖ ≤ ρ) has at least one solution.

Proof of Theorem 2.2. It is easy to see that from (F3”) we have

‖F (t, x, y)‖Rn ≤ (β + |λ|)(‖x‖Rn + ‖y‖Rn) + ω(t),

for all x, y ∈ Rn and a.e. t ∈ [a, b]. And hence we obtain (F3). Consider a linear
operator B : C1([a, b]; Rn) → C1([a, b]; Rn),

Bu(t) = λ

∫ b

a

K(t, s)(u(s) + u′(s))ds.
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It is clear that B is completely continuous. Consider the multioperator Γ and the
operator B on S = S(‖u‖C1 = ρ). For each function u ∈ S we have

‖Γu−Bu‖C1 = sup
{∥∥∫ b

a

K(t, s)[f(s)− λ(u(s) + u′(s))]ds
∥∥

C1 : f ∈ ℘F (u)
}
.

On the other hand∥∥∫ b

a

K(t, s)[f(s)− λ(u(s) + u′(s)]ds
∥∥

C1

= max
t∈[a,b]

∥∥∫ b

a

K(t, s)[f(s)− λ(u(s) + u′(s))]ds
∥∥

Rn

+ max
t∈[a,b]

∥∥∫ b

a

K ′
t(t, s)[f(s)− λ(u(s) + u′(s))]ds

∥∥
Rn

≤ max
t∈[a,b]

∫ b

a

‖K(t, s)‖L‖f(s)− λ(u(s) + u′(s))‖Rnds

+ max
t∈[a,b]

∫ b

a

‖K ′
t(t, s)‖L‖f(s)− λ(u(s) + u′(s))‖Rnds

≤ 2K

∫ b

a

‖f(s)− λ(u(s) + u′(s))‖Rnds.

Since f(s) ∈ F (s, u(s), u′(s)) for a.e. s ∈ [a, b] we have

‖f(s)− λ(u(s) + u′(s))‖Rn ≤ ‖F (s, u(s), u′(s))− λ(u(s) + u′(s))‖Rn

≤ β(‖u(s)‖Rn + ‖u′(s)‖Rn) + ω(s)

≤ β‖u‖C1 + ω(s) = βρ + ω(s),

for a.e. s ∈ [a, b]. Therefore,∥∥∫ b

a

K(t, s)[f(s)− λ(u(s) + u′(s))]ds
∥∥

C1 ≤ 2K

∫ b

a

(βρ + ω(s))ds

≤ 2Kβρ(b− a) + 2K

∫ b

a

ω(s)ds.

The above inequality holds for all f ∈ ℘1
F (u), and so we obtain

‖Γu−Bu‖C1 ≤ 2Kβρ(b− a) + 2K

∫ b

a

ω(s)ds, ∀u ∈ S.

On the other hand for each t ∈ [a, b] we have

‖u(t)−B(u)(t)‖Rn =
∥∥u(t)− λ

∫ b

a

K(t, s)(u(s) + u′(s))ds
∥∥

Rn

≥ ‖u(t)‖Rn − ‖λ
∫ b

a

K(t, s)(u(s) + u′(s))ds‖Rn

≥ ‖u(t)‖Rn − |λ|
∫ b

a

‖K(t, s)‖L‖u(s) + u′(s)‖Rnds

≥ ‖u(t)‖Rn − |λ|
∫ b

a

K‖u‖C1ds

≥ ‖u(t)‖Rn −Kρ|λ|(b− a).
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Analogously,

‖u′(t)− (B(u))′(t)‖Rn ≥ ‖u′(t)‖Rn −Kρ|λ|(b− a).

And hence we obtain

‖u−Bu‖C1 = max
t∈[a,b]

‖u(t)−Bu(t)‖Rn + max
t∈[a,b]

‖u′(t)− (Bu)′(t)‖Rn

≥ ‖u‖C1 − 2Kρ|λ|(b− a)

= ρ(1− 2K|λ|(b− a)).

Choose ρ so that ρ >
2K

R b
a

ω(s)ds

1−2K(b−a)(β+|ρ|) . Then ‖Γu − Bu‖C1 < ‖u − Bu‖C1 , for all
u ∈ S. Let γ be an arbitrary continuous selection of the multioperator Γ. Then on
the sphere S we have

‖γu−Bu‖C1 ≤ ‖Γu−Bu‖C1 < ‖u−Bu‖C1 .

By Lemma 2.3, the operator γ has at least one fixed point in the ball T (‖u‖C1 < ρ):
u∗ = γ(u∗). The function u∗ is a solution of the inclusion (1.1). �

Theorem 2.4. Let the conditions (K1)–(K4), (F1), (F3’), (F4) hold. Then inclu-
sion (1.1) has at least one solution.

Proof. From the proof of Theorem 2.1 it follows that with the conditions (F3’)
and (F4) we can choose a number ρ > 0 such that the multioperator Γ maps the
ball T (‖u‖C1 ≤ ρ) into itself. Let γ be an arbitrary continuous selection of the
multioperator Γ. Then the operator γ maps the ball T (‖u‖C1 ≤ ρ) into itself.
Consider the completely continuous operator γ : T → T . From the Schauder fixed
point theorem, the operator γ has at least one fixed point on T , i.e. there exists
a function u∗ ∈ T such that: u∗ = γ(u∗). The function u∗ is a solution of the
inclusion (1.1). �
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